
A Case for Dual Stack Virtualization: Consolidating HPC
and Commodity Applications in the Cloud

Brian Kocoloski Jiannan Ouyang John Lange
{briankoco,ouyang,jacklange}@cs.pitt.edu

Department of Computer Science
University of Pittsburgh
Pittsburgh, PA 15260

ABSTRACT
With the growth of Infrastructure as a Service (IaaS) cloud
providers, many have begun to seriously consider cloud ser-
vices as a substrate for HPC applications. While the cloud
promises many benefits for the HPC community, it currently
does not come without drawbacks for application perfor-
mance. These performance issues are generally the result of
resource contention as multiple VMs compete for the same
hardware. This contention culminates in cross VM interfer-
ence whereby one VM is able to impact the performance of
another. For HPC applications this interference can have
a dramatic impact on scalability and performance. In or-
der to fully support HPC applications in the cloud, services
need to be available that prevent cross VM interference and
isolate HPC workloads from other users. As a means to
achieve this goal, we propose a dual stack approach to IaaS
cloud services that utilizes multiple concurrent VMMs on
each node capable of partitioning local resources in order
to provide performance isolation. Each partition can then
be managed by a specialized VMM that is designed specif-
ically for either an HPC or commodity environment. In
this paper we demonstrate the use of the Palacios VMM,
a virtual machine monitor specifically designed for HPC, in
concert with KVM to provide a partitioned cloud platform
that is capable of hosting both commodity and HPC appli-
cations on a single node without interference. Furthermore,
our results demonstrate that running KVM and Palacios in
parallel allows an HPC application to achieve isolated and
scalable performance while sharing hardware resources with
commodity VMs.

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organization and Design

General Terms
Design, Performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SOCC’12, October 14-17, 2012, San Jose, CA USA
Copyright 2012 ACM 978-1-4503-1761-0/12/10 ...$15.00.

Keywords
Virtual machine monitors; high performance computing; cloud
computing

1. INTRODUCTION
Cloud Computing holds great promise for High Perfor-

mance Computing (HPC), and accordingly a large amount
of work has explored the use of current cloud service archi-
tectures for running HPC applications [20, 21, 19]. While
the allure of cloud based HPC systems is very compelling,
there are still a number of issues that prevent the cloud
from becoming a truly viable HPC platform. In particu-
lar, application performance has been found to suffer from
competing workloads [5], randomized layouts and node as-
signments [10], as well as competing network flows. All of
these issues arise from the fact that HPC applications are
forced to share and compete for resources along with a wide
variety of other commodity applications. Unfortunately, the
presence of these competing workloads is critical to the suc-
cess of the cloud model, which relies on the economics of
leveraging shared resources. While this inherent tension has
so far acted as a barrier to the deployment of HPC applica-
tions in the cloud, we claim that it can be overcome with a
dual stack virtualization architecture that is able to accom-
modate both HPC and commodity users simultaneously on
the same hardware.

In this paper we classify HPC applications as large scale
and tightly coupled parallel computational kernels that op-
erate in the bulk synchronous parallel (BSP) model. While
parallel programming models more suitable to a loosely cou-
pled cloud architectures are emerging for both commodity
and HPC environments [7, 4], it is likely that the BSP model
will remain the preferred environment for a large class of
HPC simulation codes. Therefore, in order for the cloud to
become a viable platform for general HPC it must be able
to provide an environment suitable for this class of appli-
cation. Unfortunately, VMM architectures most often used
by cloud providers are ill-suited to provide the environment
necessary for HPC. This is primarily due to the fact that
these architectures are designed for use in commodity en-
vironments where goals such as consolidation and resource
efficiency are just as, if not more, important than raw perfor-
mance. While this focus is acceptable for most commodity
workloads, it is not acceptable for HPC applications that
feature sustained loads requiring full resource utilization as
well as large scale distributed synchronization. For these
applications, it is much more important that the underlying

Figure 1: High level overview of node partitioning.

VMM architecture provide a consistent level of performance,
ideally with as little overhead as possible.

In order to avoid the problems associated with competing
workloads, many cloud providers have sacrificed efficiency
and profitability. Example approaches include the preven-
tion of oversubscribed resources, over provisioning by a wide
margin, and providing physically separate infrastructures for
HPC specific workloads. While all of these approaches do
work to a certain degree, they do so by negating many of
the advantages of the cloud model. Ideally, a cloud service
provider would be able to use a single infrastructure to serve
both commodity and HPC users, while maximizing profits
by consolidating resources as much as possible. To reach
that goal however requires a cloud architecture that is able
to serve both commodity and HPC users equally well while
hosting them on the same infrastructure.

In this paper we propose a dual stack approach that uti-
lizes two different VMM architectures in order to allow HPC
and commodity VMs to coexist in the same cloud environ-
ment in a way that preserves the consolidation capabilities of
commodity clouds while still providing the performance nec-
essary for HPC applications. In our proposed approach, a
commodity cloud node is partitioned at run time to provide
an isolated HPC environment running a specialized VMM
architecture. The HPC partition consists of reserved hard-
ware resources that are allocated in a coarse-grained manner
and dedicated to the HPC partition. These HPC resources
are then managed directly by the HPC VMM without in-
terference from the rest of the system. Figure 1 illustrates
a high level view of this partitioning. By assuming resource
management duties from the underlying OS, the HPC parti-
tion is able to isolate its resources from competing loads on
the rest of the system thereby preventing commodity work-
loads from interfering with HPC applications.

For this work we used (slightly) modified versions of both
the Palacios HPC VMM [17] as well as KVM. Our modifi-
cations enable both VMMs to separately virtualize disjoint
subsets of resources on a physical machine. These modifica-
tions allow both Palacios and KVM to execute concurrently
on separate local resources, and so partition a cloud node
with both HPC (Palacios) and commodity (KVM) zones.
Using this approach, we will show that even as commodity
workloads saturate a large subset of a machine’s resources,
the HPC zone remains capable of providing consistent and
isolated performance to HPC applications.

While the design and architecture of the Palacios VMM
have been described elsewhere [17, 16], we provide an overview
of its features for completeness. Palacios provides modular
virtualization functionality to x86 based architectures, such
as the Cray XT, as well as commodity HPC systems. Our
previous work with the Palacios VMM focused on provid-
ing a high performance virtualization layer for lightweight

kernels (LWKs) and other supercomputing class operating
systems, resulting in a demonstration that virtualization can
be used on modern supercomputers with minimal overhead.
Recently Palacios has been integrated with Linux [16]1, and
has been shown to provide an HPC environment capable of
outperforming the native Linux user environment [15].

To better illustrate our proposal we include an example
scenario for a dual stack enabled cloud provider. In most
cases the default behavior would not change as commodity
VMs are hosted in the cloud infrastructure. However, when
an HPC workload is introduced the cloud infrastructure is
notified that HPC resources are needed. The infrastructure
will then reserve a collection of coarse-grained resources, ide-
ally consisting of CPU sockets as well as memory local to
those sockets. Reserving these resources will have the ef-
fect of removing them from the commodity VMM and OS’s
resource pools. After a suitable set of resources has been re-
served by the system, a specialized HPC VMM environment
will be initialized to directly manage those resources. The
HPC workload can then be instantiated across the reserved
HPC infrastructure where it will run until it completes, at
which point the HPC VMM will be shutdown and the re-
served resources returned for usage by commodity users.

2. RELATED WORK
Much research has been done on investigating the feasi-

bility of running scientific applications on commodity cloud
architectures. Specifically, [10, 20, 19, 21, 13] have all exper-
imented with running performance critical applications and
benchmarks on the Amazon EC2 compute cloud. Largely,
the results of these experiments have shown that EC2 is un-
able to provide a completely satisfactory HPC environment,
particularly for communication-intensive applications, due
to its lack of a high speed interconnect. Of course, the vast
majority of commodity workloads neither require nor would
significantly benefit from such an interconnect, and so there
has been little motivation for their inclusion in commodity
cloud architectures. We do not believe, however, that this is
a crippling issue for the prospects of HPC in the cloud; if the
other technical challenges currently hampering the deploy-
ment of HPC applications in the cloud can be overcome, we
believe that both the technical and financial motivations for
high speed interconnects in cloud architectures will present
themselves.

In [5], the authors presented a further technical difficulty
with running HPC jobs in commodity clouds in the form of
resource contention. Their work presented a resource mon-
itoring and management scheme that adapted to changing
resource demands in the cloud with the goal of providing
scalability and reliability. In our work, we show that virtu-
alization, whose benefits to reliability are well documented,
can directly address the issue of resource contention in com-
modity clouds. We believe that our approach would be com-
patible with the schemes presented therein.

Other approaches similar to our work have appeared in
system designs such as Disco [6] and Barrelfish [2]. The pos-
sibility of using virtual machines to optimize performance
and OS behavior on NUMA architectures was explored in
Disco as a means of deploying commodity and specialized
OS environments on a large scale system. The benefits of the
Disco system centered around the fact that global resource

1Linux support was introduced with Palacios version 1.3

management decisions could be centralized inside a small
and optimized codebase outside of the full OS kernel. The
barrelfish OS took the approach of fully partitioning the en-
tire OS into a distributed system with restricted sharing and
coordination using only explicit message passing. The Pala-
cios architecture can be viewed as a compromise between
each of these approaches. In contrast to Disco Palacios pro-
vides independent management of separate partitions of re-
sources, avoiding the overheads inherent in providing a gen-
eralized resource management layer. Conversely, Palacios
does not go to the same extremes of Barrelfish in adopting a
full share nothing architecture. Palacios does include a large
amount of replicated state to siginificantly reduce cross core
coordination and synchronziation, but does not require ex-
plicit message passing for the small number of cases where
cross core communication is required.

3. BACKGROUND
The success of IaaS cloud services is largely the result

of the degree to which existing VMM architectures have
been able to minimize the overhead associated with resource
virtualization. Current virtual environments are capable of
providing near native computational and I/O performance,
and there is much work being done to fully close the per-
formance gap between native and virtual environments [8,
17]. The elimination of virtualization overhead provides the
benefits of cloud based computing to a broader class of ap-
plications and users. In particular, HPC users are eager to
explore cloud based computation due to the inherent cost of
acquiring and maintaining their own local HPC resources, as
well as the difficulty in sharing a relatively small number of
centralized HPC systems. Cloud based HPC environments
promise instantaneous access to computational resources at
arbitrary scale with only a fraction of the cost. It is no sur-
prise then that many in the HPC community are eager to
exploit the potential of the cloud.

Unfortunately, while current VMM architectures certainly
have the potential to deliver acceptable performance for
HPC, in commodity cloud environments this potential is
difficult to realize. This shortcoming is due to the fact that
the underlying reason cloud resources are less expensive is
that they are a shared resource hosting multiple users. This
multi-tenancy results in resource contention as multiple VM
environments access the underlying hardware at the same
time. To address this issue, many current cloud environ-
ments prevent the oversubscription of hardware resources.
However, while this helps, it does not completely eliminate
the problem. The resulting contention of both hardware and
OS resources results in cross VM interference, where the be-
havior of one VM has a negative impact on another locally
hosted VM. This interference is especially troublesome for
tightly coupled parallel HPC applications, as localized in-
terference has a tendency to propagate throughout the rest
of the application due to its highly synchronized behavior.

We claim that the existence of cross VM interference is
due to the underlying architecture of the VMM, and exac-
erbated by the fact that most VMMs are designed to meet
the goals of a commodity environment. In these commodity
virtualized environments a premium is placed on resource ef-
ficiency achieved through server consolidation. As a result,
commodity class VMMs are designed to achieve as much
consolidation as possible while not overly degrading perfor-
mance, and also to strive to be a“good citizen” in the system

VMM # of NPFs % of exits Avg Stdev
KVM 3,265,156 52% 8804 5232
Palacios 1,872,017 50% 10876 2685

Figure 2: Behavior of nested page fault (NPF) han-
dler in KVM and Palacios. The 2nd column shows
total number of NPFs that occurred, the 3rd column
gives the percentage of total VM exits indicated as
NPFs, the 4th column shows the average execution
time of the NPF handler in CPU cycles, and the 5th
column gives the standard deviation of the execution
time.

by not monopolizing resources or negatively impacting other
processes. This has resulted in many features being added
to VMM architectures such as VM page sharing and merg-
ing, swapping out pages in the VMM, and on demand page
allocation. While these features can easily be disabled for
an HPC environment, they place additional requirements on
the VMM architecture that cannot be disabled. For exam-
ple, while the KVM memory system does allow the use of
large preallocated pages via the HugeTLBfs mechanism, it
contains other features such as a single lock on the VM’s
memory management layer requiring that operations in the
nested page fault handler be serialized.

In contrast the Palacios Virtual Machine Monitor [16] is a
virtualization architecture designed explicitly for HPC envi-
ronments. By focusing on HPC, the Palacios VMM is able
to eschew many of the features deemed necessary for com-
modity environments and instead focus on the requirements
needed for scalable HPC performance. In effect Palacios
is designed to be a “bad citizen” in the system, in that it
takes control over entire segments of the hardware and re-
fuses to share them with other system components. While
such an approach might seem heavy handed and inefficient,
it is suitable in a dedicated HPC context where scalable
performance is critical and interference from other system
components can have dramatic effects.

Palacios integrates with Linux via the kernel module inter-
face and so does not require any modifications to the kernel
itself. This ensures compatibility with a wide range of kernel
versions2, and for this work we used the stock 2.6.40 kernel
distributed with Fedora 15. Virtualized memory is one of
the primary sources of overhead in virtual environments, and
so Palacios takes particular care in how it manages a VM’s
memory image. In particular, Palacios uses large contiguous
physical memory regions (on the order of Gigabytes) in or-
der to optimize both hardware paging performance as well as
software management functions. To achieve this on Linux,
Palacios uses the Hot Removable memory feature available
in recent kernels. Hot removable memory allows for large
regions (usually 128MB) of memory to be offlined and re-
moved from the Linux memory management system. How-
ever, while this memory is lost to the Linux kernel, it remains
active and addressable by the system, so Palacios is able to
instantiate its own management layer on top of this offlined
memory. This allows Palacios to manage large contiguous
memory regions directly, thus avoiding the overheads and
contention present in the Linux memory system.

To illustrate the different performance characteristics of
commodity and HPC VMM architectures, we instrumented

2Confirmed Versions: 2.6.32 through 3.2

both KVM and Palacios to measure VMM overheads dur-
ing execution. We then collected results from a set of HPC
benchmarks (described in detail in Section 5) running across
4 cores on a single node. In particular, we analyzed the be-
havior of each VMMs virtualized memory architecture. A
summary of the results of this analysis are shown in Fig-
ure 2. Several points can be taken away from the results.
First, while the average execution time for the nested page
fault handler is 25% larger in Palacios, it is much more sta-
ble, with a standard deviation that is half that of KVMs
exit handler. Second, and most importantly, the total num-
ber of nested page faults in Palacios is almost half those
of KVM. This means that Palacios’ memory layer executes
much less frequently than KVM, and while its actual execu-
tion is slightly slower it has less variance.

4. DUAL STACK VIRTUALIZATION
The view we present in this paper is that HPC and com-

modity applications can in fact be effectively consolidated
inside a common cloud infrastructure. However, in order
to achieve this it is necessary to recognize that the require-
ments for these classes of applications are significantly dif-
ferent. As a result, a system designed for one application
class will not be ideally suited for the other. Based on this
observation, we claim that a dual stack approach is needed
whereby a single system can be partitioned to provide iso-
lated virtual environments for different application classes.
A high level example of this approach is shown in Figure 1.
In this case, a multi-socket system is partitioned in such a
way that an HPC application is executed on one socket in
an HPC virtual context, while commodity applications are
simultaneously executed on the other socket. The partition-
ing of the system is done in such a way that memory traffic
is restricted as much as possible to the memory contained in
the NUMA zone of the local socket. Such an arrangement
ensures that cross VM interference is minimized at both the
hardware and software layers of the system.

Based on Figure 1, it might appear that such an approach
could be easily achieved with currently available systems and
software. While it is true that current commodity architec-
tures can be configured in this way, as stated earlier the in-
herent design characteristics of current commodity VMMs
limits the isolation that can be achieved even if it is con-
figured as shown. Conversely, using only an HPC specific
VMM would prevent the system from optimizing its behav-
ior to increase consolidation in the commodity zone. In order
to effectively perform this partitioning, each zone must have
its own underlying system software layer that is capable of
providing the optimal behavior. Based on this observation
we propose the use of a dual stack approach to virtualization,
that relies on two VMMs that handle a specific partition of
the machine.

To demonstrate the effectiveness of this approach we have
evaluated such a configuration using modified versions of
Palacios and KVM. Figure 3 shows the high level architec-
ture of our proposed system. KVM is used to host com-
modity environments and was modified to restrict it’s exe-
cution to a subset of cores in the system. We used the Pala-
cios VMM to host HPC VMs executing on dedicated cores
and memory managed directly by internal Palacios resource
managers. Palacios was also modified to execute on a sub-
set of cores. The modifications required to both KVM and
Palacios were minor and confined to the initialization and

Figure 3: A dual stack architecture

de-initialization code paths. The changes to KVM consisted
of ∼50 lines of C that assigned a configurable CPU mask to
a VM’s backing kernel threads as they were created. Pala-
cios already implemented CPU masks when creating VMs,
so the changes required for it were simply to allow the con-
figuration of those masks by the administrator.

5. EVALUATION
To demonstrate the potential of a dual stack virtualization

approach, we ran a set of experiments to compare the dual
VMM configuration (Palacios and KVM) against configu-
rations using a single commodity VMM architecture (both
KVM and Xen). The goal of this evaluation was to deter-
mine the overheads that result when a single commodity
VMM is used to co-host commodity and HPC workloads on
the same machine. To isolate the overheads to the VMM ar-
chitecture, the system was configured as shown in Figure 1.
This ensured that commodity and HPC applications exe-
cuted on separate sockets with VM memory backed by each
socket’s local memory. Therefore, any resulting overheads
are the result of contention in the VMM and host OS layers.

Guest Configurations. For each experiment we used a copy
of the same VM disk image, based on a Fedora 15 installa-
tion. As each VMM supports raw disk images we were able
to use the same file for each configuration. The VM ex-
ecuting the HPC benchmarks was configured with 4 cores
and 2GB of memory. Each HPC application was configured
to use large pages via HugeTLBfs. Conversely the com-
modity VM image was configured to use a varying number
of processor cores to evaluate the effect of increasing com-
modity workloads. To simulate a commodity workload we
conducted a parallel build of the Linux kernel configured to
saturate the available cores. The commodity environment
was otherwise unmodified from a standard Fedora configu-
ration.

Host configurations. The host environments were simi-
larly configured according to best practices [12], as well as
partitioned into both commodity and HPC zones. Each
VMM was configured to use large nested pages, though the
underlying mechanism for allocating these pages varied ac-
cording to the VMM architecture. Each guest core was
pinned to a dedicated host core in the appropriate perfor-
mance partition. Memory was also restricted to the local
memory of each socket and preallocated using mechanisms

specific to each VMM. Both KVM and Palacios used full
system virtualization, while Xen was configured to use its
optimized Paravirtual extensions (PV-HVM)

Hardware. Each experiment ran on a dedicated Dell R415
server configured with two 6-core Opteron 4174 CPUs and
16GB of memory. The memory layout consisted of 2 NUMA
zones equally shared between the processors with memory
interleaving disabled. The server was installed with a stan-
dard Fedora 15 environment running an unmodified 2.6.40.6-
0.fc15.x86 64 kernel.

5.1 Benchmarks
The benchmarks we selected for our evaluation were taken

from the Mantevo [11] and Sequoia [1] benchmark sets. These
benchmarks are based on actual HPC application architec-
tures and so are designed to exhibit behaviors present in
an actual real world workload. We chose these benchmarks
to highlight the expected system behavior in a real world
scenario.

Mantevo The Mantevo MiniApps from Sandia National
Labs consist of a set of skeleton applications that contain the
core kernel behavior of large scale HPC applications. While
these applications are small, they still exhibit key behaviors
of larger scale applications. The four mini-applications we
ran from this collection are described below.

• HPCCG: A conjugate gradient solver whose workload
is representative of many HPC applications. It was
run with a fixed problem size of 100x100x100, and was
configured to use OpenMP threads.

• phdMesh: A parallel heterogeneous dynamic mesh ap-
plication, which exhibits the performance character-
istics of the contact search operations in an explicit
finite element application. It was executed with the
test mesh.exe binary, with a problem size of 4x6x4,
and was configured with MPI support.

• MiniFE: A proxy application for unstructured implicit
finite element codes. It was run with a problem size of
100x100x100, and was configured with MPI support.

• MiniMD: A simple proxy for the force computations in
a typical molecular dynamics application. It was run
with a problem size of 50x50x50, and was configured
with MPI support.

Sequoia The ASC Sequoia Benchmark suite contains a
set of real world HPC simulation codes. The two bench-
marks that we ran from this package are described further
below.

• AMG: An algebraic Mult-Grid linear system solver for
unstructured mesh physics packages. It was run with
a problem size of 12x12x12, and was configured with
MPI support.

• LAMMPS: A classical molecular dynamics simulation
code. It was run with a problem size of 20x40x40, and
was configured with MPI support.

5.2 Results
For each experiment, we launched exactly one 4 core HPC

VM along with varying levels of competing commodity work-
loads running inside 1-2 separate commodity VMs. All of

the benchmarks were executed ten times with each of the
following commodity configurations: one 1-core commodity
VM, one 2-core commodity VM, one 4-core commodity VM,
and two 4-core commodity VMs (8 cores total).

The results for each benchmark’s run times are shown in
Figures 4 and 5. As can be seen, Palacios typically provides
comparable or slightly better performance than KVM and
Xen for one or two competing cores. In particular, MiniFE
appears to be highly succeptible to cross VM interference
when running on either KVM or Xen, but shows substan-
tially better performance on Palacios. As the number of
competing cores scales up to four, however, we begin to see
separation. For three of the six benchmarks (MiniFE, Min-
iMD, and phdMesh), we see that Palacios provides a better
environment than KVM. Furthermore, the impact of the
commodity workload on Xen can be seen in four of the six
benchmarks (HPCCG, MiniFE, MiniMD, phdMesh), where
Palacios provides significantly better performance. AMG
was the only benchmark in which KVM or Xen outper-
formed Palacios, but the performances were nearly identical.
On average, the benchmarks ran 4.37% and 8.68% slower on
KVM and Xen respectively than they did on Palacios. These
results show that as workloads begin to saturate the com-
modity cores, Palacios is able to provide greater isolation to
the HPC application than either KVM or Xen.

In order to understand how significant the hardware parti-
tioning was to HPC performance, we configured the machine
with 2 competing VMs with 4 cores each. This workload
configuration forced us to shrink the HPC partition down
from an entire socket to a subset of cores on that socket.
Although these test cases do not necessarily represent an
ideal dual stack workload, as they require the crossing of
NUMA boundaries, they nevertheless do give interesting in-
formation about the abilities of the VMMs in question to
perform when the system is heavily loaded. The results of
these experiments show that Palacios is still capable of pro-
viding consistent performance in most cases, but in some
cases does experience degradation as the result of hardware
contention. For each benchmark other than AMG, Pala-
cios was at least 5% faster on average than KVM. Similarly,
each benchmark other than LAMMPS performed at least 5%
faster on Palacios than on Xen. No benchmark performed
better on either KVM or Xen than on Palacios. On average,
the benchmarks ran 7.65% and 9.75% slower on KVM and
Xen respectively than they did on Palacios.

In addition to exhibiting superior performance on aver-
age, the benchmarks running on Palacios exhibited much
more consistent performance. This can be seen by examining
the standard deviations reported in Figure 5. Compared to
their standard deviations on Palacios, the same benchmarks
running on Xen experienced standard deviations that were
31%, and 16% higher, for four and eight competing cores re-
spectively, than they did on Palacios. The results are even
more drastic for KVM; again compared to Palacios, the same
benchmarks experienced average increases in standard devi-
ations of 1122%, and 636%, for four and eight competing
cores. As consistency is typically a good indicator of scala-
bility, these results strongly indicate that Palacios will scale
much better than either KVM or Xen in the presence of
commodity workloads.

 2

 3

 4

 5

 6

 7

 8

 9

 10

1 2 4 8

R
u
n
ti
m

e
 (

s
e
c
s
)

Number of competing cores

Palacios
KVM
Xen

 2

 3

 4

 5

 6

 7

 8

1 2 4 8

R
u
n
ti
m

e
 (

s
e
c
s
)

Number of competing cores

Palacios
KVM
Xen

 40

 42

 44

 46

 48

 50

 52

 54

1 2 4 8

R
u
n
ti
m

e
 (

s
e
c
s
)

Number of competing cores

Palacios
KVM
Xen

(a) HPCCG (b) MiniFE (c) MiniMD

 20

 25

 30

 35

 40

 45

 50

1 2 4 8

R
u
n
ti
m

e
 (

s
e
c
s
)

Number of competing cores

Palacios
KVM
Xen

 5

 10

 15

 20

 25

1 2 4 8

R
u
n
ti
m

e
 (

s
e
c
s
)

Number of competing cores

Palacios
KVM
Xen

 5

 10

 15

 20

 25

1 2 4 8

R
u
n
ti
m

e
 (

s
e
c
s
)

Number of competing cores

Palacios
KVM
Xen

(d) phdMesh (e) AMG (f) LAMMPS

Figure 4: Results of the isolation experiments. As competing workloads scale up Palacios proves to better
isolate the HPC partition than either KVM or Xen

Mean / Stdev
VMM Competing Cores HPCCG MiniFE MiniMD phdMesh AMG LAMMPS
Palacios 4 6.17 / 0.09 4.89 / 0.03 44.93 / 0.41 28.54 / 0.31 11.90 / 0.09 13.61 / 0.04
KVM 4 6.20 / 0.04 5.42 / 0.34 46.03 / 2.66 31.18 / 7.70 11.81 / 0.05 14.46 / 1.07
Xen 4 7.62 / 0.18 5.94 / 0.08 46.99 / 0.63 31.81 / 0.24 11.75 / 0.04 13.89 / 0.10

Figure 5: Averages and standard deviations of the isolation experiments with four competing commodity
cores, which is a representative cloud workload. Palacios provides better, more consistent performance than
KVM and Xen for almost every benchmark

6. OPEN ISSUES
While our initial results show the effectiveness of a dual

stack approach on a single compute node, there are many
open questions that still need to be answered. Currently the
largest issue with deploying HPC applications in the cloud
is the lack of adequate network infrastructure to handle the
communication loads and also to provide reliable bandwidth
in the face of competing flows. Any performance improve-
ment provided by a dual stack virtualization approach could
easily be overwhelmed by a poorly configured network. In-
deed, our own experience has shown that scaling a Palacios
hosted HPC application across a dedicated Gigabit switch
results in any performance improvement being swamped by
delays introduced by the network. While this work does not
address this, the networking situation is improving. Cloud
providers are beginning to recognize the need for high per-
formance network fabrics, and traditional HPC vendors are
beginning to move in this direction as well. This can be
seen in the availability of 10 Gigabit networks and other
specialized technologies such as RoCEt [18].

Other approaches are also being taken to provide opti-
mized network architectures for cloud services. Novel net-
work architectures such as [9, 14] are being introduced to

provide better scalability and performance for cloud infras-
tructures. Additional work is focusing on providing reserv-
able network paths based on technologies such as optical
networks [3]. In parallel with this work are advances in
improving virtual I/O performance [8], particularly for net-
working [22]. We believe that as the networking infrastruc-
ture continues to evolve, the capabilities needed to provide
reliable and consistent network resources will become avail-
able.

Tied closely to the issue of network resources is the prob-
lem of how to handle the placement of partitions in our dual
stack approach. The layout of a distributed set of HPC ap-
plications has significant ramifications on application perfor-
mance as it determines what the underlying network charac-
teristics will be for any collective communication. We note
that while this is a significant issue, it is outside the scope of
our work. In addition, it is relevant for any cloud architec-
ture that hosts HPC workloads, and our dual stack approach
could easily fit into any proposed scheme with little to no
modification.

7. CONCLUSION AND FUTURE WORK
In this paper we have made the case for a dual stack ap-

proach to virtualization in the cloud. While there is signif-
icant interest in running both HPC and commodity work-
loads in the cloud, there is currently no unified architecture
that satisfies the needs of both classes of users. A dual
stack approach would allow a cloud provider to dynamically
configure a cloud service at runtime to directly address the
needs of both HPC and commodity workloads as they are
deployed. We have undertaken a preliminary performance
study of such a system configuration using KVM and the
Palacios VMM. Our results show that it is possible to parti-
tion a single node such that both commodity and HPC ap-
plications can execute concurrently without negatively im-
pacting the other’s performance. While our evaluations are
restricted to a single node, we believe that similar partition-
ing techniques could be used in other parts of the system to
provide a scalable dual stack solution.

Based on our results, we intend to further explore the dual
stack approach. In particular, we intend to integrate many
of the advanced networking approaches with the Palacios
VMM in order to demonstrate the potential scalability of
a specialized cloud infrastructure for HPC. We also intend
to evaluate the performance of the dual stack approach at
large scales, as well as to investigate other mechanisms for
alleviating the remaining overheads introduced by Linux.

8. REFERENCES

[1] ASC Sequoia Benchmark Codes
https://asc.llnl.gov/sequoia/benchmarks/.

[2] Baumann, A., Barham, P., Dagand, P.-E.,
Harris, T., Isaacs, R., Peter, S., Roscoe, T.,
Schüpbach, A., and Singhania, A. The
Multikernel: A New OS Architecture for Scalable
Multicore Systems. In Proc. 22nd Symposium on
Operating Systems Principles (SOSP) (2009).

[3] Bazzaz, H. H., Tewari, M., Wang, G., Porter,
G., Ng, T. S. E., Andersen, D. G., Kaminsky, M.,
Kozuch, M. A., and Vahdat, A. Switching the
Optical Divide: Fundamental Challenges for Hybrid
Electrical/Optical Datacenter Networks. In Proc. 2nd
ACM Symposium on Cloud Computing (SOCC)
(2011).

[4] Blelloch, G. E. NESL: A Nested Data-Parallel
Language (Version 2.6). Tech. rep., Carnegie Mellon
University, 1993.

[5] Brandt, J., Gentile, A., Mayo, J., Pebay, P.,
Roe, D., Thompson, D., and Wong, M. Resource
Monitoring and Management with OVIS to Enable
HPC in Cloud Computing Environments. In Proc,
23rd IEEE International Parallel and Distributed
Processing Symposium (IPDPS) (2009).

[6] Bugnion, E., Devine, S., and Rosenblum, M.
Disco: Running Commodity Operating Systems on
Scalable Multiprocessors. In Proc. 16th Symposium on
Operating Systems Principles (SOSP) (1997).

[7] Dean, J., and Ghemawat, S. MapReduce:
Simplified Data Processing on Large Clusters.
Communications of the ACM 51, 1 (Jan. 2008).

[8] Gordon, A., Amit, N., Har’El, N., Ben-Yehuda,
M., Landau, A., Schuster, A., and Tsafrir, D.
ELI: Bare-metal Performance for I/O Virtualization.
In Proc. 17th International Conference on

Architectural Support for Programming Languages and
Operating Systems (ASPLOS) (2012).

[9] Greenberg, A., Hamilton, J. R., Jain, N.,
Kandula, S., Kim, C., Lahiri, P., Maltz, D. A.,
Patel, P., and Sengupta, S. VL2: A Scalable and
Flexible Data Center Network. In Proc. ACM
SIGCOMM (2009).

[10] He, Q., Zhou, S., Kobler, B., Duffy, D., and
McGlynn, T. Case Study for Running HPC
Applications in Public Clouds. In Proc. 19th ACM
International Symposium on High Performance
Distributed Computing (HPDC) (2010).

[11] Heroux, M., et al. Welcome to the Mantevo Project
Home Page, https://software.sandia.gov/mantevo.

[12] IBM. Best Practices for KVM. White Paper (Nov.
2010).

[13] Jackson, K. R., Ramakrishnan, L., Muriki, K.,
Canon, S., Cholia, S., Shalf, J., Wasserman,
H. J., and Wright, N. J. Performance Analysis of
High Performance Computing Applications on the
Amazon Web Services Cloud. In Proc. 2nd
International Conference on Cloud Computing
Technology and Science (CLOUDCOM) (2010).

[14] Kim, C., Caesar, M., and Rexford, J. Floodless in
Seattle: A Scalable Ethernet Architecture for Large
Enterprises. In Proc. ACM SIGCOMM (2008).

[15] Kocoloski, B., and Lange, J. Better Than Native:
Using Virtualization to Improve Compute Node
Performance. In Proc. 2nd International Workshop on
Runtime and Operating Systems for Supercomputers
(ROSS) (2012).

[16] Lange, J., Dinda, P., Hale, K., and Xia, L. An
Introduction to the Palacios Virtual Machine
Monitor—Release 1.3. Tech. Rep. NWU-EECS-11-10,
Northwestern University, October 2011.

[17] Lange, J. R., Pedretti, K., Dinda, P., Bridges,
P. G., Bae, C., Soltero, P., and Merritt, A.
Minimal-overhead virtualization of a large scale
supercomputer. In Proc. 7th ACM
SIGPLAN/SIGOPS International Conference on
Virtual Execution Environments (VEE) (2011).

[18] Mellanox Technologies. The Case for Infiniband
over Ethernet. White Paper (2008).

[19] Napper, J., and Bientinesi, P. Can Cloud
Computing Reach the Top500? In Proc. Combined
Workshops on Unconventional High Performance
Computing Workshop and Memory Access Workshop
(UCHPC-MAW).

[20] Rehr, J. J., Vila, F. D., Gardner, J. P., Svec,
L., and Prange, M. Scientific Computing in the
Cloud. Computing in Science & Engineering 12
(2010), 34–43.

[21] Stantchev, V. Performance Evaluation of Cloud
Computing Offerings. In Proc. 3rd International
Conference on Advanced Engineering Computing and
Applications in Sciences (ADVCOMP) (2009).

[22] Xia, L., Cui, Z., Lange, J., Tang, Y., Dinda, P.,
and Bridges, P. VNET/P: Bridging the Cloud and
High Performance Computing Through Fast Overlay
Networking. In Proc. 21st ACM Symposium on
High-performance Parallel and Distributed Computing
(HPDC) (2012).

