
1 of 6

CS1541 Fall 2008
Solution to the optional homework on Virtual Memory

Question 1

Suppose that a virtual memory system has the following properties:

40-bit virtual byte address;
16KB pages;
32-bit physical address;
TLB has 8 entries and fully associative;
Valid, protection, dirty and use bits take a total of 4 bits (both TLB and page table have these).

Compute the following quantities:

(a) The total size (in bits) of TLB.

Answer:

Each TLB entry has: Valid Bit, Protection Bit, Dirty Bit, Use Bit,
 Tag Address (which is Virtual Page #), and Physical Page #.

Page Offset Length = 14 (as the page size is 16KB and 2^14 = 16K).
Physical Page # Length = Physical Address Length - Page Offset Length = 32 – 14 = 18
Virtual Page # Length = = Virtual Address Length - Page Offset Length = 40 – 14 = 26

TLB Entry Size = 4 + 26 + 18 = 48

TLB Size = # TLB Entries * TLB Entry Size = 8 * 48 = 384 bits = 48 B.

(b) The total size (in bits) of the page table.

Answer:

Each PTE has: Valid Bit, Protection Bit, Dirty Bit, Use Bit, and Physical Page #.

PTE Size = 4 + 18 = 22

PTEs = 2^26

Page Table Size = # PTEs * PTE Size = 22 * 2^26 bits = 176 MB

2 of 6

Question 2

Suppose that one computer has a virtual memory system as the following:

16-bit virtual address (byte addressing);
8 KB pages;
16-bit physical address (byte addressing);
TLB has 3 entries and fully associative;
TLB entry has four parts: valid bit, dirty bit, VPN (also called tag), PPN;
Page Table entry has three parts: valid bit, dirty bit, PPN;
LRU page replacement and TLB entry replacement.

Operating system on this computer allocates only 4 contiguous pages of the main memory to process A. The first page’s address
starts at 0x4000.

There are a series of virtual memory references of process A below. Indicate each reference causes TLB hit or TLB miss and show
the contents of the TLB after each reference; indicate each reference causes Page Fault or not and show the contents of the Page
Table after each reference. Initially, all entries in the TLB and Page Table are empty. Pure page-demanding is implemented, which
means that a page is loaded into the memory only when accessed. Hard disk address of a physical page is not filled into page table.

0xA1F4 Read
0xFEA6 Read
0xE208 Write
0x2020 Read
0xB03E Write
0xD021 Write
0x689A Read
0x345C Write
0xCFDC Write
0x7ED2 Write
0x8038 Read

** Note: VPN – Virtual Page Number, PPN – Physical Page Number.

3 of 6

Answer (not complete):

Page Size = 8 KB => Page Offset = 13 bits.

Virtual Address Space = 16 bits => High 3 bits are VPN.
Physical Address Space = 16 bits => PPN has 3 bits.

Process A has been allocated 4 contiguous physical pages starting at 0x4000 and 0x 4000 = 0100 0000 0000 0000 =>
 The four physical pages’ PPN are: 2, 3, 4, 5.

Approach:

1. TLB Hit => if the reference is write, set “Dirty Bit” for the corresponding TLB entry to 1.
2. TLB Miss:
 a. TLB Operations
 Find the replacement TLB entry; if that entry’s “Dirty Bit” is 1, set the “Dirty Bit” in the Page Table’s corresponding
entry to 1.
 b. Page Table Operations
 (a) Page Table Hit => bring that entry to TLB.
 (b) Page Table Miss (Page Fault) => find the replacement page via LRU, bring that PPN to the corresponding VPN
entry then
 bring that entry to TLB; and empty the replaced Page Table entry (the corresponding VPN entry).

TLB

Reference
(virtual
address)

Read/
Write

Left Most
Four Bits

Hit/
Miss

Entry 0 Entry 1 Entry 2

V D VPN PPN V D VPN PPN V D VPN PPN

0xA1F4 R 1010 M 1 0 5 2 0 0

0xFEA6 R 1111 M 1 0 5 2 1 0 7 3 0

0xE208 W 1110 H 1 0 5 2 1 1 7 3 0

0x2020 R 0010 M 1 0 5 2 1 1 7 3 1 0 1 4

0xB03E W 1011 H 1 1 5 2 1 1 7 3 1 0 1 4

0xD021 W 1101 M 1 1 5 2 1 1 6 5 1 0 1 4

0x689A R 0110 M 1 1 5 2 1 1 6 5 1 0 3 3

0x345C W 0011 M 1 1 1 4 1 1 6 5 1 0 3 3

0xCFDC W 1100 H 1 1 1 4 1 1 6 5 1 0 3 3

0x7ED2 W 0111 H 1 1 1 4 1 1 6 5 1 1 3 3

0x8038 R 1000 M 1 0 4 2 1 1 6 5 1 1 3 3

Page Table

Reference
(virtual
address)

Read
/
Writ
e

Left
Most
Four Bits

Page
Fault

VPN 0 VPN 1 VPN 2 VPN 3 VPN 4 VPN 5 VPN 6 VPN 7

V D PPN V D PPN V D PP
N V D PP

N V D PPN V D PPN V D PP
N V D PPN

0xA1F4 R 1010 Y 0 0 0 0 0 1 0 2 0 0

0xFEA6 R 1111 Y 0 0 0 0 0 1 0 2 0 1 0 3

0xE208 W 1110 N 0 0 0 0 0 1 0 2 0 1 0 3

0x2020 R 0010 Y 0 1 0 4 0 0 0 1 0 2 0 1 0 3

0xB03E W 1011 N 0 1 0 4 0 0 0 1 0 2 0 1 0 3

0xD021 W 1101 Y 0 1 0 4 0 0 0 1 0 2 1 0 5 1 1 3

0x689A R 0110 Y 0 1 0 4 0 1 0 3 0 1 0 2 1 0 5 0

0x345C W 0011 N 0 1 0 4 0 1 0 3 0 1 1 2 1 0 5 0

0xCFDC W 1100 N 0 1 0 4 0 1 0 3 0 1 1 2 1 0 5 0

0x7ED2 W 0111 N 0 1 0 4 0 1 0 3 0 1 1 2 1 0 5 0

0x8038 R 1000 Y 0 1 1 4 0 1 0 3 1 0 2 0 0 0

** Note: V – Valid Bit, D – Dirty Bit, VPN – Virtual Page Number, PPN – Physical Page Number.

4 of 6

Blank TLB

Reference
(virtual
address)

Read/
Write

Left Most
Four Bits

Hit/
Miss

Entry 0 Entry 1 Entry 2

V D VPN PPN V D VPN PPN V D VPN PPN

0xA1F4 R

0xFEA6 R

0xE208 W

0x2020 R

0xB03E W

0xD021 W

0x689A R

0x345C W

0xCFDC W

0x7ED2 W

0x8038 R

5 of 6

Blank Page Table

Reference
(virtual
address)

Read
/
Writ
e

Left
Most
Four Bits

Page
Fault

VPN 0 VPN 1 VPN 2 VPN 3 VPN 4 VPN 5 VPN 6 VPN 7

V D PPN V D PPN V D PP
N V D PP

N V D PPN V D PPN V D PP
N V D PPN

0xA1F4 R

0xFEA6 R

0xE208 W

0x2020 R

0xB03E W

0xD021 W

0x689A R

0x345C W

0xCFDC W

0x7ED2 W

0x8038 R

** Note: V – Valid Bit, D – Dirty Bit, VPN – Virtual Page Number, PPN – Physical Page Number.

6 of 6

Question 3

The virtual page number can be broken up into two pieces, a “page table number” and a “page table offset.” The page table number
can be used to index a first-level page table that provides a physical address for a second-level page table, assuming it resides in
memory (if not, a first-level page fault will occur and the page table itself will need to be brought in from disk). The page table off- set
is used to index into the second-level page table to retrieve the physical page number. One obvious way to arrange such a scheme
is to have the second-level page tables occupy exactly one page of memory. Assuming a 32-bit virtual address space with 4 KB pages
and 4 bytes per page table entry, how many bytes will each program need to use to store the first-level page table (which must
always be in memory)? Provide figures similar to Figures 7.20, 7.21, and 7.22 that demonstrate your understanding of this idea.

Answer

Using a 32-bit virtual address and 4 KB page size, the virtual address is par- titioned into a 20-bit virtual page number and a 12-bit
page offset. We divide the virtual page number into two 10-bit fields. The first field is the page table number and is used as an index
into the first-level page table. The size of the first-level page table in 210 entries × 4 bytes/entry = 212 bytes = one page.

Question 4

Assuming that we use the two-level hierarchical page table described in Question 3 and that exactly one second-level page table is
in memory and exactly half of its entries are valid, how many bytes of memory in our virtual address space actually reside in physical
memory? (Hint: The second-level page table occupies exactly one page of physical memory.)

Answer

Pages are 4-KB in size and each entry uses 32 bits, so we get 1K worth of page table entries in a page. Each of these entries points to a
physical 4-KB page, making it possible to address 210 × 212 = 222 bytes = 4 MB of memory. But only half of these are valid, so 2 MB
of our virtual address space would be in physical memory. If there are 1K worth of entries per page table, the page table offset will
occupy 10 bits and the page table number also 10 bits. Thus, we only need 4 KB to store the first- level page table as well.

