
Shoot4U: Using VMM Assists to Optimize
TLB Operations on Preempted vCPUs

Jiannan Ouyang
University of Pittsburgh
ouyang@cs.pitt.edu

John R. Lange
University of Pittsburgh
jacklange@cs.pitt.edu

Haoqiang Zheng
VMware, Inc

hzheng@vmware.com

Abstract
Virtual Machine based approaches to workload consolida-
tion, as seen in IaaS cloud as well as datacenter platforms,
have long had to contend with performance degradation
caused by synchronization primitives inside the guest en-
vironments. These primitives can be affected by virtual CPU
preemptions by the host scheduler that can introduce delays
that are orders of magnitude longer than those primitives
were designed for. While a significant amount of work has
focused on the behavior of spinlock primitives as a source
of these performance issues, spinlocks do not represent the
entirety of synchronization mechanisms that are susceptible
to scheduling issues when running in a virtualized environ-
ment. In this paper we address the virtualized performance
issues introduced by TLB shootdown operations. Our pro-
filing study, based on the PARSEC benchmark suite, has
shown that up to 64% of a VM’s CPU time can be spent
on TLB shootdown operations under certain workloads.
In order to address this problem, we present a paravirtual
TLB shootdown scheme named Shoot4U. Shoot4U com-
pletely eliminates TLB shootdown preemptions by invali-
dating guest TLB entries from the VMM and allowing guest
TLB shootdown operations to complete without waiting for
remote virtual CPUs to be scheduled. Our performance eval-
uation using the PARSEC benchmark suite demonstrates
that Shoot4U can reduce benchmark runtime by up to 85%
compared an unmodified Linux kernel, and up to 44% over
a state-of-the-art paravirtual TLB shootdown scheme.

Categories and Subject Descriptors D.4.1 [Process Man-
agement]: Synchronization

Keywords TLB Shootdown, Virtualization, Preemption

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
VEE ’16, April 02-03, 2016, Atlanta, GA, USA.
Copyright c� 2016 ACM 978-1-4503-3947-6/16/04. . . $15.00.
http://dx.doi.org/10.1145/2892242.2892245

1. Introduction
Several studies have established that the average server uti-
lization in most datacenters is low, ranging from 10% to
50% [2, 9, 12, 14, 18]. While a promising way to improve ef-
ficiency is to co-locate multiple virtual machines on the same
node in the cloud, the performance overhead introduced by
over-commitment inhibits efficient workload co-location. A
large body of work has documented the detrimental effects
virtual CPU preemption can have on multicore virtual ma-
chine performance [10, 11, 13, 15, 16, 20–23]. The majority
of this work has focused on the impact of spinlock behaviors,
due to the direct effects spinlock delays can have on perfor-
mance critical code paths. However, relatively little attention
has been paid to other sources of local delays caused by pre-
emptions of remote CPU cores. In this paper we focus on the
issue of performance overhead caused by TLB operations in
the presence of preempted virtual CPU cores (vCPUs).

Cross core TLB operations act as a low level synchroniza-
tion point in modern Operating Systems in order to maintain
consistent application memory mappings. The majority of
these operations consist of various cache flushing methods
that must be invoked on every CPU in the system. For each
TLB flush operation the invoking CPU must wait until the
operation has been completed on all other cores before con-
tinuing, typically by polling a memory region with kernel
preemption disabled. This invocation is achieved by issuing
Interprocessor Interrupts (IPIs) to each target CPU, the han-
dlers of which directly invoke a local flush operation. In na-
tive environments, these operations have very low latency
since at most they only need to wait for a target CPU to exit
an atomic region before the IPI is handled. In virtual environ-
ments these assumptions no longer hold due to the potential
for a target vCPU to be preempted by the underlying host
scheduler. This can result in the latencies of TLB flush oper-
ations increasing by orders of magnitude depending on the
scheduling state of the target vCPUs. We refer to this issue
as the TLB shootdown preemption problem.

To address this problem we propose Shoot4U, a vir-
tual TLB management mechanism for paravirtualized mul-
ticore VMs. Shoot4U eliminates the dependencies on vCPU
scheduling states for TLB flush operations and is therefore

able to ensure that TLB operations exhibit consistently low
latencies. Shoot4U accomplishes this by intercepting cross
vCPU TLB flush operations at the VMM layer, and perform-
ing the invalidations directly in the VMM instead of requir-
ing that they be handled inside a guest environment. This
optimization allows Shoot4U to avoid any delays caused by
a preempted vCPU, and to ensure consistent performance of
TLB operations. The Shoot4U mechanism provides a better
match for the TLB operation semantics, since at the lowest
level it shares the same IPI based signalling behavior as the
native versions. This not only allows lower latencies in gen-
eral, but also eliminates preemption based delays that cause
a dramatic increase in the latency variance.

In this paper we make the following contributions:

• An analysis of the impact that various low level synchro-
nization operations have on system benchmark perfor-
mance.

• Shoot4U: A novel virtualized TLB architecture that en-
sures consistently low latencies for synchronized TLB
operations.

• An analysis of the performance benefits achieved by
Shoot4U over current state-of-art software and hardware
assisted approaches.

2. Related Work
Most previous work that has looked at the problems asso-
ciated with VM synchronization overheads has focused on
spinlocks and the lock holder preemption problem, origi-
nally identified by V. Uhlig et al. in 2004 [21]. In that work,
the authors proposed a paravirtualization based approach in
which the guest OS provides scheduling hints to the underly-
ing VMM. These hints demarcated non-preemptable regions
of guest execution that corresponded to critical sections in
which a spinlock was held. T. Friebel and S. Biemueller [11]
proposed a paravirtual spinlock approach, which was later
adopted by Xen and KVM [17]. In their scheme a vCPU
notifies the VMM via a hypercall if it has been waiting
longer than a threshold. The VMM then blocks the spinning
vCPU until the requested lock is released. J. Ouyang and
J. Lange [16] identified the lock waiter preemption prob-
lem existing in queue-based FIFO spinlocks and proposed
the preemptable ticket spinlock algorithm (pmtlock) to solve
this problem. While spinlock optimizations are an important
feature to reduce preemption based delays, they do not ad-
dress other sources of preemption based delays such as TLB
operations, which are the topic of this paper.

There are a few examples of previous work that has
looked into the TLB shootdown preemption problem. In par-
ticular, H. Kim et al. [13] studied the performance degrada-
tion caused by both spinlock and TLB shootdown preemp-
tions. They proposed the use of TLB shootdown IPIs as a
VMM scheduling heuristic in order to reduce the delay in-
troduced by a preempted vCPU. While their approach does

help alleviate the delays imposed by TLB shootdowns on
preempted vCPUs, it does not address the underlying prob-
lem directly. In contrast, our Shoot4U mechanism addresses
the source of the problem directly by eliminating the neces-
sity for busy-waiting inside the VM.

Most relevant to our work is the KVM paravirtual re-
mote flush TLB scheme (kvmtlb) developed by the Linux
community [4]. This scheme maintains the preemption state
of all vCPUs inside the VMM and shares this information
with the guest. When initiating TLB operations, if the re-
mote vCPU is running, then the conventional shootdown ap-
proach is used. Otherwise, if the remote vCPU is preempted,
a should flush flag is set on that remote vCPU and an IPI is
not sent. When rescheduling a vCPU, the VMM checks the
should flush flag. If set, the VMM invalidates all TLB entries
of that vCPU. While this approach does address the under-
lying problem, it still possesses a number of shortcomings.
First it still imposes the overheads of IPI routing between
vCPUs which Shoot4U eliminates. Second, in an overcom-
mitted environment it is possible that the preemption state
of a vCPU can change after its state has been checked by
the invoking CPU but before the IPI is actually delivered.
As shown in our evaluation, the worst-case TLB shootdown
latency of Shoot4U is an order of magnitude better than
kvmtlb.

Other approaches to improving VM performance in the
face of cross core synchronizations include improving VMM
scheduling policy. H. Kim et al. [13] proposed demand-
based coordinated scheduling that controls time-sharing in
response to inter-processor interrupts (IPIs) between virtual
CPUs. Other work proposed the use of co-scheduling [15].
However, strict co-scheduling is not scalable and may result
in CPU fragmentation issues, which has led to more re-
laxed co-scheduler approaches as seen in VMware ESX [8].
Other co-scheduling variants include adaptive co-scheduling
schemes [22, 23] that allow the VMM scheduler to dynam-
ically alternate between co-scheduling and asynchronous
scheduling for a particular VM, as well as balanced schedul-
ing [20] which associates a VM’s individual vCPUs with
dedicated physical CPUs and does not require that the vC-
PUs be co-scheduled. While each of these approaches allevi-
ate the problems caused by intra-VM synchronizations, they
do so by providing workarounds as opposed to addressing
the underlying issues.

3. The TLB Shootdown Preemption Problem
Translation Look-aside Buffers (TLBs) are a critical hard-
ware component for virtual memory based systems, how-
ever they still require explicit management by the Operating
System (OS) in order to maintain cache coherence. This re-
quires the OS itself to directly manage the contents to the
TLB caches on each CPU core in the system by ensuring
that stale entries are removed before they can be accessed
by any hosted applications. This is especially a problem for

multi-threaded applications as they leverage shared page ta-
bles both as a space saving optimization as well as a way to
amortize address space management overheads. Cache co-
herence is managed by the OS through the use of invalida-
tion and flushing operations that remove one or more entries
from a local TLB cache. The operations are propagated to
other cores in the system via IPI based signalling that di-
rectly invoke a given TLB operation on a remotely targeted
CPU, a mechanism that is canonically referred to as a TLB
shootdown.

Modern operating systems consider TLB shootdown op-
erations to be performance critical and so optimize them to
exhibit very low latency. The implementation of these oper-
ations is therefore architected to ensure that shootdowns can
be completed with very low latencies through the use of IPI
based signalling. As such, TLB shootdowns can be imple-
mented using a busy wait based stall of the invoking CPU
while the operation is handled on each of the remote CPUs.
Unfortunately, the low latency provided by IPI handlers is
only ensured when the target CPU is available to handle the
resulting interrupt. While this is generally a reasonable as-
sumption in native environments, it does not carry over to
virtualized environments as the availability of a given vCPU
to handle interrupts is entirely dependent on the behavior of
the underlying host scheduler.

The TLB shootdown preemption problem is the result of a
vCPU invoking a TLB shootdown on a remote vCPU that is
currently preempted by the host scheduler and therefore not
available to handle the resulting IPI interrupt. In this case
the invoking vCPU will block in a polling based loop until
the target vCPU is rescheduled and returns to an active state.
The scheduling delays, or the time between the preemption
and rescheduling of a vCPU, are often orders of magnitude
larger than the latency that TLB shootdown operations were
designed for. This is especially true when multiple vCPUs
are sharing the same underlying physical CPU. These unex-
pected delays can cause significant impacts on application
performance depending on the workload, with particularly
dramatic effects seen on multi-threaded workloads that re-
quire large amounts of address space modifications.

3.1 Performance Analysis
In order to better understand the effects that vCPU preemp-
tion has on TLB operations as well as other low level oper-
ations, we measured the performance degradation caused by
CPU overcommitment on the PARSEC [5] benchmark suite.
Specifically, we used the Linux perf [6] tool set to measure
the percentage of time spent in various kernel functions.

We first measured the PARSEC performance using a sin-
gle KVM based guest without overcommitting resources (1-
VM), before adding a second KVM guest on the same ma-
chine running a CPU bounded workload using sysbench [7]
(2-VMs). Each VM was configured to use the same number
of vCPUs (12) evenly distributed on the underlying physical
CPUs, so that each physical core was shared by two vCPU

cores from different VMs. Equal time sharing between vC-
PUs was ensured using Linux cgroups [1] and the Pause-
Loop Exiting (PLE) [19] feature was disabled.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

blackscholes

bodytrack

canneal

dedup

ferret

freqmine

raytrace

streamcluster

swaptions

vips

x264

S
l
o
w
d
o
w
n

70.6

max ideal slowdown

Figure 1: Performance Slowdown of CPU Overcommitment

Figure 1 shows the benchmark results for the 1-VM and
2-VMs configurations. The ideal slowdown would be 2x,
due to the equal time sharing configuration of each physical
CPU. As the results show 6 out of the 11 benchmarks have
performance slowdowns of over 4x; 3 exhibit more than 10x
slowdown; and the dedup benchmark has a slowdown of
70.6x.

For each of the applications we separated out the over-
heads resulting from TLB shootdowns (k:tlb) as well as spin-
locks (k:lock), being the two most common causes of pre-
emption based performance problems. The remaining over-
head was split between other kernel level functions (k:other)
and time spent in userspace (u:*). Figure 2 shows these re-
sults. With the exception of dedup, all benchmarks spent the
majority of time in userspace for the 1-VM scenario. How-
ever, for the 2-VMs case a significant number of benchmarks
exhibit noticeable increases in kernel based overheads. For
dedup in particular, 64% of the CPU time is spent on TLB
shootdown operations. As the results show, overheads result-
ing from spinlocks and TLB shootdowns account for the ma-
jority of the added overhead.

Next, we instrumented the Linux kernel using ktap [3],
and measured the latency of TLB shootdown operations di-
rectly when running the dedup benchmark. Figure 3 shows
the cumulative distribution function (CDF) of TLB shoot-
down latencies using a logarithmic X axis. As the figure
shows, the 2-VMs case exhibits a significant increase in the
average operation latency with the 90th percentile increasing
by two orders of magnitude over the 1-VM configuration.

4. Shoot4U
To address the TLB shootdown preemption problem we
present Shoot4U, a paravirtual TLB management inter-
face. Shoot4U uses a VMM-assist technique to optimize

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

blackscholes

bodytrack

canneal

dedup

ferret

freqmine

raytrace

streamcluster

swaptions

vips

x264

blackscholes

bodytrack

canneal

dedup

ferret

freqmine

raytrace

streamcluster

swaptions

vips

x264

P
e
r
c
e
n
t
a
g
e

(
%
)

1VM 2VM

k:lock k:tlb k:other u:*

Figure 2: CPU Usage Profiling

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

C
u
m
u
l
a
t
i
v
e

P
e
r
c
e
n
t

Latency (us)

1VM
2VM

Figure 3: CDF of TLB Shootdown Latency

TLB shootdowns by performing the invalidations inside the
VMM itself without the need to invoke or signal the guest
OS. Shoot4U relies on hardware instructions available as
part of the virtualization extensions on modern x86 based
CPU architectures. These instructions allow targeted invali-
dation of TLB entries that belong to a specific VM environ-
ment.

Before explaining how Shoot4U works, it is necessary to
understand how a conventional TLB shootdown operation
works in a virtual environment. To initiate a TLB shootdown
operation, the invoking vCPU sends an IPI with a specific
vector number to a set of target vCPUs. The invoker then en-
ters a polling loop until all receiver vCPUs have processed
and acknowledged the requests by setting a flag located in
shared memory. The transmission of the IPI by the vCPU
causes the hardware to trap into the underlying VMM where
it can be emulated, ultimately resulting in the VMM gener-
ating a new IPI that is actually transmitted to the VMM on
the physical CPUs hosting the targeted vCPUs. Typically an
IPI delivery by the hardware will indirectly cause any run-
ning VM to trap, so that the underlying host system software
can handle it. In this case the IPI is handed off to the VMM,

which completes the IPI emulation by delivering an IPI to
the targeted vCPU via the injection of a virtual interrupt. Af-
ter the virtual interrupt has been injected, it will be handled
as soon as the target vCPU resumes execution.

Shoot4U is based on the observation that modern hard-
ware allows the underlying VMM to perform the invalida-
tion operation internally, thus removing the need to inject a
virtual interrupt into the target vCPU. Current x86 proces-
sors from both Intel and AMD support the use of Virtual
Processor IDs or VPIDs (Intel) and Address Space IDs or
ASIDs (AMD) to tag TLB entries with a given ID assigned
to a VM context. Our implementation targets the Intel archi-
tecture (using KVM/Linux 3.16), but there is nothing pre-
venting the same approach from being used on an AMD
based system. Along with the ability to tag TLB entries with
an associated VPID/ASID these CPUs support a new set of
invalidation instructions (e.g. invpid) that selectively flush
TLB entries based on a given ID tag. These instructions can
be executed by the VMM itself, without any involvement of
the VM’s guest OS. Therefore, instead of relying on IPI in-
jection as described above, Shoot4U enables the VMM to
process the TLB invalidation request immediately by invali-
dating guest TLB entries itself.

Our implementation of Shoot4U introduces a paravirtual
hypercall interface that replaces the existing IPI based TLB
shootdown mechanism. In Shoot4U, the invoking vCPU is-
sues a hypercall down to the underlying VMM with the tar-
get vCPUs and address range being invalidated specified as
parameters. Upon trapping into the hypercall handler, the
VMM determines the set of physical CPUs that are currently
hosting the set of vCPUs, and issues a physical IPI to each of
them. These IPIs are handled by the VMM itself, which then
executes the appropriate set of invalidation operations inter-
nally without any interaction with the VM context. While
the VMM handles the invalidations for the target vCPUs,
the VMM on the invoking CPU polls for completion in a
busy wait loop. Once the operations complete the VMM then
returns from the hypercall and the VM resumes operation.
While superficially it might appear that we have just moved
the polling loop from the guest into the VMM, it should be
noted that operation completion is no longer dependent on
host scheduler behaviors since it does not have to wait for a
vCPU to be running in order to complete.

Figure 4 shows the paravirtual hypercall interface pro-
vided by a KVM host with Shoot4U support. To utilize this
interface, the guest VM needs to specify the hypercall ID, a
bitmap of targeted vCPUs, and the address range being in-
validated. Our current implementation of Shoot4U supports
up to 64 vCPUs due to the size of the bitmap. However, we
can easily support more vCPUs by mapping the bitmap into
memory.

5. Evaluation
We evaluated Shoot4U on a dual socket Dell R450 server
configured with Intel “Ivy-Bridge” Xeon processors (6 cores
each) with hyperthreading enabled and 24 GB of RAM split
across two NUMA domains. Each server was running Cent-
OS 7 with Linux Kernel 3.16 with a modified version of
KVM implementing the Shoot4U interface. We performed
the evaluation using 2 separate VMs each with 12 vCPUs
both mapped to the same socket. Each vCPU was pinned
to a single hyperthreaded CPU core, so that each core was
shared by 2 vCPUs. The Linux cgroups [1] interface was
used to allocate an equal share of CPU time to each VM. One
VM (VM1) was configured to run the PARSEC benchmark
suite [5], while the other (VM2) ran a CPU bounded com-
peting workload based on sysbench [7]. We used the Linux
default TLB shootdown scheme with as the baseline, and
compared it with Shoot4U as well as the current TLB shoot-
down optimization provided by KVM, denoted kvmtlb [4].

5.1 TLB Shootdown Latency

baseline kvmtlb shoot4u

1VM Mean 166 122 28
Max 24,428 9,953 453

2VM Mean 9,048 5,401 22
Max 194,108 126,923 15,034

Table 1: TLB Shootdown Latency (usec)

The first experiment used ktap [3] to measure the comple-
tion time of TLB shootdown requests in the guest, running
the dedup benchmark from PARSEC. The results are shown
in Table 1, including the average and maximum completion
time both with and without a 2nd VM sharing a physical
CPU. It shows that both kvmtlb and Shoot4U significantly
improve TLB shootdown performance in both cases. How-
ever, Shoot4U outperforms the other schemes: it is 4.3 and
245.5 times faster than kvmtlb on average for the 1-VM and
2-VMs cases respectively. Its worse case performance is also
order of magnitude better than others.

Figure 5 shows the cumulative distribution function
(CDF) of TLB shootdown latencies from the same exper-
iment. Shoot4U not only provides better overall perfor-
mance, but also exhibits much less variance than other ap-
proaches. In a non-overcommitted configuration Shoot4U
provides superior performance by reducing the overheads of
a TLB shootdown by reducing the number of world switches

k v m h y p e r c a l l 3 (unsigned long KVM HC SHOOT4U,
unsigned long vcpu b i tmap ,
unsigned long s t a r t ,
unsigned long end) ;

Figure 4: Shoot4U API

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

C
u
m
u
l
a
t
i
v
e

P
e
r
c
e
n
t

Latency (us)

shoot4u-1VM
shoot4u-2VM
kvmtlb-1VM
kvmtlb-2VM

baseline-1VM
baseline-2VM

Figure 5: CDF of TLB Shootdown Latencies

needed for IPI propagation. Moreover, Shoot4U is able to
maintain consistent performance in an overcommitted con-
figuration, while the other solutions experience slowdowns
due to vCPU preemptions, which Shoot4U is immune to.

5.2 Macro-Benchmark Performance
Our next experiment evaluated various TLB shootdown
schemes using multi-threaded benchmarks from the PAR-
SEC [5] benchmark suite. Each configuration was evaluated
3 times, and the average is reported. We also incorporated
an optimized spinlock mechanism based on the preemptable
ticket spinlock (PMT) algorithm [16]. This allowed us to
compare the performance impact of spinlock based locking
versus TLB operations. We also studied the impact of Pause-
Loop Exiting (PLE), a hardware assisted spinning detection
and optimization feature supported by KVM and recent Intel
processors.

Figure 6 shows the normalized execution time of each
benchmark using a sweep of various configurations. In the
2-VMs case on the left, it can be observed that Shoot4U
achieves the best performance on almost all benchmarks. It
outperforms kvmtlb by more than 10% on 4 benchmarks,
and in the best cases, it is 85% faster than the baseline on
dedup, and 44% faster than kvmtlb on ferret. It can also be
observed that PLE yields pretty good performance improve-
ments on many benchmarks; moreover, further improve-
ments can be achieved when combined with Shoot4U. In
the 1-VM case, performance of various schemes are com-
parable as the preemption rate is low when the system is
not over-committed. However, Shoot4U still achieves about
20% performance improvement on dedup, which is the most
TLB shootdown intensive workload. It is also notable that
enabling PLE introduces about 10% overhead on x264 in
this case.

Finally we reran the experiments from Section 3.1 in or-
der to compare the reduction of synchronization overheads
possible using Shoot4U and optimized spinlocks based on

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

b
l
a
c
k
s
c
h
o
l
e
s

b
o
d
y
t
r
a
c
k

c
a
n
n
e
a
l

d
e
d
u
p

f
e
r
r
e
t

f
r
e
q
m
i
n
e

r
a
y
t
r
a
c
e

s
t
r
e
a
m
c
l
u
s
t
e
r

s
w
a
p
t
i
o
n
s

v
i
p
s

x
2
6
4N

o
r
m
a
l
i
z
e
d

E
x
e
c
u
t
i
o
n

T
i
m
e

baseline

ple

pmt

pmt+kvmtlb

pmt+shoot4u

ple+pmt+shoot4u

(a) With Competing VM (2-VMs)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

b
l
a
c
k
s
c
h
o
l
e
s

b
o
d
y
t
r
a
c
k

c
a
n
n
e
a
l

d
e
d
u
p

f
e
r
r
e
t

f
r
e
q
m
i
n
e

r
a
y
t
r
a
c
e

s
t
r
e
a
m
c
l
u
s
t
e
r

s
w
a
p
t
i
o
n
s

v
i
p
s

x
2
6
4N

o
r
m
a
l
i
z
e
d

E
x
e
c
u
t
i
o
n

T
i
m
e

baseline

ple

pmt

pmt+kvmtlb

pmt+shoot4u

ple+pmt+shoot4u

(b) Without Competing VM (1-VM)

Figure 6: PARSEC Performance Evaluation with Shoot4U

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

blackscholes

bodytrack

canneal

dedup

ferret

freqmine

raytrace

streamcluster

swaptions

vips

x264

S
l
o
w
d
o
w
n

70.6

baseline ple+pmt+shoot4u

(a) Performance Slowdown of CPU Overcommitment

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

blackscholes

bodytrack

canneal

dedup

ferret

freqmine

raytrace

streamcluster

swaptions

vips

x264

blackscholes

bodytrack

canneal

dedup

ferret

freqmine

raytrace

streamcluster

swaptions

vips

x264

P
e
r
c
e
n
t
a
g
e

(
%
)

baseline 2VM ple+pmt+shoot4u 2VM

k:lock k:tlb k:other u:*

(b) CPU Usage Profiling

Figure 7: PARSEC Performance Analysis

PMT. Figure 7 (a) compares the slowdown of both the base-
line and optimized configurations in the 2-VMs scenario.
Significant performance improvement is observed on 6 out
of the 11 benchmarks. For dedup and vips in particular, the
slowdown decreases from 70.6 to 4.8 and from 10.1 to 2.9
respectively.

Figure 7 (b) provides a profile of the sources of over-
heads for the two configurations. There are significant reduc-
tions of kernel based overhead for all kernel intensive bench-
marks, explaining the overall performance improvements for
those benchmarks. Furthermore, for nearly every benchmark
the time spent in TLB related functions is almost eliminated,
with the exception of dedup which is still greatly reduced.

6. Conclusion
This paper presents Shoot4U, an approach to optimizing
TLB operations across virtual CPUs allocated to a given vir-
tual machine. We conducted a set of experiments in order
to provide a breakdown of overheads caused by preempted
virtual CPU cores, showing that TLB operations can have a
significant impact on performance with certain workloads.
To address that problem we introduced Shoot4U, an opti-
mization for TLB shootdown operations that internalizes the
operation in the VMM and so no longer requires the involve-
ment of a guest’s vCPUs. Our evaluation of Shoot4U demon-
strates the effectiveness of our approach, and illustrates how
under certain workloads our approach is dramatically better
than current state of the art techniques.

References
[1] Linux Control Groups (cgroups). https://www.kernel.

org/doc/Documentation/cgroups/cgroups.txt.
[2] Gartner Says Efficient Data Center Design Can Lead to 300

Percent Capacity Growth in 60 Percent Less Space. http:

//www.gartner.com/newsroom/id/1472714.
[3] ktap: A lightweight script-based dynamic tracing tool for

Linux. http://www.ktap.org/.
[4] KVM Paravirt Remote Flush TLB. https://lwn.net/

Articles/500188/.
[5] The PARSEC Benchmark Suite. http://parsec.cs.

princeton.edu/.
[6] perf: Linux Profiling with Performance Counters. https:

//perf.wiki.kernel.org/.
[7] Sysbench. https://github.com/akopytov/sysbench.
[8] Vmware(r) vsphere(tm): The cpu scheduler in vmware esx(r)

4.1. Technical report, VMware, Inc, 2010.
[9] L. A. Barroso, J. Clidaras, and U. Hölzle. The Datacenter

as a Computer: An Introduction to the Design of Warehouse-
Scale Machines. Synthesis Lectures on Computer Architec-
ture, 2013.

[10] X. Ding, P. B. Gibbons, M. A. Kozuch, and J. Shan. Gleaner:
Mitigating the Blocked-Waiter Wakeup Problem for Virtual-
ized Multicore Applications. In Proc. 2014 USENIX Con-
ference on USENIX Annual Technical Conference (USENIX
ATC), Philadelphia, PA, June 2014. USENIX Associ-
ation. URL https://www.usenix.org/conference/

atc14/technical-sessions/presentation/ding.
[11] T. Friebel. How to Deal with Lock-Holder Preemption. Pre-

sented at the Xen Summit North America, 2008.
[12] J. Kaplan, W. Forrest, and N. Kindler. Revolutionizing Data

Center Energy Efficiency. Technical report, McKinsey &
Company, 2008.

[13] H. Kim, S. Kim, J. Jeong, J. Lee, and S. Maeng. Demand-
based Coordinated Scheduling for SMP VMs. In Proc. Inter-
national Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), 2013.

[14] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and
C. Kozyrakis. Heracles: Improving Resource Efficiency at
Scale. In Proc. of the 42nd Annual International Symposium
on Computer Architecture (ISCA), ISCA ’15, 2015. . URL
http://doi.acm.org/10.1145/2749469.2749475.

[15] J. Ousterhout. Scheduling Techniques for Concurrent Sys-
tems. In Proc. 3rd International Conference on Distributed
Computing Systems, 1982.

[16] J. Ouyang and J. R. Lange. Preemptable Ticket Spinlocks: Im-
proving Consolidated Performance in the Cloud. In Proc. 9th
ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments (VEE), 2013.

[17] K. Raghavendra and J. Fitzhardinge. Paravirtualized ticket
spinlocks, May 2012. URL http://lwn.net/Articles/

495597/.
[18] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A.

Kozuch. Heterogeneity and Dynamicity of Clouds at Scale:
Google Trace Analysis. In Proc. 3rd ACM Symposium on
Cloud Computing (SoCC), 2012. ISBN 978-1-4503-1761-0. .
URL http://doi.acm.org/10.1145/2391229.2391236.

[19] R. v. Riel. Directed yield for pause loop exiting, 2011. URL
http://lwn.net/Articles/424960/.

[20] O. Sukwong and H. S. Kim. Is Co-scheduling Too Expensive
for SMP VMs? In Proc. 6th European Conference on Com-
puter Systems (EuroSys), 2011.

[21] V. Uhlig, J. LeVasseur, E. Skoglund, and U. Dannowski. To-
wards Scalable Multiprocessor Virtual Machines. In Proc.
3rd conference on Virtual Machine Research And Technology
Symposium, 2004.

[22] C. Weng, Q. Liu, L. Yu, and M. Li. Dynamic Adaptive
Scheduling for Virtual Machines. In Proc. 20th International
Symposium on High Performance Parallel and Distributed
Computing (HPDC), 2011.

[23] L. Zhang, Y. Chen, Y. Dong, and C. Liu. Lock-Visor: An
Efficient Transitory Co-scheduling for MP Guest. In Proc.
41st International Conference on Parallel Processing (ICPP),
2012.

