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Abstract

Increased intelligence and automation in smart 
grid results in many heterogeneous applications 
benefiting from the Internet of Things, such as 
demand response, energy delivery efficiency/reli-
ability, and fault recovery. However, vulnerabilities 
in smart grid arise due to public communication 
infrastructure and Internet-based protocols. To deal 
with security threats, energy big data should be 
thoughtfully stored and processed to extract crit-
ical information, and security and blackout warn-
ings should be given in an early stage. This work 
gives a comprehensive tutorial and survey to high-
light research challenges on the aforementioned 
issues in the Internet-of-Things-based smart grid. 
We demonstrate that a stealthy and blind ener-
gy big data attack can be launched using a replay 
scheme. Also, we elucidate an intuitive geomet-
ric viewpoint for this type of attack. The proposed 
attack can bypass bad data detection successfully 
using either DC or AC state estimation.

Introduction
The Internet of Things (IoT) is an emerging technolo-
gy expected to change our daily life rapidly. Via inter-
working of different devices, any physical object/thing 
can be integrated seamlessly for exchanging and col-
lecting data. Objects in the physical world, including 
fridges, heaters, televisions, and so on, could be easily 
accessible and manageable. The IoT allows devices 
to be sensed and controlled remotely across existing 
networks, resulting in improved efficiency and eco-
nomic benefits. With the IoT technology, smart grid 
(SG) becomes an instance of cyber-physical systems 
[1, 2] The development of most parts of SG can be 
enhanced by applying IoT. Through IoT, the whole 
power grid chain, from electricity generation to con-
sumption, will enable intelligence and two-way com-
munication capabilities to monitor and control the 
power grid anywhere and anytime.

While the IoT technology is very important in 
the context of SG, it could also lead to disasters 
since the operations of SG are based on Inter-
net-based protocols [3, 4]. Therefore, the utility 
is exposed to general information and communi-
cation technology (ICT) threats, such as denial of 
service (DoS) attacks and domain-specific attacks 
(e.g., targeted malware such as Stuxnet). As a con-
sequence, an attacker could create huge finan-
cial losses and damages to the utility by inducing 
real-time imbalance between energy consumption 
and generation through data manipulation. If the 

operators cannot locate the vulnerabilities of the 
SG rapidly and accurately, it is easy to trigger seri-
ous events leading to a breakdown of a power 
grid. Therefore, secure, reliable, and real-time situ-
ational awareness is critical for future power grids.

The pervasive deployment of smart metering 
in IoT-based SG will generate energy big data in 
terms of its huge volume, large scale, and structur-
al variety. Three categories of grid business data 
are listed as follows [5]:
1. Grid operation and equipment testing or 

monitoring data, such as supervisory control 
and data acquisition (SCADA) data and sam-
pling data of smart meters

2. Electric power marketing data, such as trans-
action price and electricity sales data

3. Electric power management data, such as 
internal grid data

These data must be processed in a parallel and 
distributed fashion to extract critical information 
for decision making processes within a limited 
time. According to inherent data structure, energy 
data are divided into structured and unstructured 
data. Structured data includes data mainly stored 
in relational databases.

The growth rate of structured data is extremely 
high. Big data will lead to the challenges in distrib-
uted storage of power systems, and a distributed 
storage system for managing structured data that 
is designed to scale to a very large size is desir-
able. There are many potential advantages to be 
derived from energy data for the goal of opti-
mal operation, including real-time monitoring of 
energy consumption data generated by advanced 
metering infrastructure (AMI) and smart meters, 
detection of energy losses by fault or fraud, early 
blackout warning, fast detection of disturbances 
in energy supply, and intelligent energy genera-
tion, planning, and pricing. Huge data generated 
at the second level and concurrent peak demands 
from different homes may cause blackouts at 
some substations due to power imbalance intro-
duced by inaccurate energy forecast. Energy big 
data are also very useful for realizing situational 
awareness. Based on long-term monitoring, secu-
rity-related information can also be characterized.

In this work, we demonstrate a stealthy and 
blind energy big data attack using a replay mech-
anism without requiring the information of power 
grid topology and transmission-line admittances. In 
contrast to conventional data falsification attacks 
using cumbersome mathematical approaches, we 
elucidate an intuitive geometric approach for this 
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type of attack. The proposed attack can bypass 
bad data detection (BDD) successfully via either 
direct current (DC) or alternating current (AC) 
state estimation. Interesting readers can refer to [6] 
for more information about the state estimation.

The major contributions of this work are out-
lined as follows.
•	 We survey the security and energy big data 

analytics issues of IoT-based SGs. The potential 
applications of energy big data analytics are 
also introduced. Future research challenges are 
outlined for the IoT-based SG applications.

•	 We demonstrate a new energy big data 
attack employing a replay approach with 
both DC and AC state estimations. To the 
best of our knowledge, no works have been 
done to study data falsification attacks using 
an AC power flow model. No reports have 
appeared on launching blind AC attacks 
without grid parameters, such as transmis-
sion-line admittances.

•	 The effectiveness of the proposed big data 
attack is verified by simulations.
The rest of this article can be outlined as fol-

lows. Security and energy big data analytics issues 
are discussed. We illustrate the proposed big data 
attack, and we evaluate the performance and vul-
nerability of IoT-based SG. We highlight future 
research challenges. Finally, we draw the conclu-
sions of this article.

Security and Energy 
Big Data Analytics Issues

IoT-Based Smart Grid Security Issues
Security in critical utility infrastructure is a very 
serious concern and involves many factors, 
including physical security of plants and facilities, 
SCADA, intelligent electronic devices (IEDs) and 
meters, cyber security for networking and com-
puting, and security management for the utility. 
The SG will encompass billions of smart objects 
via IoT networks, including smart meters, smart 
appliances, sensors, actuators, and so on. How-
ever, there have been a lot of concerns regarding 
vulnerabilities of the SG. The security threats out-
lined below are the major factors impeding rapid 
and wide deployment of the IoT-based SG [7–9].

Impersonation: The attacker acts on behalf of 
a legitimate user in an unauthorized way. To solve 
this problem, a framework of machine-to-machine 
authentication in SG via a two-layer approach was 
proposed in [10].

Eavesdropping: Since the IoT uses public 
communication networks, an attacker can easily 
intercept the energy consumption information of 
households.

Data manipulation: Modifying exchanged 
data may cause service impairment threats, such 
as DoS, compromise of service, and corruption 
of energy data. Recently, a DC blind false data 
attack [11] was reported without knowing power 
grid topology and transmission-line admittances.

Access and authorization: Distributed devices 
can be accessed and controlled remotely. Meters 
and other devices can be compromised by mali-
cious software codes. The infiltration threat relates 
to the penetration of a secure perimeter by an 
unauthorized access, and can allow other threats 
to be exercised.

Availability: Large-scale IoT-based SGs are 
vulnerable to IP-based attackers, making them 
partially or totally unavailable as a result of DoS 
attacks [12].

Energy Big Data Analytics Issues in 
IoT-Based Smart Grid

Upgrading utility networks will force electricity 
providers to process far more information than 
ever before [13]. To make full use of the new 
data, the utility companies will need complex 
event-processing capabilities as listed below.

Scalable, interoperable, and distributed com-
puting infrastructure: As SG is a highly distrib-
uted system, a huge amount of data is collected 
from every section, including energy generation, 
transmission, distribution, and renewal energy 
powered vehicles and smart meters. It is very chal-
lenging to store, share, and process such volume, 
velocity, and variety (3V) big data.

Real-time big data intelligence: Real-time 
decision is essential for both system operation 
and real-time pricing. Intelligent decision making 
needs to process current and past data. With the 
real-time constraints, it will be extremely challeng-
ing to design new algorithms that can provide 
intelligence for processing such big data.

Big data knowledge representation and pro-
cessing: Big data analytics requires new machine 
learning and artificial intelligence theories. How-
ever, the outputs from machine learning and 
artificial intelligence typically lack intuitive inter-
pretation and unified representation. Such a data 
mining task is challenging due to the huge data 
nature of smart energy data.

Big data security and privacy: Although many 
security solutions have been proposed for SGs, 
they were not designed or customized specifically 
for energy big data. Attacks that make inferences 
directly from the energy big data can mislead the 
BDD so that fake data are unable to be detected. 
Also, the data can contain sensitive and private 
information of the customers and lead to usage 
pattern attacks. Most importantly, such data can 
be used to impact decision making on safe opera-
tion of the critical infrastructure.

Cyber-physical coupling modeling: One of 
the best known security features in SGs is tight 
cyber-physical coupling between the physical grid 
and cyber information, which exhibit multiple and 
distinct behavioral modalities and are deeply inter-
twined. A good understanding of it will be essen-
tial for ensuring the security of SG infrastructures.

Big Data Analytics and Applications in Smart Grid

Energy big data analytics is a very important 
research topic involving large distributed infra-
structures, such as big data generation, transmis-
sion, storage, sharing, and processing. In addition 
to traditional challenges of big data analytics, 
energy big data analytics will also encounter diffi-
culties in dealing with the unique features arising 
from tight cyber-physical coupling.

The required techniques involve a number of 
disciplines, including artificial intelligence, statis-
tics, pattern recognition, machine learning, data 
mining, signal processing, and optimization and 
visualization methods. Big data analytics includes 
classification, aggregation, clustering, and data 
mining, as briefly described below.
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Classification: Classification of a large volume 
of data is the process of organizing data according 
to its categories for its most effective and efficient 
use, also referred to as mining classification rules, a 
major application of data mining technology.

Aggregation: Data aggregation is a kind of data 
and information mining technique, where data is 
explored and presented in a report-based or short-
ened format to reduce computational cost.

Clustering: Clustering analysis can be used as an 
independent tool to obtain data distribution. Based 
on feature extraction and classification, the accuracy 
and efficiency of data mining can be improved.

Data mining: Via various methods, including 
artificial intelligence, machine learning, statistics, 
and database systems, useful patterns in large 
datasets can be extracted and transformed into a 
convenient and concise form.

To improve the reliability and efficiency of SG 
operation, power utilities are employing IT tech-
nology to develop big data applications [14].

We summarize some potential applications 
based on big data analytics in SG as follows:
•	 Load management with demand response
•	 Performance and efficiency analyses for 

power generation and storage systems
•	 Power grid optimization and capital expense 

minimization
•	 Large-scale and distributed state estimation 

based on AMI and smart devices
•	 Asset management by distributed islanding 

and aging transformer replacement
•	 Prediction and analysis of economic situation 

and social impact
•	 Pricing analysis and energy utilization
•	 Information provision for customers to better 

manage energy usage and bills, customer service 
enhancement, and customer behavior analysis

•	 Restoration spatial view of customer infor-
mation, including trouble tickets, trouble-
shooting and fault localization, and real-time 
outage indication

•	 Scientific reasoning for policy making pro-
cesses

Energy Big Data Attacks
System Model

The SG is a new electricity network, which encom-
passes advanced sensing and measurement tech-
nologies, ICTs, analytical and decision-making 

technologies, as well as the current power grid infra-
structure. Figure 1 illustrates the management and 
control network of power grids with an emphasis 
on its distribution level. In the control center, the 
energy management system (EMS) consisting of 
BDD is a system of computer-aided tools used by 
operators to monitor, control, and optimize the 
performance of generation, transmission, and dis-
tribution of electrical power; the SCADA system is 
responsible for monitoring and control functions of 
the grid; wide area monitoring systems (WAMSs) 
employ new data acquisition technology based on 
phasor measurement and allow monitoring the con-
ditions of a power system over a large-scale area 
to counteract grid abnormalities; and the database 
stores meter data, transmission admittance, topol-
ogy information, system state, and so on. As a part 
of EMS applications, demand response provides an 
opportunity for consumers to play a role in the oper-
ation of the electric grid by reducing their electricity 
usage during peak load hours to save cost.

The programmable logic controllers (PLCs) 
and remote terminal units (RTUs) control devices 
autonomously without a master computer; the 
I/O devices are sensors and actuators; and the 
IEDs are microprocessor-based controllers of cir-
cuit breakers, feeders, substation transformers, 
capacitor banks, and phasor measurement units 
(PMUs). The EMS allows a customer to track its 
energy use in an easy format on computers or 
handheld devices.

Energy Big Data Replay Attack

The evolution from old power grids to SG brings 
new challenges in security. Hackers can eavesdrop 
or intercept metering data or steal big data from 
the distributed databases via malware. Normally, the 
grid parameters are unlikely to be known and often 
critically protected. Exposure of the structured data 
can cause losses in utilities or even a severe power 
imbalance problem. We demonstrate that a stealthy 
attack with both DC and AC state estimations can 
be successfully launched for misleading a power 
system through a replay mechanism. We call it an 
energy big data replay attack. The problem of inter-
est can be formulated as follows.

Given a measurement vector set zd, d = 1, 
2, , D, obtained from the energy big data, an 
energy big data attack can cheat the BDD as if 
no fabricated data exist. Or it can be detected by 
the BDD with a negligible probability. In addition 
to DC state estimation, the nonlinear AC state 
estimation is used inevitably in power systems 
because the AC state estimation has its advantag-
es, including accuracy, ability against data manip-
ulation attacks, and so on. Therefore, the attack 
should be able to pass the BDD using either DC 
or AC state estimation. For practicality, the power 
grid topology and transmission line admittances 
are not necessarily known to the attacker; there-
fore, this is a type of blind attack [11].

According to the criteria of a stealthy attack 
against AC state estimation, a perfect attack vec-
tor, a, should follow [6]

a = h(xa) – h(x),	 (1)

where h(⋅) denotes a general AC power flow 
model, and xa and x denote the targeted and orig-
inal state vectors of power systems, respectively. 

Figure 1. The management and control network of power grids with an empha-
sis on the distribution level.
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The compromised measurement, za, can be written 
as [6]

za = z + a = h(x) + a = h(xa),	 (2)

where z denotes the original measurement vec-
tor. Figure 2 shows a geometric representation of 
the measurement vector z, attack vector a, and 
measurement vector under attack za in the AC 
power grid model between buses i and j. Notably, 
the AC power grid model is inherently nonlinear. 
For illustration purposes, the voltage amplitudes 
of two buses are normalized, the conductance 
and susceptance of the transmission line are 
1.1350 and –4.7600, respectively, and a two-di-
mensional surface for the active power measure-
ment vector z is assumed and presented. A similar 
two-dimensional surface for the reactive power 
measurement vector can also be demonstrated 
but omitted here. In view of the geometric repre-
sentation, Eq. 2 indicates that the compromised 
measurement should lie on the surface of the AC 
power grid model, as shown in Fig. 2. Moreover, 
if a new compromised measurement is desirable 
and different from those in the observed data set, 
a tolerance mechanism can be introduced, pro-
vided that it is within a tolerable residue from the 
compromised measurement, which is typically 
related to a threshold of BDD.

Similarly, the criteria of a stealthy attack against 
the DC state estimation give the following relation 
[11]:

a = Hc,	 (3)

where H denotes the Jacobian matrix of the DC 
power flow model, and c is an arbitrary nonze-
ro vector. Accordingly, substitute Eq. 3 into Eq. 
2 and apply the DC model expression of z. The 
compromised measurement in Eq. 2 also suggests 
that za should lie on the surface of the DC power 
grid model, which is inherently linear, as shown 
in Fig. 3. This is not surprising because the DC 
power flow model is a special case of the AC one.

Based on the aforementioned discussions, con-
sidering the measurement vector set zd, we propose 
an energy big data replay attack by formulating the 
attack vector as the difference between an observed 
measurement, zd, and the original measurement, 
vector z. Here, the observed measurement zd is 
treated as the compromised measurement za. With 
the proposed attack vector, the compromised mea-
surement will be positioned definitely on the sur-
face of the power grid model. The selection of a 
specific zd in the whole dataset can be done based 
on the maximum Euclidean distance between the 
compromised measurement and the original mea-
surement vectors to impose a large abrupt change 
in the power system states. Or, on the contrary, 
the minimum distance rule can be adopted here to 
introduce a small change in the power system states 
and to reduce the possibility of being detected by 
an advanced detection mechanism.

Performance Evaluation
Monte Carlo simulations were conducted to assess 
the performance of the proposed big data attack 
(Big), random attack (Random), conventional DC 
attack (DC Conventional), and no attack (Ideal), 
which is used as a benchmark. The introduction of 

random, DC conventional, and Ideal attacks was 
already done in [11], and thus we do not repeat 
them here. The simulation results are evaluated 
in the IEEE 14-Bus electrical grid model. The mea-
surements consist of active and reactive power 
flows at all branches. The number of simulations 
and the number of measurement vectors for each 
simulation run are 500 and 200, respectively. The 
impacts of measurement noise with zero-mean 
Gaussian distribution were evaluated.

Figures 4 and 5 plot the probability of missed 
detection, Pmiss, vs. the decision threshold g of BDD 
over the IEEE 14-Bus grid model against the DC 
and AC state estimations, respectively. The maxi-
mum distance rule for selecting the compromised 
measurement is adopted. As shown in Fig. 4, the 
random attack without taking the Jacobian matrix 
into consideration has the lowest Pmiss; hence, it is 
not stealthy. The performance of the DC conven-
tional attacks and that of the proposed big attacks 

Figure 2. Geometric representation of the measurement vector z, attack vector 
a, and measurement vector under attack za in the AC power grid model.
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Figure 3. Geometric representation of the measurement vector z, attack vector 
a, and measurement vector under attack za in the DC power grid model.
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coincide with that of the Ideal condition; therefore, 
they are indeed stealthy and perfect attacks. It is 
not surprising because the residue is ensured to be 
unaltered by the proposed scheme. To simplify the 
analysis, the proposed attack a satisfies Eq. 1. Then 
Eq. 2 guarantees that the compromised measure-
ment lies on the surface of the power flow model 
so that the residue is unchanged. The proof fol-
lows. As shown in Fig. 5, the DC conventional and 
random attacks using a wrong power flow model 
have the lowest Pmiss. The performance of the pro-
posed big data attack is almost the same as that of 
the Ideal condition; therefore, it is still considered 
to be stealthy under the AC state estimation.

Therefore, the proposed algorithm is proved to 
be very flexible, requiring only measurement data, 
and applicable under DC or AC state estimations. 

The future challenges of the big data attacks are 
outlined as follows:
•	 Sophisticated selection rules for the compro-

mised measurement that can significantly 
confuse a power system need to be investi-
gated further. For example, a random selec-
tion approach can be one of them.

•	 New powerful metrics might exist in addition 
to the proposed one based on the Euclidean 
distance.

•	 The proposed attack opens a new research 
direction from the attackers’ viewpoints. 
New defense mechanisms are required to 
deal with it efficiently.

Future Research Directions in 
IoT-Based Smart Grid

In addition to removal of business and political 
barriers, governmental efforts should pursue sev-
eral goals concurrently, including regulations, uni-
versal standards, failure recovery mechanisms, 
and so on. Several challenges can be identified as 
follows [9].

Communication technologies: The success of 
IoT-based SG depends strongly on uninterrupted 
communications of its connected devices. A huge 
amount of energy big data related to monitoring 
and control will be transmitted using wireless and 
wireline communication infrastructures, such as 
Wi-Fi, Bluetooth, ZigBee, cellular, WiMAX, PLC, and 
fiber optics. Cognitive radio (CR) networking was 
recognized as a prominent technology to address 
communication requirements of IoT-based SGs [15].

Heterogeneity: Due to the discrepancy on the 
resources that the devices and communication tech-
nologies use in the SG, achieving end-to-end securi-
ty and connectivity is a challenging task, requiring a 
complex cyber-physical coupling model. Co-design 
of energy big data analytics and security mechanism 
can minimize security risk. Moreover, regional dif-
ferences in electric grid topologies require diverse 
technologies to resolve interconnection issues.

Scalability: Independent random events can 
aggregate to yield large-scale catastrophic failures 
in the grid and trigger cascading events. Partic-
ularly, scalable key management, authentication 
[10], and privacy solutions are required for the 
large-scale deployment of SG.

Constrained resources: SG devices are 
resource constrained. Security solutions, such as 
authentication, for a large number of nodes in SG 
have become a challenging issue [10].

Interoperability: Legacy systems were 
deployed based on proprietary hardware and soft-
ware. The implementation of IoT-based SG should 
also be coordinated with governmental efforts 
under national energy policies, national security, 
economic growth, and energy independence. As 
a result, they pose unique challenges to create 
a suite of standards for the interoperability and 
backward compatibility in SG.

Trust management: Trust must be established 
across different SG domains and/or levels, including 
different utilities and electricity generation chains. 
Building the trust between different domains is a 
challenge, especially in a large-scale IoT network 
with a large number of low-end SG devices.

Latency constraint: Essential information 
should be stored, processed, and extracted in a 

Figure 4. Probability of missed detection, Pmiss, vs. decision threshold g of BDD 
over the IEEE 14-Bus grid model against DC state estimation.

γ
0.50

0.1

0

P m
iss

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 1.5 2 2.5

Ideal
Random
Big
DC conventional

Figure 5. Probability of missed detection, Pmiss, vs. decision threshold g of BDD 
over the IEEE 14-Bus grid model against AC state estimation.
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timely manner. Therefore, modern big data ana-
lytics is an important method for the intelligence 
and decision making in the SG.

Service on demand: Cloud computing archi-
tecture provides shared processing resources and 
data for energy big data analytics, as shown in Fig. 6. 
A new platform is needed to deal with big data and 
security concerns in a prompt fashion. The cloud 
control center can provide different levels of service, 
such as infrastructure as a service, platform as a ser-
vice, and software as a service for traditional utility 
and local control centers, and even customers. The 
third party services may include a weather forecast 
and authentication center with the key generator. 
Based on historical data and information from the 
third party service, big data analytics are applied at 
the cloud control center for energy forecast, security 
analysis, and so on. The local control centers are dis-
tributed for better scalability and reliability. If a local 
control center is unavailable due to maintenance, 
attacks, or natural disasters, other local control cen-
ters can take over the control.

Network-based threats detection: We have 
shown a new big data attack in this work. Addi-
tional attacks can also appear. Besides, we need to 
rely on automated detection schemes to respond 
to network-based threats. The vulnerabilities of 
grids should be detected early enough. Quick and 
auto-recovery mechanisms need further research 
efforts. Furthermore, the mindset of utilities is still 
focused on reliability under natural disasters instead 
of security threats from adversaries. Also, very few 
studies have been carried out on key management 
schemes for AMI and wide area measurement net-
work entities. Besides, a distributed security solution 
is needed to protect essential/privacy information.

Self-healing protection systems: Relay appli-
cations for the protection of power systems have 
been used for over 100 years. Advanced algo-
rithms, such as islanding protection employing IEDs 
and PMUs with sensors, are important for SG.

Conclusions
The SG can benefit from the IoT technology, 
where smart devices are integrated with perva-
sive connectivity. Security is the main concern 
for the IoT-based SG, which works in a complex 
cyber-physical model. In this article, we have 
reviewed the main security issues and challeng-
es for the IoT-based SGs, and discussed the 
problems with energy big data analytics. While 
enjoying the benefits of SG, we have to prevent 
individual privacy intrusion and keep the data 
from being abused. In particular, we have demon-
strated a big data attack that can be launched 
by knowing only limited information. The work 
presented in this article can raise awareness of the 
security concerns in the IoT-based SG.
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Figure 6. A cloud computing platform for smart grid applications with an 
emphasis on the distribution level.

Cloud control
centerStorage

Utility
storage

Power line

Communication
line

Proprietary
link3rd party

service
Utility control

center

Substation & local
control center

Consumers


