

 1

CS2210 Compiler Design 2003/04

COOL Project
Code Generation

CS2210

CS2210 Compiler Design 2003/04

Stack Machines
■ A simple evaluation model
■ No variables or registers
■ A stack of values for intermediate results
■ Each instruction:

■ Takes its operands from the top of the stack
■ Removes those operands from the stack
■ Computes the required operation on them
■ Pushes the result on the stack

CS2210 Compiler Design 2003/04

Code Generation Models
■ Evaluate all expression on stack

■ Stack machine
■ Conceptually very simple

■ Very slow
■ COOL provides support routines for this (ok for a toy

compiler w/o optimization)

■ Use processor registers to compute
expressions
■ Used in practice
■ Much faster
■ Easier to optimize
■ Have to to (simple) register allocation

 2

CS2210 Compiler Design 2003/04

Example of Stack Machine
Operation
■ The addition operation on a stack machine

5
7
9
…

5

7

9
…

pop

⊕

add

12
9
…

push

CS2210 Compiler Design 2003/04

Example of a Stack Machine
Program
■ Consider two instructions

■ push i - place the integer i on top of the stack
■ add - pop two elements, add them and put
 the result back on the stack

■ A program to compute 7 + 5:
 push 7
 push 5
 add

CS2210 Compiler Design 2003/04

Why Use a Stack Machine ?
■ Each operation takes operands from the

same place and puts results in the same
place

■ This means a uniform compilation
scheme

■ And therefore a simpler compiler

 3

CS2210 Compiler Design 2003/04

Why Use a Stack Machine ?
■ Location of the operands is implicit

■ Always on the top of the stack

■ No need to specify operands explicitly

■ No need to specify the location of the result

■ Instruction “add” as opposed to “add r1, r2”
 ⇒ Smaller encoding of instructions
 ⇒ More compact programs

■ This is one reason why Java Bytecodes use a
stack evaluation model

CS2210 Compiler Design 2003/04

Optimizing the Stack Machine
■ The add instruction does 3 memory

operations
■ Two reads and one write to the stack
■ The top of the stack is frequently accessed

■ Idea: keep the top of the stack in a register
(called accumulator)
■ Register accesses are faster

■ The “add” instruction is now
 acc ← acc + top_of_stack
■ Only one memory operation!

CS2210 Compiler Design 2003/04

Stack Machine with
Accumulator
Invariants
■ The result of computing an expression is

always in the accumulator

■ For an operation op(e1,…,en) push the
accumulator on the stack after computing
each of e1,…,en-1
■ After the operation pop n-1 values

■ After computing an expression the stack is as
before

 4

CS2210 Compiler Design 2003/04

Stack Machine with
Accumulator. Example
■ Compute 7 + 5 using an accumulator

…

acc

stack

5

7
…

acc ← 5

12

…

⊕

acc ← acc + top_of_stack
pop

…

7

acc ← 7
push acc

7

CS2210 Compiler Design 2003/04

A Bigger Example: 3 + (7 + 5)
 Code Acc Stackacc ← 3 3 <init>

push acc 3 3, <init>
acc ← 7 7 3, <init>
push acc 7 7, 3, <init>
acc ← 5 5 7, 3, <init>
acc ← acc + top_of_stack 12 7, 3, <init>
pop 12 3, <init>
acc ← acc + top_of_stack 15 3, <init>
pop 15 <init>

CS2210 Compiler Design 2003/04

Notes
■ It is very important that the stack is

preserved across the evaluation of a
subexpression

■ Stack before the evaluation of 7 + 5 is 3, <init>

■ Stack after the evaluation of 7 + 5 is 3, <init>

■ The first operand is on top of the stack

 5

CS2210 Compiler Design 2003/04

From Stack Machines to MIPS

■ The compiler generates code for a stack
machine with accumulator

■ We want to run the resulting code on
the MIPS processor (or simulator)

■ We simulate stack machine instructions
using MIPS instructions and registers

CS2210 Compiler Design 2003/04

Simulating a Stack Machine…
■ The accumulator is kept in MIPS register $a0

■ The stack is kept in memory

■ The stack grows towards lower addresses
■ Standard convention on the MIPS architecture

■ The address of the next location on the stack
is kept in MIPS register $sp

■ The top of the stack is at address $sp + 4

CS2210 Compiler Design 2003/04

MIPS Assembly
MIPS architecture

■ Prototypical Reduced Instruction Set Computer
(RISC) architecture

■ Arithmetic operations use registers for operands
and results

■ Must use load and store instructions to use
operands and results in memory

■ 32 general purpose registers (32 bits each)
■ We will use $sp, $a0 and $t1 (a temporary register)

■ Read the SPIM handout for more details

 6

CS2210 Compiler Design 2003/04

A Sample of MIPS Instructions
■ lw reg1 offset(reg2)

■ Load 32-bit word from address reg2 + offset into reg1

■ add reg1 reg2 reg3
■ reg1 ← reg2 + reg3

■ sw reg1 offset(reg2)
■ Store 32-bit word in reg1 at address reg2 + offset

■ addiu reg1 reg2 imm
■ reg1 ← reg2 + imm
■ “u” means overflow is not checked

■ li reg imm
■ reg ← imm

CS2210 Compiler Design 2003/04

MIPS Assembly. Example.
■ The stack-machine code for 7 + 5 in MIPS:acc ← 7

push acc

acc ← 5
acc ← acc + top_of_stack

pop

li $a0 7
sw $a0 0($sp)
addiu $sp $sp -4
li $a0 5
lw $t1 4($sp)
add $a0 $a0 $t1
addiu $sp $sp 4• We now generalize this to a simple language…

CS2210 Compiler Design 2003/04

A Small Language
■ A language with integers and integer

operations

 P → D; P | D

 D → def id(ARGS) = E;

 ARGS → id, ARGS | id

 E → int | id | if E1 = E2 then E3 else E4

 | E1 + E2 | E1 – E2 | id(E1,…,En)

 7

CS2210 Compiler Design 2003/04

A Small Language (Cont.)
■ The first function definition f is the “main”

routine
■ Running the program on input i means

computing f(i)
■ Program for computing the Fibonacci

numbers:
■ def fib(x) = if x = 1 then 0 else
 if x = 2 then 1 else
 fib(x - 1) + fib(x – 2)

CS2210 Compiler Design 2003/04

Code Generation Strategy
■ For each expression e we generate MIPS

code that:
■ Computes the value of e in $a0
■ Preserves $sp and the contents of the stack

■ We define a code generation function cgen(e)
whose result is the code generated for e

CS2210 Compiler Design 2003/04

Code Generation for Constants
■ The code to evaluate a constant simply

copies it into the accumulator:

 cgen(i) = li $a0 i

■ Note that this also preserves the stack,
as required

 8

CS2210 Compiler Design 2003/04

Code Generation for Add
 cgen(e1 + e2) =
 cgen(e1)
 sw $a0 0($sp)
 addiu $sp $sp -4
 cgen(e2)
 lw $t1 4($sp)
 add $a0 $t1 $a0
 addiu $sp $sp 4

■ Possible optimization: Put the result of e1 directly in
register $t1 ?

CS2210 Compiler Design 2003/04

Code Generation for Add.
Wrong!
■ Optimization: Put the result of e1 directly in $t1?

 cgen(e1 + e2) =
 cgen(e1)
 move $t1 $a0
 cgen(e2)
 add $a0 $t1 $a0

■ Try to generate code for : 3 + (7 + 5)

CS2210 Compiler Design 2003/04

Code Generation Notes
■ The code for + is a template with “holes” for

code for evaluating e1 and e2

■ Stack machine code generation is recursive
■ Code for e1 + e2 consists of code for e1 and

e2 glued together
■ Code generation can be written as a

recursive-descent of the AST
■ At least for expressions

 9

CS2210 Compiler Design 2003/04

Code Generation for Sub and
Constants

■ New instruction: sub reg1 reg2 reg3
■ Implements reg1 ← reg2 - reg3

 cgen(e1 - e2) =
 cgen(e1)
 sw $a0 0($sp)
 addiu $sp $sp -4
 cgen(e2)
 lw $t1 4($sp)
 sub $a0 $t1 $a0
 addiu $sp $sp 4

CS2210 Compiler Design 2003/04

Code Generation for
Conditional
■ We need flow control instructions

■ New instruction: beq reg1 reg2 label
■ Branch to label if reg1 = reg2

■ New instruction: b label
■ Unconditional jump to label

CS2210 Compiler Design 2003/04

Code Generation for If (Cont.)
cgen(if e1 = e2 then e3 else e4)

=
 cgen(e1)
 sw $a0 0($sp)
 addiu $sp $sp -4
 cgen(e2)
 lw $t1 4($sp)
 addiu $sp $sp 4
 beq $a0 $t1 true_branch

false_branch:
 cgen(e4)
 b end_if
true_branch:
 cgen(e3)
end_if:

 10

CS2210 Compiler Design 2003/04

The Activation Record
■ Code for function calls and function

definitions depends on the layout of the
activation record

■ A very simple AR suffices for this language:
■ The result is always in the accumulator

■ No need to store the result in the AR

■ The activation record holds actual parameters
■ For f(x1,…,xn) push xn,…,x1 on the stack
■ These are the only variables in this language

CS2210 Compiler Design 2003/04

The Activation Record (Cont.)
■ The stack discipline guarantees that on

function exit $sp is the same as it was on
function entry

■ We need the return address

■ It’s handy to have a pointer to the current
activation
■ This pointer lives in register $fp (frame pointer)
■ Reason for frame pointer will be clear shortly

CS2210 Compiler Design 2003/04

The Activation Record
■ Summary: For this language, an AR with the

caller’s frame pointer, the actual parameters,
and the return address suffices

■ Picture: Consider a call to f(x,y), The AR will
be:

y
x

old fp

SP

FP

AR of f

 11

CS2210 Compiler Design 2003/04

Code Generation for Function
Call
■ The calling sequence is the instructions (of

both caller and callee) to set up a function
invocation

■ New instruction: jal label

■ Jump to label, save address of next instruction in
$ra

■ On other architectures the return address is stored
on the stack by the “call” instruction

CS2210 Compiler Design 2003/04

Code Generation for Function
Call (Cont.)
cgen(f(e1,…,en)) =
 sw $fp 0($sp)
 addiu $sp $sp -4
 cgen(en)
 sw $a0 0($sp)
 addiu $sp $sp -4
 …
 cgen(e1)
 sw $a0 0($sp)
 addiu $sp $sp -4
 jal f_entry

• The caller saves its value of
the frame pointer

• Then it saves the actual
parameters in reverse order

• The caller saves the return
address in register $ra

• The AR so far is 4*n+4
bytes long

CS2210 Compiler Design 2003/04

Code Generation for Function
Definition
■ New instruction: jr reg

■ Jump to address in register regcgen(def f(x1,…,xn) = e) =
 move $fp $sp
 sw $ra 0($sp)
 addiu $sp $sp -4
 cgen(e)
 lw $ra 4($sp)
 addiu $sp $sp z
 lw $fp 0($sp)
 jr $ra

• Note: The frame pointer
points to the top, not bottom
of the frame

• The callee pops the return
address, the actual arguments
and the saved value of the
frame pointer

• z = 4*n + 8

 12

CS2210 Compiler Design 2003/04

Calling Sequence. Example for
f(x,y).
Before call On entry Before exit After call

SP

FP

y
x

old fp

SP

FP

SP

FP

SP
return

y
x

old fp

FP

CS2210 Compiler Design 2003/04

 Code Generation for Variables
■ Variable references are the last construct
■ The “variables” of a function are just its

parameters
■ They are all in the AR
■ Pushed by the caller

■ Problem: Because the stack grows when
intermediate results are saved, the variables
are not at a fixed offset from $sp

CS2210 Compiler Design 2003/04

Code Generation for Variables
(Cont.)
■ Solution: use a frame pointer

■ Always points to the return address on the stack
■ Since it does not move it can be used to find the

variables

■ Let xi be the ith (i = 1,…,n) formal parameter
of the function for which code is being
generated

 cgen(xi) = lw $a0 z($fp) (z =
4*i)

 13

CS2210 Compiler Design 2003/04

Code Generation for Variables
(Cont.)
■ Example: For a function def f(x,y) = e the

activation and frame pointer are set up as
follows:

y
x

return

old fp
• X is at fp + 4
• Y is at fp + 8

FP

SP

CS2210 Compiler Design 2003/04

Summary
■ The activation record must be designed

together with the code generator
■ Code generation can be done by

recursive traversal of the AST
■ Recommend to not use a stack machine

■ You learn more
■ Alternative not much more complicated

CS2210 Compiler Design 2003/04

A Better Way

■ Idea: Keep temporaries in the AR

■ The code generator must assign a
location in the AR for each temporary

 14

CS2210 Compiler Design 2003/04

Example
def fib(x) = if x = 1 then 0 else

 if x = 2 then 1 else
 fib(x - 1) + fib(x – 2)

■ What intermediate values are placed on the
stack?

■ How many slots are needed in the AR to hold
these values?

CS2210 Compiler Design 2003/04

How Many Temporaries?
■ Let NT(e) = # of temps needed to evaluate e

■ NT(e1 + e2)
■ Needs at least as many temporaries as NT(e1)
■ Needs at least as many temporaries as NT(e2) + 1

■ Space used for temporaries in e1 can be reused for
temporaries in e2

CS2210 Compiler Design 2003/04

The Equations
NT(e1 + e2) = max(NT(e1), 1 + NT(e2))
NT(e1 - e2) = max(NT(e1), 1 + NT(e2))

NT(if e1 = e2 then e3 else e4) = max(NT(e1),1 + NT(e2), NT(e3), NT(e4))
NT(id(e1,…,en) = max(NT(e1),…,NT(en))

NT(int) = 0
NT(id) = 0

Is this bottom-up or top-down?
What is NT(…code for fib…)?

 15

CS2210 Compiler Design 2003/04

The Revised AR

■ For a function definition f(x1,…,xn) = e
the AR has 2 + n + NT(e) elements
■ Return address
■ Frame pointer
■ n arguments
■ NT(e) locations for intermediate results

CS2210 Compiler Design 2003/04

Picture

. . .
x1

Return Addr.
Temp NT(e)

. . .
Temp 1

Old FP
xn

CS2210 Compiler Design 2003/04

Revised Code Generation

■ Code generation must know how many
temporaries are in use at each point

■ Add a new argument to code
generation: the position of the next
available temporary

 16

CS2210 Compiler Design 2003/04

Code Generation for +
(original)
cgen(e1 + e2) =
 cgen(e1)
 sw $a0 0($sp)
 addiu $sp $sp -4
 cgen(e2)
 lw $t1 4($sp)
 add $a0 $t1 $a0
 addiu $sp $sp 4

CS2210 Compiler Design 2003/04

Code Generation for +
(revised)
cgen(e1 + e2, nt) =
 cgen(e1, nt)
 sw $a0 nt($fp)
 cgen(e2, nt + 4)
 lw $t1 nt($fp)
 add $a0 $t1 $a0

CS2210 Compiler Design 2003/04

Notes

■ The temporary area is used like a small,
fixed-size stack

■ Can construct cgen for other constructs

 17

CS2210 Compiler Design 2003/04

Implementation Alternative

■ Do expression evaluation in registers
■ much faster
■ easier top optimize
■ have to write your own code generation

support routines :-(
■ But not too difficult and you may find it easier

in some respects

CS2210 Compiler Design 2003/04

Suggested Code Generation
Algorithm (cf. Aho ch. 9)
■ Walk tree and generate

CFG with basic blocks of
3-address code
■ Use new temporary

name for every sub-
expression t1, t2, … don’t
worry about actual
registers and reusing
temporary locations

■ Extension: transform this
to SSA form

■ Have to compute
dominators and iterated
DF

■ Do this only once you
have the first part done

■ One optimization you can
do here:

■ Do not use
getreg/putreg allocation
but perform register
allocation on this CFG
and generate code from
it

■ Good speedups
possible

■ Generate code for each
basic block
■ 3-address code

statement by statement

CS2210 Compiler Design 2003/04

Register Allocation
■ Write a support routine that gives you (virtual)

registers to do computation
■ Getreg / putreg (can be found in Aho ch. 9.6)
■ May return a real register or a stack memory

location
■ Since on RISC all operations have to be performed in

registers:
■ Reserve 2 registers for evaluation
■ Bring in-memory (stack) operands first into this expression

register(s)
■ Evaluate and store back

■ Alternative: perform register allocation on the
CFG
■ This counts as an optimization

 18

CS2210 Compiler Design 2003/04

Expression Evaluation
■ Use an address descriptor

■ a map of names of variables & temporaries to
register locations

■ x := y op z
■ L = getreg() for the result of the computation
■ y’ = location of y if not in a register call getreg()

and generate a ld -instruction
■ same for z

■ generate L := y’ op z’
■ update x’s address map to indicate that x is in L

now

CS2210 Compiler Design 2003/04

Object Layout
■ OO implementation = Stuff from last lecture

+ More stuff

■ OO Slogan: If B is a subclass of A, than an
object of class B can be used wherever an
object of class A is expected

■ This means that code in class A works
unmodified for an object of class B

CS2210 Compiler Design 2003/04

Two Issues

■ How are objects represented in
memory?

■ How is dynamic dispatch implemented?

 19

CS2210 Compiler Design 2003/04

Object Layout Example
Class A {

a: Int <- 0;
d: Int <- 1;
f(): Int { a <- a + d };

};

Class B inherits A {
b: Int <- 2;
f(): Int { a };
g(): Int { a <- a - b };

};

Class C inherits A {
c: Int <- 3;
h(): Int { a <- a * c };

};

CS2210 Compiler Design 2003/04

Object Layout (Cont.)
■ Attributes a and d are inherited by classes B

and C

■ All methods in all classes refer to a

■ For A methods to work correctly in A, B, and
C objects, attribute a must be in the same
“place” in each object

CS2210 Compiler Design 2003/04

Object Layout (Cont.)
An object is like a struct in C. The reference

foo.field
is an index into a foo struct at an offset

corresponding to field

Objects in Cool are implemented similarly
■ Objects are laid out in contiguous memory
■ Each attribute stored at a fixed offset in object
■ When a method is invoked, the object is self and

the fields are the object’s attributes

 20

CS2210 Compiler Design 2003/04

Cool Object Layout

■ The first 3 words of Cool objects
contain header information:

Dispatch Ptr
Attribute 1
Attribute 2

. . .

Class Tag
Object Size

Offset

0

4

8

12

16

CS2210 Compiler Design 2003/04

Cool Object Layout (Cont.)
■ Class tag is an integer

■ Identifies class of the object

■ Object size is an integer
■ Size of the object in words

■ Dispatch ptr is a pointer to a table of
methods
■ More later

■ Attributes in subsequent slots

■ Lay out in contiguous memory

CS2210 Compiler Design 2003/04

Subclasses
Observation: Given a layout for class A, a

layout for subclass B can be defined by
extending the layout of A with

additional slots for the additional
attributes of B

Leaves the layout of A unchanged
(B is an extension)

 21

CS2210 Compiler Design 2003/04

Layout Picture

cda*6Cta
g

C

bda*6Bta
g

B

da*5Ata
g

A

201612840 Offset
Class

CS2210 Compiler Design 2003/04

Subclasses (Cont.)
■ The offset for an attribute is the same in a

class and all of its subclasses
■ Any method for an A1 can be used on a subclass

A2

■ Consider layout for An < … < A3 < A2 < A1

A2 attrs
A3 attrs

. . .

Header
A1 attrs.

A1 object

A2 object

A3 object

What about
multiple
inheritance?

CS2210 Compiler Design 2003/04

Dynamic Dispatch

■ Consider the following dispatches (using
the same example)

 22

CS2210 Compiler Design 2003/04

Object Layout Example
(Repeat)
Class A {

a: Int <- 0;
d: Int <- 1;
f(): Int { a <- a + d };

};

Class B inherits A {
b: Int <- 2;
f(): Int { a };
g(): Int { a <- a - b };

};

Class C inherits A {
c: Int <- 3;
h(): Int { a <- a * c };

};

CS2210 Compiler Design 2003/04

Dynamic Dispatch Example
■ e.g()

■ g refers to method in B if e is a B

■ e.f()
■ f refers to method in A if f is an A or C

(inherited in the case of C)
■ f refers to method in B for a B object

■ The implementation of methods and dynamic
dispatch strongly resembles the
implementation of attributes

CS2210 Compiler Design 2003/04

Dispatch Tables
■ Every class has a fixed set of methods

(including inherited methods)

■ A dispatch table indexes these methods
■ An array of method entry points
■ A method f lives at a fixed offset in the

dispatch table for a class and all of its
subclasses

 23

CS2210 Compiler Design 2003/04

Dispatch Table Example
■ The dispatch table for

class A has only 1
method

■ The tables for B and C
extend the table for A
to the right

■ Because methods can
be overridden, the
method for f is not the
same in every class, but
is always at the same
offset

hfAC

gfBB

fAA

40 Offset
Class

CS2210 Compiler Design 2003/04

Using Dispatch Tables
■ The dispatch pointer in an object of

class X points to the dispatch table for
class X

■ Every method f of class X is assigned an
offset Of in the dispatch table at
compile time

CS2210 Compiler Design 2003/04

Using Dispatch Tables (Cont.)

■ To implement a dynamic dispatch e.f()
we
■ Evaluate e, giving an object x
■ Call D[Of]

■ D is the dispatch table for x
■ In the call, self is bound to x

