The World Wide Web

Overall organization of the Web.
The principle of using a cluster of workstations to implement a Web service.
Server Clusters (2)

(a) The principle of TCP handoff.
(b) A scalable content-aware cluster of Web servers.
Web (Proxy) Caching

The principle of cooperative caching; not only caching locally but also at neighborhood
In a CDN (content distribution network), parts of a document can come from different sources. Sources are chosen based on load, location, latency, cost, etc.
Server Replication (2)

Request handling in a cluster of Domino servers.
Replication Schemes

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pull-push</td>
<td>A replicator task pulls updates in from a target server, and pushes its own updates to that target as well</td>
</tr>
<tr>
<td>Pull-pull</td>
<td>A replicator task pulls in updates from a target server, and responds to update fetch requests from that target</td>
</tr>
<tr>
<td>Push-only</td>
<td>A replicator task only pushes its own updates to a target server, but does not pull in any updates from the target</td>
</tr>
<tr>
<td>Pull-only</td>
<td>A replicator only pulls in updates from a target server, but does not give any of its own updates to that target</td>
</tr>
</tbody>
</table>
Publish/subscribe system

RV = Rendezvous, or consistency/synchronization primitives
Processing listener events for subscriptions in TIB/Rendezvous.
Processing incoming messages in TIB/Rendezvous.
a) Priority scheduling of events through a queue group.
b) A semantically equivalent queue for the queue group with the specific event objects from (a).
Processes (2)

Partial broadcasting of tuples and template tuples
Achieved through multicasting or unicasting
The principle of PGM (Pragmatic General Multicast)

a) A message is sent along a multicast tree (n nodes, n-1 links: efficient)

b) A router will pass only a single NACK for each message

c) A message is retransmitted only to receivers that have asked for it.
Synchronization (1)

interesting info: not in exam

The organization of transactional messaging as a separate layer in TIB/Rendezvous.
Synchronization (2)

interesting info: not in exam

The organization of a transaction in TIB/Rendezvous.
Caching and Replication

The position of PAM with respect to security services.
Client Caching (1)

Client-side caching in NFS.

Diagram showing a network with two nodes: one labeled "Memory cache" with a "Disk cache," and another labeled "Client application." There is also a label "NFS server." Arrows indicate data flow between the nodes.
Using the NFS version 4 callback mechanism to recall file delegation.
Three situations for handling retransmissions.

a) The request is still in progress
b) The reply has just been returned
c) The reply was done earlier, but was lost.
The use of local copies when opening a session in Coda.
Cache invalidation

(a) Sending an invalidation message one at a time.
(b) Sending invalidation messages in parallel.
Two clients with different copies of the same replicated file. Network partitions may cause problems and solutions.
Disconnected Operation
(network partitions on purpose)

The state-transition diagram of a disconnected client
Hoarding = gathering data; emulation = doing operations
Case study: NFS (network file system) (1)

a) The remote access model.
b) The upload/download model
The basic NFS architecture for UNIX systems.
a) Reading data from a file in NFS version 3.
b) Reading data using a compound procedure in version 4.
Semantics of File Sharing (1)

a) On a single processor, when a *read* follows a *write*, the value returned by the *read* is the value just written.

b) In a distributed system with caching, obsolete values may be returned.
Semantics of File Sharing (2)

<table>
<thead>
<tr>
<th>Method</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNIX semantics</td>
<td>Every operation on a file is instantly visible to all processes</td>
</tr>
<tr>
<td>Session semantics</td>
<td>No changes are visible to other processes until the file is closed</td>
</tr>
<tr>
<td>Immutable files</td>
<td>No updates are possible; simplifies sharing and replication</td>
</tr>
<tr>
<td>Transaction</td>
<td>All changes occur atomically</td>
</tr>
</tbody>
</table>

Four ways of dealing with the shared files in a distributed system.
File Locking in NFS (1)

interesting info : not in exam

<table>
<thead>
<tr>
<th>Operation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lock</td>
<td>Creates a lock for a range of bytes</td>
</tr>
<tr>
<td>Lockt</td>
<td>Test whether a conflicting lock has been granted</td>
</tr>
<tr>
<td>Locku</td>
<td>Remove a lock from a range of bytes</td>
</tr>
<tr>
<td>Renew</td>
<td>Renew the lease on a specified lock</td>
</tr>
</tbody>
</table>

NFS version 4 operations related to file locking.
The result of an *open* operation with share reservations in NFS.

a) When the client requests shared access given the current denial state.

b) When the client requests a denial state given the current file access state.