SSA (wrap-up) & Dependence Analysis

CS2210
Lecture 16

CFG
Dominator Tree

```
    1
   /
  2
 /|
3 5
 /|
6 7
```

Dominance Frontiers

<table>
<thead>
<tr>
<th>node n</th>
<th>DF(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>{}</td>
</tr>
<tr>
<td>2</td>
<td>{2}</td>
</tr>
<tr>
<td>3</td>
<td>{2}</td>
</tr>
<tr>
<td>4</td>
<td>{}</td>
</tr>
<tr>
<td>5</td>
<td>{7}</td>
</tr>
<tr>
<td>6</td>
<td>{7}</td>
</tr>
<tr>
<td>7</td>
<td>{2}</td>
</tr>
</tbody>
</table>
Iterated Dominance Frontiers

- For i: $DF^1\{1\} = DF\{1\} = \{\}$
 - no phi functions for i
- For k,j:
 $DF^1\{1,5,6\} = DF\{1,5,6\} = \{7\}$
 $DF^2\{1,5,6\} = DF\{1,5,6\} \cup DF^1\{1,5,6\}) = DF\{1,5,6,7\} = \{2,7\}$
 $DF^3\{1,5,6\} = DF\{1,5,6\} \cup DF^2\{1,5,6\} = DF\{1,5,6,7,2\} = \{2,7\} = DF^+\{1,5,6\}$
 - phi functions in blocks 2 and 7

Phi-Function Insertion
Variable Renaming

Constant Propagation with SSA form

- $W =$ list of all statements in the SSA program, $(c$ always means some constant)
- While W not empty remove some statement S from W
 - if S is $x = \phi(c, c, ..., c)$ replace it by $x = c$
 - if S is $x = c$ delete S
 - for each statement T that uses x substitute c for x in T
 - $W = W \cup \{T\}$
Example

delete \(i_1 = 1 \)
replace \(j_3 = i_1 \)
with \(j_3 = 1 \)
(also replaces uses of \(j_1, k_1 \))

Other Modifications

- Copy propagation
 - single argument \(x := \phi(y) \) \(\phi \)-function or a copy assignment \(x := y \) can be substituted for every use of \(x \)
Conditional Constant Propagation

- In the example, if \(j = 1 \) always then block 6 will never execute, so \(j \) will stay 1.
- If block 6 is executed \(k \) is assigned to \(j \) and block 6 will be executed since \(j \) will be \(> 20 \) eventually.

Standard Lattice

- \(V[v] = T \) have not seen assignment to \(v \) executed
- \(V[v] = 4 \) have seen that \(v = 4 \) is executed but never any other value assigned
- \(V[v] = ⊥ \) have seen at least two values or a value not predictable at compile time (e.g., \(v = \text{read}() \))
Add Control Flow Tracking

- \(E(B) = \text{false} \), have seen no evidence of \(B \) being executed
- \(E(B) = \text{true} \), seen evidence that \(B \) can be executed
- Initially all variables start with \(T \) and all blocks \(B \) with \(E[B] = \text{false} \)

Constraints (1)

- Any variable \(v \) with no definition (input), formal parameter to a procedure, or uninitialized variable must have \(V[v] = \perp \)
 - Start block \(E[B_1] = \text{true} \) (is executable)
 - for every executable block with one successor \(C \) set \(E[C] = \text{true} \)
 - For any executable assignment \(v := x \oper y \) where \(V[x] = c_1 \) and \(V[y] = c_2 \), set \(V[v] = c_1 \oper c_2 \)
 - For any assignment \(v = x \oper y \), where \(V[x] = \perp \) or \(V[y] = \perp \), set \(V[v] = \perp \)
Constraints (2)

- For any executable assignment $v := \phi(x_1, \ldots, x_n)$, where $V[x_i] = c_1$, $V[x_j] = c_2$, $c_1 \neq c_2$ and the i-th and j-th predecessors are executable, set $V[v] = \bot$
- For any executable assignment $v := \text{Mem()}$ or $x := \text{call()}$ set $V[v] = \bot$
- For any executable assignment $v := \phi(x_1, \ldots, x_n)$, where $V[x_i] = \bot$ and the i-th predecessor is executable, set $V[v] = \bot$

Constraints (3)

- For any assignment $v := \phi(x_1, \ldots, x_n)$ and $V[x_i] = c$, and for every j either the j-th predecessor is not executable, or $V[x_j] = T$, or $V[x_j] = c$ set $V[v] = c$
- For any executable branch if $(x < y)$ goto L1 else L2 where $V[x] = c_1$ and $V[y] = c_2$ set $E[L1] = \text{true or } E[L2] = \text{true}$ depending on $c_1 < c_2$
- For any executable branch if $(x < y)$ goto L1 else L2 where $V[x] = \bot$ or $V[y] = \bot$ set $E[L1] = \text{true and } E[L2] = \text{true}$
Algorithm

- Use two worklist W_v for variables and W_B for blocks
- Pick a variable from W_v and process the constraints (4-9), or pick an executable block from W_B
- Whenever a new block is marked executable, it and the executable successors are added to the worklist W_B
- Whenever a variable’s valuation changes, it is added to the worklist W_v

Example

```
1

2
b := 0
k_2 := \phi(x_2)
k_3 := 3

3
j := 10

4
return j

5
i := 0
k_3 := k_3 + 1

6
i := i + 2
k_3 := k_3 + 2

7
j := \phi(x_2)
k_3 := \phi(x_3, x_4)
```

CS2210 Compiler Design 2004/5
Dependence Analysis

Computes the data and control dependences

Important for
- Instruction scheduling (for ILP)
- Loop parallelization
- Data cache optimization
 - By loop reordering
Dependence Kinds

- Control dependence
 - \(S_1 \& S_2 \)
- True (or flow)
 - \(S_1 \& S_2 \)
- Anti-dependence
 - \(S_1 \& S_2 \)
- Output dependence
 - \(S_1 \& S_2 \)
- Input “dependence”
 - \(S_1 \& S_2 \), two statements (instructions) read the same input

Dependence DAG

- A directed acyclic graph
 - Nodes are instructions / statements
 - Edges represent dependences

Example:
1. \(r_3 := [r_{15}](4) \)
2. \(r_4 := [r_{15}+4](4) \)
3. \(r_2 := r_3 - r_4 \)
4. \(r_5 := [r_{12}](4) \)
5. \(r_{12} := r_{12} + 4 \)
6. \(r_6 := r_3 * r_5 \)
7. \([r_{15}+4](4) := r_3 \)
8. \(r_5 := r_6 + 2 \)
Instruction Schedules

- To find feasible schedule need to know latencies
 - Latency(I_1, n_1, I_2, n_2) := number cycles latency incurred by beginning execution of I_2’s n_2th cycle while executing cycle n_1 of I_1
 - Conflict(I_1, I_2) = true if I_1 must precede I_2 for correct execution else false

Resource Vectors

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>add.s</td>
<td>U</td>
<td>S,A</td>
<td>A,R</td>
<td>R,S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mul.s</td>
<td>U</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>N</td>
<td>N,A</td>
<td>R</td>
</tr>
</tbody>
</table>
Computing Latency

- Match up resource vectors so that there is no conflict (structural hazard)
 - Add up total cycles
- Simple, but slow
- Faster alternative: DFAs!
 - DFA states encode set of resources in use
 - Transition on instruction only possible if resources available
 - Fraser & Proebsting pioneered this
 - Improved by Müller and by Bala & Rubin

Dependences in Loops

- Goal
 - Data cache optimization for array accesses
 - Determine whether reordering of array accesses is legal (= does not change semantics)
 - Loop parallelization
 - Execute array accesses out of order (but obeying data dependences)
Counting Loop Definitions

- A loop is in **canonical form** iff its index runs from 1 to N by increments of 1.
- Loops are **perfectly nested** if they are nested and only the innermost loop has statements other than for statements.
- The **iteration space** of k perfectly nested loops is the k-dimensional polyhedron consisting of all k-tuples of the loop index values.
- A **Iteration space traversal** = sequence of vectors of index values encountered in loop execution (aka lexicographic enumeration ≤).

Array Variable Dependences

- Dependences are a function of
 - Index variables
 - Statements
- Statement sequence: \(S_1 \rightarrow S_2 \) extended for array statements:
 \[S_1[i_{11}, ..., i_{1k}] \rightarrow S_2[i_{21}, ..., i_{2k}] \]
 - This means that either
 - \(S_1 \) precedes \(S_2 \) (in loop body) and \(<i_{11}, ..., i_{1k}> \leq <i_{21}, ..., i_{2k}> \) OR
 - \(S_1 \) follows (or is equal to) \(S_2 \) and \(<i_{11}, ..., i_{1k}> < <i_{21}, ..., i_{2k}> \)
Example

for i1 := 1 to 3 do
 for i2 := 1 to 4 do
 S1: \(t := x + y \)
 S2: \(a[i1, i2] := b[i1, i2] + c[i1, i2] \)
 S3: \(b[i1, i2] := a[i1, i2-1] \times d[i1+1, i2] \)
 endfor
endfor

- Sequences
 - \(S2[i1,i2-1] \sqsubseteq S3[i1,i2] \)
 - \(S2[i1,i2] \sqsubseteq S3[i1,i2] \)

- Dependences
 - \(S2[i1,i2-1] \delta S3[i1,i2] \)
 - \(S2[i1,i2] \delta a S3[i1,i2] \)

Vectors

- **Distance Vector:**
 \(d = <d_1, \ldots, d_k> \) means that iteration \(<i_1+d_1, \ldots, i_k+d_k> \) depends on iteration \(<i_1, \ldots, i_k> \)

- **Direction vector:**
 - approximation of distance vector(s)
 - Elements are integer ranges or unions of ranges of the form \([0,0], [1, \infty], [-\infty, -1], [-\infty, \infty])\)
Dependence Vectors

- $d = <[d_1^-, d_1^+], ..., [d_k^-, d_k^+]>$ where $d_i^- \in \mathbb{Z} \cup \{-\infty\}$, $d_i^+ \in \mathbb{Z} \cup \{\infty\}$
- Loop-independent and loop-carried dependences
 - δ_0 independent
 - δ_i carried by loop at nesting level i
- $S_2[i_1,i_2-1] \delta_0, S_3[i_1,i_2]$ for loop independence
- $S_2[i_1,i_2] \delta_i, S_3[i_1,i_2]$ for loop-carried dependences

- $S_2: a[i_1,i_2] := b[i_1,i_2] + c[i_1,i_2]$ for loop independence
- $S_3: b[i_1,i_2] := a[i_1,i_2-1]$ for loop independence

- Distance vector notation:
 - $S_2[i_1,i_2-1] <0,1>$, $S_3[i_1,i_2]$ for loop independence
 - $S_2[i_1,i_2] <0,0>$, $S_3[i_1,i_2]$ for loop independence

Dependence Testing

- Determine dependences between loop iterations
 - E.g., to reorder statements, parallelize
 - Diophantine equations:
 - $2*i_1+1 = 3*i_2-5$
 - Constrained: $1 <= i_{1,2} <= 4$
 - Solution in general NP
 - So only sufficient conditions for non-dependence

for $i := 1$ to 4 do
 $b[j] = a[3*i-5]+2.0$
 $a[2*i+1] := 1.0/i$
endfor
Dependence Test

for \(i_1 := 1 \) to \(h_{i_1} \)
for \(i_2 := 1 \) to \(h_{i_2} \)
 ...
for \(i_n := 1 \) to \(h_{i_n} \)
 ...
 \(x[\ldots, a_0 + a_1 \cdot i_1 + \ldots + a_n \cdot i_n] \ldots \)
 \(x[\ldots, b_0 + b_1 \cdot i_1 + \ldots + b_n \cdot i_n] \ldots \)
endfor
...
endfor
endfor

GCD test:
If
\(\gcd(\bigcup_{j=1}^{n} \text{sep}(a_j, b_j, j)) \mid \sum_{j=0}^{n} (a_j - b_j) \)
then references to \(x \) are independent
\(\text{sep}(a_j, b_j) = \{a-b\} \) if direction of \(j \)
is = else \{a,b\}

For \(a[3*i-5] \) and \(a[2*i+1] \):
\(\gcd(3-2) \mid (-5 -1 + 3 -2) \) may have same iteration dependence
\(\gcd(3,2) \mid -5 \) may have inter-iteration dependence
But not \(\gcd(4-2) \mid (-1+4-2) \)
And not \(\gcd(4,2) \mid 1 \)
 Must have independence

GCD Test Example

- \(\gcd(3-2) \mid (-5 -1 + 3 -2) \) may have same iteration dependence
- \(\gcd(3,2) \mid -5 \) may have inter-iteration dependence
- But not \(\gcd(4-2) \mid (-1+4-2) \)
- And not \(\gcd(4,2) \mid 1 \)
 Must have independence

for \(i := 1 \) to 4 do
 \(b[j] = a[3*i-5]+2.0 \)
 \(a[2*i+1] := 1.0/i \)
Endfor

for \(i := 1 \) to 4 do
 \(b[j] = a[4*i]+2.0 \)
 \(a[2*i+1] := 1.0/i \)
endfor
Separability

- Two array references are separable := in each pair of subscript positions the expressions are of the form $a*i_j+b_1$ and $a*i_j+b_2$
 - Weakly separable := $a_1*i_j+b_1$ and $a_2*i_j+b_2$
- For separable references dependence testing is trivial, a dependence exist if
 - $a=0$ and $b_1=b_2$, or
 - $(b_1-b_2) \mid a <= h_i$
- For weakly separable references more complicated conditions

More Dependence Tests

- More powerful dependence tests have been developed as GCD is quite weak
 - Extended GCD
 - Omega
- Exploit more sophisticated mathematical techniques to avoid more false positives
 - Used commonly in parallelizing compilers
 - Important for scientific codes
Alias Analysis

- Determine whether a storage location may be accessed in more than one way
- Example in C:
  ```c
  p = & x; x and *p are aliases for the same location
  ```
- Other sources of aliasing:
 - ?

Memory Disambiguation

- Want to *disambiguate* memory accesses for optimization:

```c
examl() {
    int a,k;
    extern int* q;
    ...
    k = a+5;
    f(a,&k);
    *q = 13;
    k = a+5;/* is this redundant? */
    ...
}
```

CS2210 Compiler Design 2004/5
Alias Information Classification

<table>
<thead>
<tr>
<th>May Aliasing</th>
<th>Must aliasing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow-sensitive: Take control flow into account</td>
<td>if (d) p = & x; {(x, *p)} else p = &y; {(y, *p)} L: {(x, *p), (y, *p)}</td>
</tr>
<tr>
<td>Flow-insensitive: Ignore control flow</td>
<td>if (d) p = & x; {(x, *p)} else p = &y; {(y, *p)} L: {}</td>
</tr>
</tbody>
</table>

Steensgaard’s Algorithm

- A flow-insensitive algorithm for C
- \(O(n \alpha(n,n))\) complexity
 - Near linear, \(n\) number of statements
- Computes **points-to sets**
 - \(\text{Pts}(p) = \{x, y\}\) \(p\) may point to variables \(x\) and \(y\)
 - May information (flow insensitive)
Alias-relevant Statements

- $x = y$
- $x = \&y$
- $x = \ast y$
- $x = \text{op}(y_1, \ldots, y_n)$
- $x = \text{allocate}(y)$
- $\ast x = y$
- $x = \text{fun}(f_1, \ldots, f_n) \rightarrow (r_1, \ldots, r_m)S^*$
- $x_1, \ldots, x_m = p(y_1, \ldots, p_n)$

Representation of Points-to Sets

- $\alpha :: \tau \times \lambda$
 - τ represents memory locations
 - λ represents procedures
- $\tau :: \bot \mid \text{ref}(\alpha)$
- $\lambda :: \bot \mid \text{lam}(\alpha_1, \ldots, \alpha_n)(\alpha_{n+1}, \ldots, \alpha_{n+m})$
“Type-Rules”

- Analysis is expressed in “type rules”
- \(A \vdash x : \text{ref}(\alpha_1) \)
 \(A \vdash y : \text{ref}(\alpha_2) \)
 \(\alpha_2 \leq \alpha_1 \)

\[A \vdash \text{welltyped}(x=y) \]

More Rules

- \(A \vdash x : \text{ref}(\tau \times _) \)
 \(A \vdash y : \tau \)

\[A \vdash \text{welltyped}(x=&y) \]

- \(\exists \ A \vdash x : \text{ref}(\text{ref}(\alpha_1) \times _) \)
 \(A \vdash y : \text{ref}(\alpha_2) \)
 \(\alpha_2 \leq \alpha_1 \)

\[A \vdash \text{welltyped}(*x=y) \]
Example

\[
a = \& x \\
b = \& y \\
\text{if } p \text{ then} \\
\quad y = \& z; \\
\text{else} \\
\quad y = \& x; \\
\text{fi} \\
X = \& y
\]

Location Sets

- Use equivalence classes to represent “types”
 - Fast union / join using union-join data structure
 - \(\text{ecr}(x) \) is equivalence class for \(x \)
 - \(\text{Type}(\text{ecr}(x)) \) gives representative element of equivalence class
Inference Rules

- \(x = y \)
 - let \(\text{ref}(\tau_1 \times \lambda_1) = \text{type}(\text{ecr}(x)) \)
 - \(\text{ref}(\tau_2 \times \lambda_2) = \text{type}(\text{ecr}(y)) \)
 - if \(\tau_1 \neq \tau_2 \) then \(\text{cjoin}(\tau_1, \tau_2) \)
 - if \(\lambda_1 \neq \lambda_2 \) then \(\text{cjoin}(\lambda_1, \lambda_2) \)

\(\text{cjoin} \) conditionally joins the equivalence classes once one becomes \(\neq \bot \)

Rule for \(*x = y \)

- \(*x = y \)
 - let \(\text{ref}(\tau_1 \times \lambda_1) = \text{type}(\text{ecr}(x)) \)
 - \(\text{ref}(\tau_2 \times \lambda_2) = \text{type}(\text{ecr}(y)) \)
 - if \(\tau_1 = \bot \) then \(\text{settype}(\tau_1, \text{ref}(\tau_2 \times \lambda_2)) \)
 - else let \(\text{ref}(\tau_3 \times \lambda_3) = \text{type}(\tau_1) \)
 - if \(\tau_2 \neq \tau_3 \) then \(\text{cjoin}(\tau_3, \tau_2) \)
 - if \(\lambda_2 \neq \lambda_3 \) then \(\text{cjoin}(\lambda_3, \lambda_2) \)