Intermediate Representations

CS2210
Lecture 11

Reading & Topics

- Muchnick: chapter 6
- Topics today:
 - Intermediate representations
 - Automatic code generation with pattern matching
 - Optimization Overview
 - Control Flow Analysis (start)

Intermediate Representations

- Make optimizer independent of source and target language
- Usually multiple levels
 - HIR = high level encodes source language semantics
 - Can express language-specific optimizations
 - MIR = representation for multiple source and target languages
 - Can express source/target independent optimizations
 - LIR = low level representation with many specifics to target
 - Can express target-specific optimizations
IR Goals
- Primary goals
 - Easy & effective analysis
 - Few cases
 - Support for things of interest
 - Easy transformations
 - General across source / target languages
- Secondary goals
 - Compact in memory
 - Easy to translate from / to
 - Debugging support
 - Extensible & displayable

High-Level IRs
- Abstract syntax tree + symbol table
 - most common
- LISP S-expressions

Medium-level IRs
- Represent source variables + temporaries and registers
- Reduce control flow to conditional + unconditional branches
- Explicit operations for procedure calls and block structure
- Most popular: three address code
 - t1 := t2 op t3 (address at most 3 operands)
 - if t goto L
 - t1 := t2 < t3
Important MIRs

- **SSA = static single assignment form**
 - Like 3-address code but every variable has exactly one reaching definition
 - Makes variables independent of the locations they are in
 - Makes many optimization algorithms more effective

SSA Example

\[
\begin{align*}
 &x := u \\
 &\ldots \\
 &\ldots \quad x \ldots \\
 &x := v \\
 &\ldots \\
 &\ldots \quad x \ldots
\end{align*}
\]

Other Representations

- **Triples**
 - \(i + 1 \)
 - \(i := (1) \)
 - \(i + 1 \)
 - \(p + 4 \)
 - \(* (4) \)
 - \(p := (4) \)

- **Trees**
 - Like AST but at lower level
 - Directed Acyclic Graphs (DAGs)
 - More compact than trees through node sharing
Three Address Code Example

for i := 1 to 10 do
 a[i] := b[i] + 5;
end

Representant Components

- Operations
- Dependences between operations
 - Control dependences: sequencing of operations
 - Side effects of statements occur in right order
 - Data dependences: flow of values from definitions to uses
 - Values read from variable before being overwritten
- Want to represent only relevant dependences
 - Dependences constrain operations, so the fewer the better

Representing Control Dependence

- Implicit in AST
- Explicit as Control Flow Graphs (CFGs)
 - Nodes are basic blocks
 - Edges represent branches (control flow between blocks)
- Fancier:
 - Control Dependence Graph
 - Value dependence graph (VDG)
 - Control dependence converted to data dependence
Data Dependence Kinds

- True (flow) dependence (read after write RAW)
 - Reflects real data flow, operands to operation
- Anti-dependence (WAR)
- Output dependence (WAW)
 - Reflects overwriting of memory, not real data flow
 - Can often be eliminated

Data Dependence Example

x := 3
if q != NULL then
 y := x + 2
 w := *q
 x := z * 10
else
 x := 4
endif

(1) x := 3
(2) q != 0?
(3) y := x + 2
(4) w := *q
(5) x := z * 10
(6) x := 4

Representing Data Dependences (within bb’s)

- Sequence of instructions
 - Simple
 - Easy analysis
 - But: may overconstrain operation order
- Expression tree / DAG
 - Directly captures dependences in block
 - Supports local CSE (common subexpression elimination)
 - Can be compact
 - Harder to analyze & transform
 - Eventually has to be linearized
Representing Data Dependences (across blocks)

- Implicit via def-use
 - Simple
 - Makes analysis slow (have to compute dependences each time)
- Explicit: def-use chains
 - Fast
 - Space-consuming
 - Has to be updated after transformations
- Advanced options:
 - SSA
 - VDGs
 - Dependence flow graphs (DFGs)

Manual vs. Automatic Code Generation

- Manual
 - Flexible
 - Can handcraft highly optimized code
 - Laborious to adapt to new target
- Automatic
 - Easy, fast adaptation to new targets
 - Less flexible
 - Stylized code generation can result in worse code quality

Approaches

- Graham-Glanville Code Generators
 - Pattern matching and rules similar to SLR(1) parsing rules
 - Reductions generate target code
- Attribute grammars
 - Semantic actions generate target code
- Generalized tree pattern matching
 - Match expression trees and generate corresponding code templates
Graham-Glanville Code Generation

- Uses Context-free-grammar-like rules to represent operations with corresponding instruction templates
- Semantic actions generate the code

Components
- IR transformations
 - Transforms IR to representation closer to target and appropriate for pattern matcher
- Pattern matcher
 - Uses pattern matching to find appropriate reduction
- Instruction generator
 - Generates code sequences

Machine Descriptions

<table>
<thead>
<tr>
<th>Rule</th>
<th>Template</th>
</tr>
</thead>
<tbody>
<tr>
<td>r.1</td>
<td>r.2 => r.1 or r.1,0,r.2</td>
</tr>
<tr>
<td>r.3</td>
<td>r.1 + r.2 => + r.1 r.2 add r.1,r.2,r.3</td>
</tr>
<tr>
<td>r.3</td>
<td>r.1 + k.2 => + r.1 k.2 add r.1,k.2,r.3</td>
</tr>
<tr>
<td>r.2</td>
<td>{r.2} => r.1 ldr {r.1},r.2</td>
</tr>
<tr>
<td>i</td>
<td>i => r.2 r.1 st r.1 [r.2]</td>
</tr>
</tbody>
</table>

Matching example:
<-- *r1 2 + '*r3 3 (prefix notation for: *(r1+2) := *r3+3)
<-- r2 + 'r3 3 add r1,2,r2
<-- r2 + r4 3 ldr {r3},r4
<-- r2 r5 add r4,3,r5
st r2,[r5]

Tree Pattern Matching

- AKA BURS-style code generation
- BURS = Bottom Up Rewrite System
- Replaces (sub) trees by other trees (nodes)
 - Each pattern match rule has an associated (code generation) action and cost
- Try to find minimal cost tree cover to generate locally optimal code
Optimization Overview

- Two step process
 - Analyze program to learn things about it "program analysis"
 - Determine when transformations are legal & profitable
 - Transform the program based on information into semantically equivalent but better output program
- Optimization is a misnomer
 - Almost never optimal
 - Sometimes slows some programs down on some inputs (try to speed up most programs on most inputs)

Semantics

- Subtleties
 - Evaluation order
 - Arithmetic properties (e.g. associativity)
 - Behavior in error cases
- Some languages very precise
 - E.g., Ada
- Some weaker
 - Potentially more optimization opportunity

Analysis Scope

- Peephole
 - Across small number of adjacent instructions
 - Trivial
 - Local
 - Within a basic block
 - Simple
 - Intraprocedural (aka. Global)
 - Across basic blocks within a procedure
 - More complex, branches, merges loops
- Interprocedural
 - Across procedures, within whole program
 - Even more complex, calls, returns
 - More useful for higher-level languages
 - Hard with separate compilation
 - Whole-program
 - Useful for safety properties
 - Most complex
Catalog of Optimizations

- Arithmetic simplification
 - Constant folding
 \[x = 3 + 4 \Rightarrow x := 7 \]
 - Strength reduction
 \[x := y^4 \Rightarrow x := y < 2 \]
- Constant propagation
 \[x := 5 \Rightarrow y := x \]
 \[y := x + 2 \quad y := 5 + 2 \]
 \[y := 7 \]

- Copy propagation
 \[x := y \Rightarrow x := y \]
 \[w := w + x \quad w := w + y \]

- Strength reduction
 \[x := y \times 4 \Rightarrow x := y \ll 2 \]

- Constant propagation
 \[x := 5 \Rightarrow x := 5 \]
 \[y := x + 2 \quad y := 5 + 2 \]
 \[y := 7 \]

Catalog (2)

- Common Subexpression Elimination (CSE)
 \[x := a + b \Rightarrow x := a + b \]
 \[y := a + b \quad y := x \]
 - Can also eliminate redundant memory references, branch tests
- Partial Redundancy Elimination (PRE)
 - Like CSE but earlier expression available only along some path

Catalog (3)

- Pointer analysis
 \[p := &x \Rightarrow p = &x \]
 \[p := 5 \quad *p := 5 \]
 \[y := x + 1 \quad y := 6 \]
- Dead assignment elimination
 \[x := y * z \]
 \[... /* no use of x */ \]
 \[x := 6 \]
- Dead code elimination
 \[\text{if (false) then} \]
- Integer range analysis
 \[\text{for} (i := 0; i < 10; i++) \{
 \text{if} (i > 10) \text{goto error} \\
 a[i] := 0;
 \}

CS2210 Compiler Design 2004/5
Loop Optimizations (1)

- Loop-invariant code motion
 for j := 1 to 10
 for i := 1 to 10
 a[i] := a[i] + b[j]
 for j := 1 to 10
 t := b[j]
 for i := 1 to 10
 a[i] := a[i] + t

- Induction variable elimination
 for i := 1 to 10
 a[i] := a[i] + 1
 *p := *p + 1
 a[] is several instructions *p is one

Loop Optimizations (2)

- Loop unrolling
 for i := 1 to N
 a[i] := a[i] + 1
 for i := 1 to N by 4
 a[i+1] := a[i+1] + 1
 a[i+2] := a[i+2] + 1
 a[i+3] := a[i+3] + 1
 creates more optimization opportunities in loop body

 Parallelization
 Interchange
 Reversal
 Fusion
 Blocking / tiling
 Data cache locality optimization

Call Optimizations

- Inlining
 l := ...
 w := 4
 a := area(l,w)
 l := ...
 w := 4
 a := l * w

 Many simple optimizations become important after inlining
 Interprocedural constant propagation
More Call Optimizations
- Static binding of dynamic calls
 - Calls through function pointers in imperative languages
 - Call of computed function in functional language
 - OO-dispatch in OO languages (e.g., COOL)
 - If receiver class can be deduced, can replace with direct call
 - Other optimizations possible even when multiple targets (e.g., using PICs = polymorphic inline caches)
- Procedure specialization
 - Partial evaluation

Machine-dependent Optimizations
- Register allocation
- Instruction selection
 - Important for CISCs
- Instruction scheduling
 - Particularly important with long-delay instructions and on wide-issue machines (superscalar + VLIW)

The Phase Ordering Problem
- In what order should optimizations be performed?
 - Some optimizations create opportunities for others (order according to this dependence)
 - Can make some optimizations simple
 - Later optimization will "clean up"
 - What about adverse interactions
 - Common subexpression elimination ⇔ register allocation
 - Register allocation = instructions scheduling
 - What about cyclic dependences?
 - Constant folding ⇔ constant propagation
Control Flow Analysis

Approaches
- **Dominator-based**
 - Control flow graph with dominator relation to identify loops
 - Most commonly used
- **Interval-based**
 - Nested regions (= intervals)
 - Control tree
 - Special case: *structural analysis*
 - Most sophisticated
 - Classifies control structures (not just loops)

Basic Blocks and Control Flow Graphs (CFGs)
- **Basic block** = maximal sequence of instructions entered only from first and exited from last
- Entry can be
 - Procedure entry point
 - Branch target
 - Instruction immediately following branch or return
- Entry instructions are called *leaders*
Example CFG

Dominators & Postdominators

- Binary relation useful to determine loops
- Node d dom i iff every possible execution path from entry to i includes d
- Dominance relation is
 - Reflexive: d dom d
 - Transitive: a dom b and b dom c then a dom c
 - Antisymmetric: if a dom b and b dom a then a = b
- Immediate dominance
 - For a = b: a idom b iff a dom b and \(\forall c: c \dom b \text{ and } a \dom c \Rightarrow c = a \)
Dominators & Postdominators

- \(p \ p\text{dom} \ i \iff \) every possible execution path from node \(i \) to exit includes \(p \)
- Dual relation: \(i \ p\text{dom} \ p \) in CFG with edges reversed and entry and exit switched
- \(a \text{ strictly dominates } b \iff a \ p\text{dom} b \) and \(a \neq b \)

Dominator Example

![Dominator Example Diagram]

Computing Dominators (easy but slow)

- Initialize \(\text{dom}(i) = \text{set of all nodes for } i \neq \text{entry} \), \(\text{dom(entry)} = \{\text{entry}\} \)
- While changes occur do
 - \(\text{dom}(i) = \{i\} \cup (\text{dom}(i) \cap \text{dom}(ext{pred}(i))) \) for all predecessors of \(i \)
- Works fastest if nodes are processed in DFS order
 - \(O(n^2 e) \) complexity, \(n \) number of nodes, \(e \) number of edges
Computing IDOM

- Compute dominators
- \(\text{tmp}(i) := \text{dom}(i) - \{i\} \)
- Remove all \(n \in \text{tmp}(i) \) from \(\text{tmp}(i) \) for which \(\text{dom}(n) \neq \{n\} \)

Computing Dominators Faster

- Lengauer & Tarjan's algorithm
- Described in the book
- \(O(e \alpha(e, n)) \) running time where \(\alpha \) is the inverse of Ackerman's function

Loops & SCCs

- An edge \(e = (m, n) \) is called a back edge iff \(n \) dom m (head dominates tail)
- A natural loop of back edge \(m \rightarrow n =: \) subgraph containing \(n \) and all nodes from which \(m \) can be reached w/o passing through \(n \) and the edges that connect those nodes
 - \(n \) is called the loop header
 - Preheader a node inserted immediately before the loop header
- Useful in many loop optimization as a "landing pad" for code from the loop body
Headers and Preheaders

Diagram showing headers and preheaders with nodes B1, B2, B3.

Natural Loop Properties

- Natural loops with different headers are either
 - Nested
 - Disjoint
- What about natural loops with the same header?

Diagram showing natural loops with the same header.

Strongly Connected Components

- Generalization of loops
- A **SCC** is a subgraph $G_S = <N_S, E_S>$ in which every node in N_S is reachable from every other node in N_S by a path including only edges from E_S
- An SCC S is **maximal**, iff every SCC containing it is the S itself

Diagram showing strongly connected components.
Reducible Flow Graphs

- A flow graph \(G=(N,E) \) is reducible (aka. well-structured) if \(E \) can be partitioned into \(E = E_B \cup E_F \), where \(E_B \) is the back edge set, so that \((N, E_F) \) forms a DAG in which all nodes are reachable from the entry node.
- Patterns that make CFGs irreducible, are called improper regions.
- Impossible in some languages (e.g., Modula-2).

Dealing with Irreducibility

- Cannot use structural analysis directly.
- Use iterative data flow analysis instead.
- Make graph well-structured using node splitting.
- Induced iteration on the lattice of monotone functions from the lattice to itself (more on this later).

Control Trees & Interval Analysis

- Idea:
 - Divide CFG into regions of various kinds.
 - Combine each region into a new node (abstract node).
 - Obtain an abstract flow graph.
 - Final result is called control tree.
- Root of control tree is abstract flow graph representing original flowgraph.
- Leaves of control tree are basic blocks.
- Nodes between root and leaves represent regions.
- Edges represent relationships between abstract node and its descendants.
Example: T1-T2 Analysis

Interval Analysis

- **A (maximal) interval** $I_M(h)$ with header h is the maximal single-entry subgraph with h as only entry node and with all closed subpaths in the subgraph containing h
 - Like natural loop but with "acyclic stuff dangling off loop exits"
- **A (minimal) interval** is either
 - A natural loop
 - A maximal acyclic subgraph
 - A minimal irreducible region

Interval Analysis Steps

- Iterate until done:
 - Postorder traversal of CFG looking for loop headers
 - Construct natural loop for each loop header and reduce the loop to an abstract region "natural loop"
 - For each set of entries of an improper region construct minimal SCC and reduce it to "improper region"
 - For entry node and each immediate descendant of a node in a natural loop or irreducible region construct maximal acyclic graph with that node as root: if more than one node results, reduce to "acyclic region"
Structural Analysis

- A refinement of interval analysis
- Advantage compared to standard iterative data flow analysis
 - Uses specialized flow functions for recognized structures that are much faster
 - Data flow equations are determined by the syntax and semantics of the (source) language
- Recognizes more structures than standard interval analysis

Region Types

- Blocks
- If-then
- If-then-else
- Case-switch
- Self loop
- While loop
- Natural loop
- Improper interval
- Proper interval