Operating Systems

Interface between the hardware and the rest: editors, compilers,

database systems, application programs, your programs, etc.

* Allows portability, enables easier programming,

» The manager of different resources (memory, CPU, disk, printer,
€tc) in your system

* Takes responsibility away from the users, tends to improve metrics
(throughput, response time, etc)

* 2 types.

—monolithic: al functions are inside asingle kernel (central part of
the OS)

— microkernel-based: non-basic functions float as servers (thereisa
small kernel for the basic functionality)

Distributed Systems

A distributed systemiis:

A collection of independent
computers that appears to its users
as asingle coherent system.

(also, a collection of systems that when one
breaks nothing works)

Distributed Systems

Machine A Machine B Machine C
[[|

Distributed applications

Middleware service

Local OS Local OS Local OS

Nehwork

A distributed system organized as middleware. what's middieware?
Note that the middleware layer extends over multiple machines.

|ssues in Distributed Computing

Why distribute? What' s bad about centralized?
DISTRIBUTION:

allows sharing of data, code, devices, messages, etc
is more flexible (can add more resources, scalable)

ischeaper (several small machines are cheaper than one powerful).
That is, the price/performance ratio is smaller than in centralized

isusually faster (same as above)
can be fault tolerant (if one site fails, not all computations fail)
much, MUCH MORE!!!

More complex? Y ES, much more (here is the much more)
More time consuming? (messages need to go back and forth)
Slower response time? (messages, but can parallelize comps)

What about reliability, security, cost, network, messages,
congestion, load balancing...

Distributed OS Services

Global Inter-Process Communication (IPC) primitives,
transparent to the users (currently support to client-server
computing)

Global protection schemes, so that avalidation at a site needsto
be validated at another site (Kerberos)

Global process management: usual (destroy, create, etc....) +
migration, load distribution, so that the user need not manually
logon to a different machine. The OS takes charge, and executes
the program requested by the user in aless-loaded,
fastresponding machine (compute server, file server, etc).

Global process synchronization (supporting different language
paradigms for heterogeneity and openness)

Compatibility among machines (binary, protocol, etc)
Globa naming and file system

Distributed OSs

Transpar ency attempts to hide the nature of the system from
users.

— Good, because users usually don’t need to know details

— Degree of transparency isimportant, too much may be too much
Performanceis usually an issue that needs to be studied for a
specific system architecture, application, users, etc.
Scalability isimportant in the long run and general use—some
applications, systems, users, etc do not need scalability
Distributed algorithms are also needed, which have the
following characteristics:

— State information should be distributed to all nodes (how? overhead?)

— Decisions are made based on local information (why?)

— Fault tolerance (what for?)

— No global/synchronized clocks (why?)

Transparency in a Distributed System

Transparency Description
A Hide differences in data representation and how a resource is
ccess

accessed

Location Hide where a resource is located

Migration Hide that a resource may move to another location

} Hide that a resource may be moved to another location while

Relocation)
in use

Replication Hide that a resource may be shared by several competitive
users

Concurrency Hide that a resource may be shared by several competitive
users

Failure Hide the failure and recovery of a resource

Parallelism Hide how many resources are being used

Persistence Hide whether a (software) resource is in memory or on disk

Degree of Transparency

Observation: Aiming at full distribution transparency may be too
much:

» Users may belocated in different continents; distribution is
apparent and not something you want to hide

o Completely hiding failures of networks and nodesis
(theoretically and practically) impossible
— You cannot distinguish a slow computer from afailing one
— You can never be sure that a server actually performed an operation
before acrash
 Full transparency will cost performance, exposing distribution of
the system
— Keeping Web caches exactly up-to-date with the master copy
— Immediately flushing write operationsto disk for fault tolerance

Scal ability

* Three dimensions:
— Size: Number of users and/or processes
— Geographical: Maximum distance between nodes
— Administrative: Number of administrative domains

e Limitations:

Concept Example
Centralized services A single server for all users
Centralized data A single on-line telephone book
Centralized algorithms Doing routing based on complete information

Techniques for Scaling

» Distribution: Partition data and computations across
multiple machines:
— Move computations to clients (e.g., Java applets)
— Decentralized naming services (e.g., DNS)
— Decentralized information systems (e.g., WWW)

» Replication: Make copies of data available at different
machines (e.g., replicated file servers, databases, mirrored
websites, etc)

« Caching: Allow client processes to access local copies
— Web caches (e.g., browser/web proxy)
— File caches (e.g., server or client)

Scal ability

Applying scaling techniques is easy, except for:

» Having multiple copies (cached or replicated), leads to
inconsistencies: modifying one copy makes that copy
different from the rest.

» Always keeping copies consistent and in a general way
requires global synchronization on each modification.
Global synchronization precludes large-scale solutions.

Observationl: If we can tolerate inconsistencies, we
may reduce the need for global synchronization.
Observation2: Tolerating inconsistencies is application
dependent.

Scaling Techniques (Example 1)

Client Server

FIRST NAME[WARTEN] o o
LAST NAME >
EMAIL -@>
—
o | m=» -
» | >

Check form Process form
@

Client Server

FIRST NAME[MASRTEN |
LAST NAME [VAN STEEN Umﬁ% >
E-MAIL [Sreengosvun | STESGLS VU HL

=]

Check form
by

Y

Process form

The difference between letting:
a) aserveror

b) aclient check forms asthey are being filled

Scaling Techniques (Example 2)

Generic Countries

5“" acm ieee co
en cs ack leI ‘

Ilnda

robot

An example of dividing the DNS name space into zones.

Hardware Concepts

Nt

L

] [¢] [e] [7] S
E Processor @ Memory

peseg-sng

PeSEQ-LIIMS

Different basic organizations and memories in distributed
computer systems

Multiprocessors (1)

A bus-based multiprocessor.

CPU CPU CPU Memory
‘ Cache‘ ‘ Cache‘ Cache
I I I I
Bus
Multiprocessors (2)
Memories
7]
CPUs E}
7]
Py
Crosspoint switch 2x2 switch
@ (b)

A crossbar switch An omega switching network

Homogeneous Multicomputer Systems

@ Grid (v) Hypercube

Software Concepts

Distributed systems can be achieved in 3 ways:
» DOS (Distributed Operating Systems)

* NOS (Network Operating Systems)

* Middleware

System Description Main Goal
DOS Tightly-coupled operating system for multi- Hide and manage
processors and homogeneous multicomputers hardware resources
NOS Loosely-coupled operating system for Offer local services
heterogeneous multicomputers (LAN and WAN) to remote clients
Middleware Additional Iayer atop of NOS implementing general- | Provide distribution
purpose services transparency

Uniprocessor Operating Systems

No direct data exchange between modules

A R
OS interface User Memory Process File module \U "
application module module ser moae
\4 A A A
1= = I F—— | === ‘ == \
/Y Kernel mode
System call Microkernel /
Hardware

Separating applications from operating system code through a microkernel.

Multiprocessor Operating Systems

» Mutua exclusion and synchronization:
— Semaphores?
— Test-n-set and Swap instructions?
— Spin locks?
— Monitors?
— A combination thereof?

 Implementation issues:
— Shared memory?

— Message passing?
— A combination thereof?

10

Multicomputer Operating Systems (1)

Machine A Machine B Machine C
[| [|

Distributed applications

Distributed operating system services

Kernel Kernel Kernel

Network

* OS on each computer knows about the other computers
» OS on each computer is the same

» Services are generally (transparently) distributed across
computers

Multicomputer Operating Systems (2)

Possible
syhchronization
point .
Sender Receiver
$ S1 e S
Sender _ _ | Receiver
buffer — — buffer
¢ s2 0
| J
Network

* No shared memory > message passing

» Typically no broadcasting, thus need software
» Hard(er) to do synchronization

» No centralized decision making

 Inpractice, then, only very few truly distributed multicomputer
OSs exist (Amoeba? Authors? ©)

11

Multicomputer Operating Systems (3)

Synchronization point Send buffer R;'J;':;?‘:: eﬂg‘.
Block sender until buffer not full Yes Not necessary
Block sender until message sent No Not necessary
Block sender until message received No Necessary
Block sender until message delivered No Necessary

Relation between blocking, buffering, and reliable communications.

Distributed Shared Memory Systems (1)

a)

b)

Pages of address
space distributed
among four
machines
Situation after
CPU 1 references
page 10

Situation if page
10isread only
and replicationis
used

Shared global address space

[o]1]2[3]4

[s5]6]7]8]9]10]11]12[13]14]15]

[<— Memory

¢ < [T~ P
e s ¥ g
[o](2]s]f 1i=slie]) ([e]7]
(o] [8]ro) | [2l14]
CPU 1 CPU 2 CPU 3 CPU 4
(a)
[o]2](s] (2]la]e]f [&]z]]
[9]10] [12]14]
CPU1 CPU2 CPU 3 CPU 4
(b)
[o]2]s]|][] e] [[a]l7]1]
CPU1 CPU2 CPU3 CPU 4

©

12

Distributed Shared Memory Systems (2)

Machine A Page transfer when Machine B
Bneedstobe accessed [‘

K’/// 'ﬁj I Two independent
/;:'B 41 data items
Page transfer when -
A needs to be accessed

Code using A Code using B

False sharing of a page between two independent processes.

Network Operating System (1)

» Each computer has its own operating system with
networking facilities

« Computers work independently (i.e., they may even have
different operating systems)

» Services are tied to individual nodes (ftp, telnet, WWW)
» Highly file oriented (basically, processors share only files)

Machine A Machine B Machine C
Distributed applications
Network OS Network OS Network OS
services services services
Kernel Kernel Kernel
Network

13

Network Operating System (2)

Two clients and a server in a network operating system.

File server
Client 1 Client 2 & | Disks on which
shared file system
Request Reply &= | is stored
Network

Network Operating System (3)

Different clients may mount the serversin different places.

Client 1 Client 2

Server 1 Server 2
H 1] games work
private pacman mail
pacwoman teaching
pacchild research
(a)
Client 1 Client 2
I f
games private/games
work 0/—\ f work
pacman mail pacman mail
pacwoman teaching pacwoman teaching
pacchild research pacchild research

(b) ()

14

Middleware

Machine A Machine B Machine C
| | [

Distributed applications

Middleware services

Network OS Network OS Network OS
services services services
Kernel Kernel Kernel

Network

* OS on each computer need not know about the other
computers

» OS on different computers need not generally be the same

» Services are generally (transparently) distributed across
computers

Middleware

* Motivation: Too many networked applications were hard
or difficult to integrate:
— Departments are running different NOSs
— Integration and interoperability only at level of primitive NOS
services
— Need for federated information systems:

« Combining different databases, but providing a single view to
applications

» Setting up enterprise-wide Internet services, making use of existing
information systems

« Allow transactions across different databases

« Allow extensibility for future services (e.g., mobility, teleworking,
collaborative applications)

— Constraint: use the existing operating systems, and treat them as
the underlying environment (they provided the basic functionality

anyway)

Middleware Services

» Communication Services: replace primitive sockets with
— Remote Procedure Calls (or Remote Method Invocations)
— Message passing
— Communicating streams
 Information Services. data management
— Large-scale, system-wide naming
Advanced directory services
Location services
Persistent storage
— Data caching and replication
» Security Services: secure communication and processing
— Authentication and authorization
— Encryption

Middleware and Openness

Give applications control of when, where and how to access data
(e.g., code migration and distributed transaction processing)

Application Same Application
programming
interface
A THa
o -

Middleware [®» Middleware

Common
NetWOI'k OS protocol NetWOI'k OS

In an open middleware-based distributed system, the protocols
used by each middleware layer should be the same, aswell as
the interfaces they offer to applications.

16

Comparison between Systems

Item Distributed 0S Network | Middleware-
Multiproc. | Multicomp. 0s based 0S

Degree of transparency | Very High High Low High
Same OS on all nodes Yes Yes No No
Number of copies of OS 1 N N N
E:rﬂ;ft?r:ication ns12?nr§?y Messages Files Model specific
Resource management Sé%?f;i disthr(i)t?jl’e d Per node Per node
Scalability No Moderately Yes Varies
Openness Closed Closed Open Open

A comparison between multiprocessor operating systems, multicomputer
operating systems, network operating systems, and middleware based
distributed systems.

Clients and Servers

Serverstypically manage shared resource, more intensive use

Clients are thinner, less resource intensive, provide interface,
manage smaller (digital?) components (e.g., barcode readers)

Clients and servers may be in different machines
Request/reply model (blocking or not?)

Wait for result
Client

Request

Provide service Time —™

17

Application Layering

» Traditional three layers:
— User interface (only interface)
— Processing layer (no data)
— Datalayer (only data)

« Typical application: database technology
» Many others

Layering

User-interface

‘ User interface

level
HTML
generator Processing
level

Ranked list
of page titles

Query
generator

Database queries

Ranking
component

Web page titles
with meta-information

Database Data level
with Web pages J

The general organization of an Internet search engine into three different layers

HTML page
Keyword expression containing list

18

Alternative client-server organizations

Client machine

User interfng ‘ User interface‘ ‘ User interface‘ ‘ User interface‘ ‘ User interface ‘

L T

Applicatif)‘ni_ ‘ Application ‘ ‘ Application ‘

$_______$__ L ! Database

‘ Application ‘ ‘ Application ‘ ’ Application

‘ Database ‘ ‘ Database ‘ ‘ Database ‘ ‘ Database ‘ ‘_/Database

Server machine

@ (b) (© @ (e)

Us/er interface T _¢___—$___

Example Architecture

User interface Wait for result
(presentation)

Request
operation

Return
result

- Wait for data
Application ______ M T e o ____
server
Request data Return data
Databage 3 S
server) »

An example of aserver acting asaclient.

19

Modern Architectures

Front end

handling

incoming Replicated Web servers each

requests containing the same Web pages
Requests = = . Disks
handledin yt — |7 — [— >
]Eourr:ld-robm e | | =] | =
ashion

An example of horizontal distribution of a Web service.

Alternative C/S Architectures

» Cooperating servers. Serviceis physically distributed
across a collection of servers. E.g.,
— Replicated file systems
— Network news systems
— Naming systems (DNS, X.500, ...)
— Workflow systems
» Cooperating clients: distributed application exists by
virtue of client collaboration:
— Teleconferencing where each client owns a (multimedia)
workstation
— Publish/subscribe (push/pull) architectures in which role of
client and server is blurred

20

