Lexical Analysis

CS2210
Lecture 3

Administrivia

Reading: Aho Ch. 2 & 3 by 9/13

Scanner

source

lexical analyzer

token

get next token

symbol table

parser

CS2210: Compiler Design 2004/05
Lexical Analysis Tasks

- Read input characters produce tokens
- Strip comments and whitespace
- Correlate error message with program source (e.g., line numbers)
- Preprocessor functions (if in language and not separate tool)
- Scanning vs lexical analysis
 - Used interchangeably
 - OR: Lexical Analyzer = 1. Scanner and 2. Lexical Analysis

Why separate lexical analysis phase?

- Keeps parser simpler
 - Don’t have to deal with comments etc
- Efficiency
 - Can read input in chunks and buffer
 - Pass only relevant information on
- Portability
 - Can deal with representation of special symbols directly (e.g., Pascal’s ↑)

Basic Definitions

- Pattern
 - Informal description of strings
- Token
 - Represent some lexical unit (e.g., keyword, identifier etc.)
 - Treated as non-terminals in the parser
- Lexeme
 - Character sequence that matches a token
Example

<table>
<thead>
<tr>
<th>Token</th>
<th>Sample Lexeme</th>
<th>Pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>const</td>
<td>const</td>
<td>const</td>
</tr>
<tr>
<td>if</td>
<td>f</td>
<td>f</td>
</tr>
<tr>
<td>relop</td>
<td><=, >=, =, <></td>
<td><= or <></td>
</tr>
<tr>
<td>id</td>
<td>Pi, count, D2</td>
<td>Letter followed by letters and digits</td>
</tr>
<tr>
<td>num</td>
<td>3.14, 1, 07, 02e23</td>
<td>Numeric constant</td>
</tr>
<tr>
<td>literal</td>
<td>"core dumped"</td>
<td>Any character between " and " except "</td>
</tr>
</tbody>
</table>

Token Attributes
- Some tokens represent multiple lexemes
- Specific information kept in attribute
- Attribute values kept in symbol table
 - E.g., line number (for error reporting)
- Tokens used for parsing
- Attributes influence translation

Token Specification
- Alphabet Σ
- String = finite sequence of characters from Σ, including the empty string ε
- Language = set of strings over Σ
- Operations:
 - Concatenation xy
 - Union $x | y$
Languages

- \(L \cup M \), union of \(L \) and \(M \)
- \(LM \), concatenation
- Kleene closure \(L^* \) (zero or more concatenations of \(L \))
- Positive closure \(L^+ \) (1 or more concatenations of \(L \))

Regular Expressions

- Formal way to describe patterns for lexemes / tokens
- Regular expressions over \(\Sigma \)
 - \(\varepsilon \) denotes \(\{\varepsilon\} \)
 - For \(a \in \Sigma \): \(a \) is a RE that denotes \(\{a\} \)
 - For \(r,s \) REs:
 - \((r)\) is a RE denoting \(L(r) \)
 - \((r)s \) is a RE denoting \(L(r)L(s) \)
 - \(r | (s) \) is a RE denoting \(L(r) \cup L(s) \)
 - \(r^* \) is a RE denoting \((L(r))^* \)

RE properties / conventions

- Algebraic properties:
 - \(r|s = s|r \) | commutative
 - \(r(s) = (r)s \) | associative
 - \((rs)t = r(st) \) | concatenation associative
 - \(r(s)t = rs|rt \) | concatenation distributes over |
 - \(\varepsilon r = r, r \varepsilon = r \) | \(\varepsilon \) identity
 - \(r^* = (r)\) | relation * and \(\varepsilon \)
 - \(r^+ = r^* \) | idempotent
Shorthands
- $r^+ = r^*$
- $r? = r | \varepsilon$
- Character classes: $[abc] = a|b|c$, for $a, b, c \in \Sigma$
 similarly $[a-z] = a|...|z$

Token recognition
- REs can be efficiently recognized by finite automata
- Constructed starting from transition diagrams
 - In practice: automatically generated by tools driven by specification language

Transition Diagram Example (1)
- Sample grammar:
 stmt -> if expr then stmt
 | if expr then stmt else stmt
 | \varepsilon
 expr -> term relop term
 | term
 term -> id
 | num
Transition Diagram Example (2)

if -> if
then -> then
else -> else
relop -> < | <= | = | <> | > | >=
id -> letter (letter | digit)*
um -> digit+ (. digit*)? (E(+|-)? digit*)?
letter -> A|B|...|Z|a|...|z
digit -> 0|...|9
delim -> * | \t | \n
Transition Diagram Example (3)

<table>
<thead>
<tr>
<th>RE</th>
<th>Token</th>
<th>Attribute value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ws</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>if</td>
<td>if</td>
<td></td>
</tr>
<tr>
<td>then</td>
<td>then</td>
<td></td>
</tr>
<tr>
<td>else</td>
<td>else</td>
<td></td>
</tr>
<tr>
<td>id</td>
<td>id</td>
<td>pointer to table entry</td>
</tr>
<tr>
<td>num</td>
<td>num</td>
<td>pointer to table entry</td>
</tr>
</tbody>
</table>
< | relop | LT |
<= | relop | LE |
= | relop | EQ |
< | relop | NE |
> | relop | GT |
>= | relop | GE |

Transition diagram

- >=
 - Relop see board
- id: letter or digit

return(gettoken(),install_id())
Practical Considerations

- Distinguishing keywords from identifiers
 - Seed symbol table with keywords
 - Saves many states
 - General idea: use symbol table to reduce states
 (used in parser tool -> simplifies grammar)
- unget() operation to return characters to the input buffer
- Look for frequent tokens first
 - Compose transition diagrams intelligently
 - Saves recognition time

From RE to Recognizer

- Finite automata (NFA or DFA) recognize precisely regular languages
- NFAs and DFAs recognize the same language class
 - NFAs easy to construct directly from RE
 - DFAs faster but can be (much) larger
 - Algorithmic conversion from NFA to DFA possible

Nondeterministic Finite Automata

- 5-tuple (S, Σ, M, S₀, F)
 - S = set of states
 - Σ alphabet
 - M transition function: S × Σ ∪ {ε} -> S
 - S₀ ∈ S a start state
 - F ⊆ a set of final states
Nondeterministic Finite Automata

- 5-tuple \((S, \Sigma, M, S_0, F)\)
 - \(S\) = set of states
 - \(\Sigma\) alphabet
 - \(M\) transition relation: \(S \times \Sigma \cup \{\varepsilon\} \rightarrow 2^S\)
 - \(S_0 \subseteq S\) a start state
 - \(F \subseteq\) a set of final states

NFA Example

```
\[
\begin{array}{c}
\text{start} \\
0 \\
\text{1} \\
\text{2} \\
\text{3} \\
\text{4}
\end{array}
\]
```

- \((a, b)^*\)

Thompson’s Algorithm

- Input: RE \(r\) over \(\Sigma\)
- Output: NFA accepting \(L(r)\) input: RE \(r\) over \(\Sigma\)
- See board:
 - NFA for \(s\)
 - NFA for \(a \in \Sigma\)
 - NFA for \(s|t\)
 - NFA for \(st\)
 - NFA for \(s^*\)
 - NFA for \((s)\)
From NFA to DFA

- DFA = special NFA
 - w/o ε transitions
 - for each state s and input symbol a there is at most 1 edge labeled a leaving s

Büchi’s Algorithm (aka subset construction)

- Special operations: (T set of NFA states)
 - ε-closure(s) = set of NFA states reachable from NFA state s on ε-transitions alone
 - ε-closure(T) = set of NFA states reachable from some NFA state s in T on ε-transitions alone
 - move(T, a) = set of NFA states to which there is a transition on input symbol a from some NFA state s in T

Initially, ε-closure(s₀) only state in Dstate, unmarked

while unmarked state T in Dstates do
 mark T;
 for each input symbol a do
 U := ε-closure(move(T, a))
 if U is not in Dstates then
 add U as an unmarked state to Dstates
 Dtran[T, a] := U
 end
end
Büchi’s Algorithm - Example

NFA for \((a|b)^*abb\) transition table

<table>
<thead>
<tr>
<th>State</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lexical Analysis in Practice

Implementation alternatives:
- Generate NFA, convert to DFA and implement with transition tables
 - Lazy DFA construction used in pattern matching tools (e.g., egrep)
- Simulate NFA directly
 - On the fly subset generation (algorithm 3.4 in Dragon book)
- Generate DFA directly
 - Cf. Dragon book

Tradeoffs

- \(r\) regular expression, \(x\) input string
- NFA
 - \(O(|r|)\) space
 - \(O(|r| \times |x|)\) time
- DFA
 - \(O(2^{|r|})\) space, usually much less in practice
 - \(O(|x|)\) time
What actual tools do
- GNU flex
 - Builds NFA
 - Converts to DFA
 - Generates transition tables and driver (similar to figure 3.16 in Dragon Book)
- Important optimizations
 - State minimization ("equivalence classes")
 - Table compression

DFA State Minimization
- Idea
 - Merge indistinguishable states
 - s distinguished from t by string w \iff
 starting from s w leads to accepting state
 but t w to non-accepting state (or vice versa)

State Minimization Algorithm
Input DFA M with states S, alphabet \(\Sigma \),
transitions for all inputs \& states, F final states, s, start state
Construct initial partition \(\Pi_{\text{in}} : F \) and S-F
\begin{algorithm}
\begin{algorithmic}
\STATE \(\Pi := \Pi_{\text{in}} \)
\STATE \(\Pi_{\text{new}} := \text{partition}(\Pi) \)
\WHILE {\(\Pi = \Pi_{\text{new}} \)}
\STATE \(\Pi_{\text{new}} := \Pi \)
\ENDWHILE
\STATE Choose one state from each group as representative, s, for the start state for \(M' \)
\STATE Remove all dead states d from \(M' \) (i.e., d not accepting, transitions from d to d on all input symbols). Remove unreachable states.
\end{algorithm}
\end{algorithm}
Partition Algorithm

\begin{enumerate}
\item for each group G of Π do
\item partition G into subgroups such that s and t are in the same subgroup \iff for all input symbols a stats s and t have transitions on a to states in the same group of Π
\item replace G in Π_{raw} by the set of all formed subgroups
\end{enumerate}

Example: homework

Table Compression (1)

- Want to implement table as 2-dim array ($t[s,a] = s'$)
- 1-dim array of linked list with outgoing transitions smaller but slow
- Fast combined implementation with 4 special arrays

Table Compression (2)

\begin{verbatim}
nextstate(s,a) = next[base[s]+a] if check(base[s]+a) = s
otherwise s = default[s] and repeat
\end{verbatim}