Data Flow Analysis

CS2210
Lecture 14

Lattices

- **D = (S, ≤)**
 - S set of elements
 - ≤ induces a **partial order**
 - Reflexive, transitive & anti-symmetric
 - ∀ x,y∈S: meet ^*(x,y) (greatest lower bound)
 - join v(x,y) (least upper bound)
 - closure property
 - Unique Top (T) & Bottom (⊥) elements:
 - X^⊥ ⊥ = ⊥ and x v T = T
 - Meet and join are commutative and associative

- **Height of lattice**: longest path through partial order from top to bottom

Lattices in Data Flow Analysis

- Model information by elements of a lattice domain
 - Top = best case info
 - Bottom = worst case info
 - Initial info for optimistic analyses (at least back edges: top)
 - If a ≤ b then a is a conservative approximation of b
 - Merge function = meet (^*) : the most precise element that’s a conservative approximation of both input elements
 - Initial info for optimistic analyses (at least back edges: top)
Some Typical Lattice Domains

- Two point lattice: ⊥, T
 - Boolean property
 - A tuple of two point lattices = bit vector
- Lifted set: set of incomparable values and ⊥ and T
 - Example?
- Powerset lattice: set of all subsets of S, ordered somehow (often by ⊆)
 - T = {} or S, vice versa
 - Collecting analysis
 - Isomorphic to tuple of booleans indicating membership in subset of elements of S

Product (aka. Tuple) Lattices

- Often useful to break complex lattice into a tuple of lattices, one per variable analyzed
- \(D_T = <S_T, ≤_T> = <S, ≤>_N \)
 - \(S_T = S_1 \times S_2 \times ... \times S_N \)
 - \(≤_T \) pointwise ordering
 - \(T_T = <T_1, ..., T_N> \), bottom tuple of bottoms
 - Height(\(D_T \)) = \(N \times \text{height}(D) \)
 - Example?

Analysis of Loops with Lattices

\[F = \text{flow function for loop body} \]
\[F(\text{info at loop head}) = \text{info at back edge:} \]
\[F = d_{\text{dest}} \land \neg T \]
\[F = d_{\text{dest}} \land \neg F(F(P)) = F(\text{info}) \]
\[F = d_{\text{dest}} \land \neg F(F(P)) = F(\text{info}) \]
\[F = d_{\text{dest}} \land \neg F(P(F(P))) = F(\text{info}) \]
Repeat until \(P < 1 \)
Termination of Iterative Analysis

- Sufficient conditions
 - Flow functions (F) are **monotonic**
 \[d_1 \leq d_2 \implies F(d_1) \leq F(d_2) \]
 - Lattice is of finite height
 - Start at \(T \)
 - Each application of \(F \) goes down one level
 - Eventually hit fixed-point or bottom
 - At most \(\text{height}(D) - 1 \) applications

Examples

- Lattices for
 - Constant propagation
 - Live variables
 - Reaching definitions

Distributive Lattices

- A lattice is **distributive** if
 \[\forall x, y, z \in D: \quad (x \land y) \lor z = (x \lor z) \land (y \lor z) \]
 and
 \[(x \lor y) \land z = (x \land z) \lor (y \land z) \]
- Example:
 - Live variables, only elements \(T \) and \(\bot \) (easy exercise)
- Counterexample
 - Constant propagation:
 \[(1 \lor 2) \land 3 = \]
 \[(1 \land 3) \lor (2 \land 3) = \]
Meet-Over-All Paths Solution

Flow function for basic block B: F_B, for a path p along
$B_1 \ldots B_n$: $F_p = F_{B_1} \ldots F_{B_n}$

$MOP(B) = \bigwedge_{p \in \text{Path}(B)} F_p(\text{Init})$

Init is initial info at entry block

MOP computation is NP for monotone flow functions

I.e. there is no algorithm that is guaranteed to work for all
flow graphs

Use approximation: maximum fixed-point solution

MFP is most precise solution we can hope for

MOP computation is NP for monotone flow functions

I.e. there is no algorithm that is guaranteed to work for all
flow graphs

Important Results

- Monotone lattices
 - Iterative algorithm guaranteed to produce the MFP
 solution

- Distributive monotone lattices
 - $MFP = MOP$
 - Functions over lattices of bit vectors are
distributive, i.e., all functions $f: \text{BV}^n \rightarrow \text{BV}^n$ are
distributive

Important Data Flow Problems

- Reaching definitions
 - Which definitions of a
 variable v reach a particular
 use of v

- Available expressions
 - What expressions are
 available at a particular
 program point (e.g., $x+y$ is
 available in variable z)

- Live variables
 - For a given program point,
 is there a use of the
 variable along some path to
 exit

- Upwards exposed uses
 - What uses of variables at
 particular points are
 reached by particular
 definitions

- Copy propagation
 - For $x := y$ to a use of x no
 assignments to y?

- Constant propagation

- Partial redundancy
 elimination

- Original formulation forward
 & backward flow problem
Worklist Algorithm for IDFA

```
procedure Worklist_Iterate(N, Entry, FP, dfin, Init)
N: in set of Node
entry: in Node
FP: in Node -> L
dfin: out Node -> L
Init: in L
begin
B,P: Node
Worklist: set of Node
effect, totaleffect: L
dfin(entry) := Init
Worklist := N - {entry}
for each B in N do
dfin(B) := TOP
od
repeat
B := choose(Worklist)
Worklist -={B}
totaleffect := r
for each P in Pred(B) do
  effect := F(P, dfin(P))
totaleffect := MEET= effect
if dfin(B) != totaleffect then
dfin(B) := totaleffect
  Worklist U= {B}
fi
od
until Worklist = {}
end
```

Lattices of Flow Functions (1)

- Can define lattice of monotone flow functions over lattices:
 - L lattice, define \(L^2 \) set of monotone functions from \(L \rightarrow L \), i.e., \(f \in L^2 \Rightarrow \forall x,y \in L \ x \leq y \Rightarrow f(x) \leq f(y) \)
 - Meet defined as: \(\forall f,g \in L^2, \forall x \in L : (f \land g)(x) = f(x) \land g(x) \)
 - Top: \(\forall x \in L : T(x) = T \)
 - Bottom: \(\forall x \in L : \bot(x) = \bot \)

Lattices of Flow Functions (2)

- Identify function: \(id(x) = x, \forall x \in L \)
- Function composition: \((f \circ g)(x) = f(g(x)) \)
 - \(L^2 \) is closed under composition
 - \(F^f := id, F^{f \circ g} = F^f \circ F^g \) for \(n = 1 \)
- Kleene closure \(F^* \)
 - \(\forall x \in L: F^*(x) := lim_{n \to \infty} (id \circ f)^n(x) \)
 - \(L^2 \) is closed under Kleene closure (for finite height lattices)
 - Sufficient to have finite effective height (relative to function \(f \))
 - longest strictly descending chain of the form \(f(x), f(f(x)), f(f(f(x))), \ldots \)
Control-Tree-Based Data Flow Analysis

- Recall two approaches for control flow analysis
- Interval analysis
- Structural analysis
- Control-tree-based data flow analysis uses the intervals / control structures identified to perform data flow analysis

Structural Data Flow Analysis

Example: if-then

\[F_{\text{if-then}} = (F_{\text{then}} \circ F_{\text{if/N}}) \wedge F_{\text{if/Y}} \]

- Propagate info to substructures:
 - \(\text{in} \text{(if)} = \text{in}(\text{if-then}) \)
 - \(\text{in} \text{(then)} = F_{\text{if/Y}} \text{(in}(\text{if})) \)

While Loops

\[F_{\text{while}} = (F_{\text{body}} \circ F_{\text{while/N}})^* \]

\[F_{\text{while-loop}} = F_{\text{while/N}} \wedge F_{\text{loop}} \]

- Propagate info to substructures:
 - \(\text{in} \text{(while)} = F_{\text{loop}} \text{(in}(\text{while-loop})) \)
 - \(\text{in} \text{(body)} = F_{\text{loop}} \text{(in}(\text{while})) \)
Structural Analysis for Backward Flow Problems

- Problem
 - Single-entry but multiple-exit control structures
 - Have multiple entries in backward flow
 - Have to meet (*) possible exits
 - Details in the book
 - Single-entry, single-exit structures
 - Can turn equations around

Static Single Assignment Form

Reading

- Rest of chapter 8
- Chapter 9
Variable Webs
- Web = maximal union of intersecting du-chains

Static Single Assignment Form
- THE standard IR in optimizing compilers
- Properties
 - Every use of a variable has at most one reaching definition
 - Separates values from the locations
 - Makes many optimizations more effective
 - Constant propagation, value numbering, invariant code motion & removal, strength reduction, etc.
- Mechanism:
 - Create new target names for definitions by subscripting variables
 - Introduce Φ-functions at merge points as pseudo-definitions
 - Adjust uses
 - Want to minimize # Φ-functions
 - Minimizes translation overhead for code generation

Dominance Frontier
- DF(x) = \{y | \exists z \in \text{pred}(y) \text{ so that } x \text{ dom } z \text{ and not } x \text{ sdom } y\}
- Set of all CFG nodes which for which x dominates a predecessor but not the node itself
- Direct computation is quadratic in number of CFG nodes
- Use recursive equations and solve iteratively
Dominance Frontier

\[\text{DF}_{\text{local}}(x) = \{ y \in \text{succ}(x) \mid \text{idom}(y) \neq x \} \]

\[\text{DF}_{\text{up}}(x, z) = \{ y \in \text{DF}(z) \mid \text{idom}(y) \neq x \} \]

\[\text{DF}(x) = \text{DF}_{\text{local}}(x) \cup \{ z \in N \mid \text{idom}(z) = x \ \text{DF}_{\text{up}}(x, z) \} \]

Example

\[
\begin{align*}
\text{Dom}(5) &= \{5, 6, 7, 8\} \\
\text{DF}(5) &= \{4, 15, 12, 13\}
\end{align*}
\]

Dominance Frontier Algorithm

Procedure ComputeDF(n)
begin
S := {}
for each node y in succ(n) do
if idom(y) != n
\[S \cup= \{y\} \]
end /*this loop computes DF_{local}(n)*/
for each child c of n in the dominator tree do
compute DF[c]
for each element w of DF[c] do
if n does not dominate w or if n = w
\[S \cup= \{w\} \]
end /*for each element w of DF[c]*/
end /*compute DF[n]*/
end

Algorithm is \(O(E + \text{sizeof}(DFs))\)

In practice linear in size of graph
Dominance Frontier Criterion

- Whenever node x contains a definition of some variable a, then any node in the dominance frontier of x needs a Φ-function.
- Dominance frontier earliest points where definition is not guaranteed to be unique.
- Since Φ-functions are definitions themselves have to iterate.

Iterated Dominance Frontier

- Define DF for set of nodes: $DF(S) = \cup_{x \in S} DF(x)$
- **Iterated Dominance Frontier:** $DF_i(S) = \lim_{i \to \infty} DF_i(S)$, where $DF_{i+1}(S) = DF_i(S \cup DF_i(S))$, and $DF_1(S) = DF(S)$.
- If S is set of nodes that assign to variable x (including the entry node) then $DF(S)$ is the set of nodes that need Φ-functions for x.

Example

- On board