Iterative Data Flow Analysis

- Start with initial guess of info at loop head
 \[\text{info}_{\text{loop-head}} = \text{guess} \]
- Solve equations for body
 \[\text{info}_{\text{loop-head}} = F_{\text{body}}(\text{info}_{\text{loop-head}}) \]
 \[\text{info}_{\text{loop-head}} = \text{info}_{\text{loop-entry}} \cup \text{info}_{\text{back-edge}} \]
- Test if fixed-point found
 \[\text{info}_{\text{loop-head}}' = \text{info}_{\text{loop-head}} \]
 - If same done
 - Else use result as new (better) guess:
 \[\text{info}_{\text{back-edge}}' = F_{\text{body}}(\text{info}_{\text{loop-head}}) \]
 \[\text{info}_{\text{loop-head}}'' = \text{info}_{\text{loop-entry}} \cup \text{info}_{\text{back-edge}} \]

When does Iterating work?

- Have to be able to make initial guess
- Info^{n+1} must be closer to fixed-point than info^n
- Must eventually reach fixed-point, info must be drawn from a finite height domain

To reach best fixed-point, initial guess should be optimistic:
- \[\text{info}_{\text{loop-head}} = \text{info}_{\text{loop-entry}} \]
- Even if guess is overly optimistic, iteration will ensure that we get a safe
- Iteration speed
 - Ideal: solve constraints along shortest path from loop head to tail
 - Practical: avoid solving constraints outside of loop until fixed point reached inside loop
Data Flow Analysis Direction

- Constraints are declarative, so may require mix of forward and backward
- Frequently directional propagation & iteration
 - Forward or backward
 - Topological traversal of acyclic subgraph
 minimizes analysis time
- Directional constraints are called flow functions
 \[\text{RDEF}_{s\leftarrow s'}(\text{in}) = \text{in} - (s\leftarrow s') \forall x' \cup (s\leftarrow s) \]

GEN & KILL sets

- Flow functions can often be described by their GEN and KILL sets
 - GEN = new information added
 - KILL = old information removed
 - \(F_{\text{in}}(\text{in}) = \text{in} - \text{KILL}_{\text{in}} \cup \text{GEN}_{\text{in}} \)
 - Example reaching definitions
 \[\text{GEN}_{x\leftarrow s} = \{x\leftarrow s\} \]
 \[\text{KILL}_{x\leftarrow s} = \{x\leftarrow s'| \forall x'\} \]

Bit Vectors

- Encode data flow information and GEN/KILL sets as bit vectors
 - Works when info can be expressed abstractly as a set of things
 - Each gets a specific bit position
 - Reaching defs: info = bit vector over statements, each bit represents a specific statement, defined variable is implied by statement
- Advantages
 - Compact representation
 - Fast union & difference operations
 - Can combine GEN / KILL sets of whole basic block into one GEN/KILL set for faster iteration
Example: Constant Propagation

- What info should be represented?
- \(CP_{x:=y*5}(n) = \)
- Merge function?
- Initial info?
- Direction?
- Can bit vectors be used?

Another Example: Constant Propagation

<table>
<thead>
<tr>
<th>x := 3</th>
<th>w := 3</th>
<th>y := x*2</th>
<th>z := y+5</th>
</tr>
</thead>
<tbody>
<tr>
<td>x := x+1</td>
<td>w := 3</td>
<td>y := x*2</td>
<td>z := y+5</td>
</tr>
<tr>
<td>w := w*2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

May vs. Must Info

- Some kind of info implies guarantees: **must info**
- Some kind of info implies possibilities: **may info**

<table>
<thead>
<tr>
<th></th>
<th>May</th>
<th>Must</th>
</tr>
</thead>
<tbody>
<tr>
<td>desired info</td>
<td>small set</td>
<td>big set</td>
</tr>
<tr>
<td>safe</td>
<td>overly large set</td>
<td>overly small set</td>
</tr>
<tr>
<td>GEN</td>
<td>add everything that might be true</td>
<td>add only if guaranteed true</td>
</tr>
<tr>
<td>Kill</td>
<td>remove only if guaranteed wrong</td>
<td>remove everything possibly wrong</td>
</tr>
<tr>
<td>Merge</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Live Variables Analysis

- Desired info: set of variables *live* at each program point
 - Live = might be used later in the program
 - Supports dead assignment elimination, register allocation
- May or must?
- Direction?
- Merge function
- Bit vectors usable?
- Initial info?

Live Variables Example

```
x := 5
y := x*2
x := x+1
y := x+10
```

Lattice-theoretic Data Flow Analysis Framework

- **Goals**
 - Provide single, formal model to describe all DFAs
 - Formalize "safe", "conservative", "optimistic"
 - Precise bounds on time complexity
 - Connect analysis with underlying semantics to enable correctness proofs
- **Plan**
 - Define domain of program properties computed by DFA
 - Each domain has set of elements
 - Each element represents one possible value of the property
 - Order sets to reflect relative precision
 - Domain = set of elements + order over elements = lattice
 - Define flow/merge functions using lattice operators
 - Benefit from lattice theory for realizing goals
Lattices

- $D = (S, \leq)$
 - S set of elements
 - \leq induces a partial order
 - Reflexive, transitive & anti-symmetric
 - $\forall x, y \in S: \text{meet}(x, y)$ (greatest lower bound)
 - $\text{join}(x, y)$ (least upper bound)
- Unique Top (T) & Bottom (\bot) elements:
 - $X \bot = \bot$ and $x \vee T = T$
 - Meet and join are commutative and associative
- Height of lattice: longest path through partial order from top to bottom

Lattices in Data Flow Analysis

- Model information by elements of a lattice domain
 - Top = best case info
 - Bottom = worst case info
 - Initial info for optimistic analyses (at least back edges: top)
 - If $a \leq b$ then a is a conservative approximation of b
 - Merge function $= \text{meet}(\cdot)$: the most precise element that’s a conservative approximation of both input elements
- Initial info for optimistic analyses (at least back edges: top)

Some Typical Lattice Domains

- Two point lattice: \bot, T
 - Boolean property
 - A tuple of two point lattices = bit vector
 - Lifted set: set of incomparable values and \bot and T
 - Example?
 - Powerset lattice: set of all subsets of S, ordered somehow (often by \subseteq)
 - $T = \emptyset \bot = S$ or vice versa
 - Collecting analysis
 - Isomorphic to tuple of booleans indicating membership in subset of elements of S
Product (aka. Tuple) Lattices

- Often useful to break complex lattice into a tuple of lattices, one per variable analyzed.
- \(D_T = <S_1, S_2> = <S_1, S_2>^N \)
 - \(S_i \) = \(S_1 \times S_2 \times \ldots \times S_N \)
 - \(\leq \) pointwise ordering
- \(T_T = <T_1, \ldots, T_N> \), bottom tuple of bottoms
- \(\text{Height}(D_T) = N \times \text{height}(D) \)
- Example?

Analysis of Loops with Lattices

- Flow function for loop body
- \(F(\text{info-at-loop-head}) = \text{info at back edge:} \)
- \(F(0) = d_{\text{entry}} \wedge T \)
- \(F(1) = d_{\text{entry}} \wedge \text{back}(F(0)) \wedge F(\text{entry}) = F(d_{\text{entry}}) \)
- \(F(k) = d_{\text{entry}} \wedge \text{back}(F(k-1)) = F(F(\ldots(\text{entry})\ldots)) \)
- Repeat until \(F(k+1) = F(k) \)

Termination of Iterative Analysis

- Sufficient conditions
 - Flow functions \(F \) are monotonic
 - \(d_1 \preceq d_2 \Rightarrow F(d_1) \preceq F(d_2) \)
 - Lattice is of finite height
 - Start at \(T \)
 - Each application of \(F \) goes down one level
 - Eventually hit fixed-point or bottom
 - At most \(\text{height}(D) - 1 \) applications
Examples

- Lattices for
 - Constant propagation
 - Live variables
 - Reaching definitions

Distributive Lattices

- A lattice is **distributive**: $\forall x, y, z \in D: (x \land y) \lor z = (x \lor z) \land (y \lor z)$
 and $(x \lor y) \land z = (x \land z) \lor (y \land z)$

 - Example:
 - Live variables, only elements T and \bot (easy exercise)
 - Counterexample
 - Constant propagation:
 - $(1 \lor 2) \land 3 = (1 \land 3) \lor (2 \land 3)$

Meet-Over-All Paths Solution

- Flow function for basic block B: F_{B_p} for a path p along
 $B_1 \ldots B_n$: $F = F_{B_1} \ldots F_{B_n}$

 - $\text{MOP}(B) = \bigwedge_{p \in \text{paths}(B)} F_p(\text{Init})$
 Init is initial info at entry block
 - MOP is most precise solution we can hope for
 - MOP computation is NP for monotone flow functions
 - I.e. there is no algorithm that is guaranteed to work for all flow graphs
 - Use approximation: **maximum Fixed-Point solution** (MFP)
Important Results

- **Monotone lattices**
 - Iterative algorithm guaranteed to produce the MFP solution

- **Distributive monotone lattices**
 - MFP = MOP
 - Functions over lattices of bit vectors are distributive, i.e., all functions \(f: \text{BV}^n \rightarrow \text{BV}^m \) are distributive

Important Data Flow Problems

- **Reaching definitions**
 - Which definitions of a variable \(v \) reach a particular use of \(v \)

- **Available expressions**
 - What expressions are available at a particular program point (e.g., \(x^y \) is available in variable \(t_1 \))

- **Live variables**
 - For a given program point, is there a use of the variable along some path to exit

- **Upwards exposed uses**
 - What uses of variables at particular points are reached by particular definitions

- **Copy propagation**
 - For \(x := y \) to a use of \(x \) no assignments to \(y \)?

- **Constant propagation**

- **Partial redundancy elimination**
 - Original formulation forward & backward flow problem

Worklist Algorithm for IDFA

```plaintext
procedure Worklist_Iterate(N, Entry, FP, dfin, Init)
N: in set of Node
entry: in Node
FP: in Node -> L
dfin: out Node -> L
Init: in L
begin
B, P: Node
Worklist: set of Node
effect, totaleffect: L
dfin(entry) := Init
Worklist := N - {entry}
for each \( B \) in \( N \) do
dfin(\( B \)) := TOP
od
repeat
B := choose(Worklist)
Worklist := Worklist - {B}
totaleffect := r
for each \( P \) in Pred(\( B \)) do
effect := F(\( P \), dfin(\( P \)))
totaleffect := MEET\( = \) effect
if dfin(\( B \)) \#= totaleffect then
dfin(\( B \)) := totaleffect
Worklist := Worklist \cup \{B\}
fi
od
until Worklist = {}
end
```
Lattices of Flow Functions (1)

- Can define lattice of monotone flow functions over lattices:
 - L lattice, define L set of monotone functions from L to L, i.e., f : L → L ⇒ ∀x,y ∈ L x ≤ y ⇒ f(x) ≤ f(y)
 - Meet defined as: ∀ f,g ∈ L, ∀ x ∈ L:
 \((f \wedge g)(x) = f(x) \wedge g(x) \)
 - Top: ∀ x ∈ L: T(x) = T
 - Bottom: ∀ x ∈ L: \(\bot(x) = \bot \)

Lattices of Flow Functions (2)

- Identify function: id(x) = x, ∀ x ∈ L as
- Function composition: (f o g)(x) = f(g(x))
 - L is closed under composition
 - f^0 := id, f^n := f o f^{n-1} for n ≥ 1
- Kleene closure f^*
 - ∀ x ∈ L: f^*(x) := lim_{n→∞} (id^o f)^n(x)
 - L is closed under Kleene closure (for finite height lattices)
 - Sufficient to have finite effective height (relative to function f)
 - longest strictly descending chain of the form f(x), f^2(x), ...

Control-Tree-Based Data Flow Analysis

- Recall two approaches for control flow analysis
 - Interval analysis
 - Structural analysis
- Control-tree-based data flow analysis uses the intervals / control structures identified to perform data flow analysis
Structural Data Flow Analysis

- Example: if-then

- $F_{\text{if-then}} = (F_{\text{then}} \circ F_{\text{IF}}) \land F_{\text{FN}}$

- Propagate info to substructures:
 - $\text{in}(\text{if}) = \text{in}(\text{if-then})$
 - $\text{in}(\text{then}) = F_{\text{IF}}(\text{in}(\text{if}))$

While Loops

- $F_{\text{while-loop}} = F_{\text{while}} \circ (F_{\text{loop}} \circ F_{\text{while-loop}}) \land F_{\text{loop}}$

- Propagate info to substructures:
 - $\text{in}(\text{while}) = F_{\text{loop}}(\text{in}(\text{while-loop}))$
 - $\text{in}(\text{body}) = F_{\text{while-loop}}(\text{in}(\text{while}))$

Structural Analysis for Backward Flow Problems

- Problem
 - Single-entry but multiple-exit control structures
 - Have multiple entries in backward flow
 - Have to meet (\^) possible exits
 - Details in the book
 - Single-entry, single-exit structures
 - Can turn equations around