CS 1555
www.cs.pitt.edu/~nlf4/cs1555/

Using SQL as a DDL
● Declarative query language
● Originally developed for System R
 ○ First presented in 1974
● Current incarnation is the result of a very successful standardization effort by both ANSI and ISO
 ○ SQL-86 (SQL)
 ○ SQL-89 (SQL1)
 ○ SQL-92 (SQL2)
● De-facto language for RDBMS
 ○ DDL, DML and VDL
The database schema

- Describes the data stored in the database
- Specifically:
 - Base relations
 - (tbl_name, creator, #tuples, tuple_length, #attributes...)
 - Attributes of relations (columns)
 - (tbl_name, atrb_name, type, format, order, key_no, ...)
 - Indexes
 - (tbl_name, index_name, key_attribute,...!)
 - Authorizations
 - Integrity constraints
- All of this information is stored in the catalog
 - INFORMATION_SCHEMA
- SQL-92 and later allow multiple database schemas
 - Tables are named as SchemaName.TableName
Creating and deleting schemas

- CREATE SCHEMA <name> AUTHORIZATION <user>;
- DROP SCHEMA <name> [RESTRICT | CASCADE];
 - RESTRICT: removes schema if it doesn't contain any elements
 - CASCADE: remove schema and everything it contains
Database tables

- CREATE TABLE `<name>` (<attribute list …>);

- DROP TABLE `<name>` [RESTRICT | CASCADE];
 - RESTRICT drops the table only if it is not referenced
 - E.g., by constraints or views
 - CASCADE drops the table and items that reference it
Dropping tables in Oracle...

- DROP TABLE <name> [CASCADE CONSTRAINTS] [PURGE];
 - CASCADE CONSTRAINTS drops the table and items that reference it
 - Without this, referencing items are not dropped but simply unusable unless/until the table is recreated
 - PURGE actually frees table space
 - Without this, table data is placed in a recycling bin
Specifying table attributes

- Need to specify a name and a data type for each attribute
Numerical data types

● C-style integers
 ○ My SQL: TINYINT (8 bit), INT (32 bit), BIGINT (64 bit) …
 ○ Oracle: SHORTINTEGER (16 bit), INTEGER (32 bit), LONGINTEGER (64 bit)

● Floating point types
 ○ FLOAT[<precision>]
 ■ Allows custom precision floating point types
 ○ REAL and DOUBLE
 ■ Set precision floating point types

● DECIMAL(i, j) or NUMERIC(i, j)
 ○ i: total number of digits (precision)
 ○ j: digits after a decimal point (scale)
Character string data types

- Strings of *printable* characters
- Enclosed in 'single quotes'
- CHAR(n) or CHARACTER(n)
 - Fixed length n strings
- VARCHAR(n) or VAR(n) or CHAR VARYING(n)
 - Variable length string (max of n)
- Concatenation operator: \(||\)
 - 'abc' || 'XYZ' results in 'abcXYZ'
- CLOB(size)
 - Character Large OBject
 - size specified in kilobytes (K), megabytes (M), or gigabytes (G)
Bit string data types

- Sequences of bits
 - Enclosed in single quotes with a leading B
 - B'001100101'
- BIT(n)
 - Fixed length of n bit
- VARBIT(n) or BIT VARYING(n)
 - Variable length (max of n)
- BLOB(size)
 - Binary Large OBject
 - size specified in kilobytes (K), megabytes (M), or gigabytes (G)
Boolean

- Valued TRUE or FALSE
- ...
- What about NULL values?
 - When used in a comparison, result is UNKNOWN
 - How is UNKNOWN combined with TRUE/FALSE results?
Date and time data types

- **DATE**
 - YYYY-MM-DD

- **TIME**
 - HH:MM:SS

- **TIME(i)**
 - HH:MM:SS.dddd .. d

- **TIME WITH TIME ZONE**
 - Adds displacement of -13:00 to +12:59
 - HH:MM:SS{+,-}hh:mm
 - If not specified, default is local timezone

- **TIMESTAMP**
 - Complete date and time with 6 fractional seconds and optional time zone

- Dates and times must be valid!
Date and time implementations

- Oracle DATE is not equivalent to ANSI DATE, but functions like ANSI TIMESTAMP

- MySQL implements both TIMESTAMP and DATETIME
 - DATETIME is not a valid ANSI type
 - DATETIME range:
 - '1000-01-01 00:00:00' to '9999-12-31 23:59:59'
 - TIMESTAMP range in MySQL:
 - '1970-01-01 00:00:01' UTC to '2038-01-19 03:14:07' UTC
Intervals

- Represent periods of time and are used in operations on date and time data types
- DATE {+,-} INTERVAL results in DATE
- DATE - DATE results in INTERVAL
- INTERVAL {*,/} number results in INTERVAL
- INTERVAL {+,-} INTERVAL results in INTERVAL
- Examples
 - (CURRENT_DATE + INTERVAL '1' MONTH)
 - (CURRENT_DATE + INTERVAL '18' DAY)
 - (CURRENT_DATE - BirthDate)
Different DBMSs tend to use specialized DATE and TIME functions to manipulate DATE, TIME, and INTERVAL data.

Be sure to check the documentation of your RDBMS.
Interval data types

- INTERVAL start-field(p) [TO end-field(fs)]
 - p specifies the precision of the start field, defaults to 2
 - fs specifies the fractional seconds for ending times
- Year-Month
 - INTERVAL YEAR, INTERVAL YEAR(p), INTERVAL MONTH,
 INTERVAL MONTH(p), INTERVAL YEAR TO MONTH,
 INTERVAL YEAR(p) TO MONTH
- Day-Time
 - E.g., INTERVAL DAY(10) TO HOUR, INTERVAL DAY TO MINUTE,
 INTERVAL SECOND(5), INTERVAL DAY(5) TO SECOND,
 INTERVAL MINUTE TO SECOND
All the data types you could want!

- **DOMAIN** defines datatype macros in a schema
 - Basic datatype
 - DEFAULT value
 - CHECK (validity conditions)

- **DROP DOMAIN** `<name>` [RESTRICT | CASCADE]
 - RESTRICT drops domain if it is unused
 - CASCADE drops domain and replaces it with underlying type

- **Examples:**
 - `CREATE DOMAIN sectno_dom AS SMALLINT;`
 - `CREATE DOMAIN section_dom VARCHAR(20) DEFAULT 'none';`
 - `CREATE DOMAIN gpa_dom DECIMAL (3,2) DEFAULT 0.00;`
 - `CREATE DOMAIN ssn_dom CHAR(11) CONSTRAINT ssn_dom_value CHECK (VALUE BETWEEN '000-00-0000' AND '999-99-9999');`
Constraints on table attributes

- **Constraints:**
 - NOT NULL
 - DEFAULT value
 - without the DEFAULT clause, the default value is NULL
 - PRIMARY KEY (attribute_list)
 - UNIQUE (attribute_list)
 - allows the specification of alternative key
 - FOREIGN KEY (key) REFERENCES table (key)
CREATE TABLE Students
(
 ID INTEGER,
 Name VARCHAR(20),
 Major VARCHAR(10),
 GPA DECIMAL(3,2),
 CONSTRAINT Students_PK
 PRIMARY KEY (ID)
);
CREATE TABLE Enrollment

(Stud_ID INTEGER,
 Course VARCHAR(15),

CONSTRAINT Enrollment_FK
 FOREIGN KEY (Stud_ID) REFERENCES Students(ID)
);

CREATE TABLE Students
(
 ID INTEGER,
 Name VARCHAR(20),
 Ssn CHAR(9) NOT NULL,
 Major VARCHAR(10),
 GPA DECIMAL(3,2),

CONSTRAINT Students_PK
 PRIMARY KEY (ID),

CONSTRAINT Students_AK
 UNIQUE (Ssn)
);
Modifying tables after creation

- ALTER TABLE <tname> ALTER COLUMN <cname> <options>;
 - ALTER TABLE Students ALTER COLUMN GPA DECIMAL(4,2);
 - ALTER TABLE Students ALTER COLUMN GPA SET DEFAULT NULL;
 - ALTER TABLE Students ALTER COLUMN GPA DROP DEFAULT;
- ALTER TABLE <tname> ADD COLUMN <cname> <type>;
- ALTER TABLE <tname> DROP COLUMN <cname> [RESTRICT | CASCADE];
- ALTER TABLE <tname> ADD CONSTRAINT <con_name> <description>;
- ALTER TABLE <tname> DROP CONSTRAINT <con_name> ;