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Abstract

Coronary heart disease (CHD) is a major
cause of death worldwide. Although a mul-
titude of cardiovascular risks factors have
been identified, CHD most likely reflects ac-
tually complex interactions of these factors
even over time. Today’s datasets from lon-
gitudinal studies offer great promise to un-
cover these interactions but also pose enor-
mous analytical problems due to typically
large amount of both discrete and continuous
measurements and risk factors with poten-
tial long-range interactions over time. Our
investigation demonstrates that a statistical
relational analysis of longitudinal data can
easily uncover complex interactions of risks
factors and actually predict future coronary
artery calcified (CAC) plaque levels — an
indicator of the amount of CHD present in
an individual — significantly better than tra-
ditional non-relational machine learning ap-
proaches. The uncovered long-range interac-
tions between risk factors conform to existing
clinical knowledge and are successful in iden-
tifying risk factors at early adult stage. This
makes it possible to design patient-specific
treatments in young adults to mitigate the
risk later.
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1. Introduction

Heart disease and stroke — cardiovascular diseases,
generally — encumber society with enormous costs. Ac-
cording to the World Heart Federation ', cardiovascu-
lar disease costs the European Union € 169 billion in
2003 and the USA about € 310.23 billion in direct and
indirect annual costs.

One major cardiovascular disease is coronary heart dis-
ease (CHD). It is reported to be a major cause of mor-
bidity and death in adults through heart attacks or
acute myocardial infarctions (AMI). CHD is a condi-
tion which includes plaque build up inside the coro-
nary arteries, i.e., atherosclerosis. Atherosclerosis is
a disease process that begins in childhood, eventually
resulting in clinical events later in life. The factors
that determine development and progression of coro-
nary artery disease are in large part established; how-
ever, the causes are very closely related with risk fac-
tors present in youth. Early detection of risks will help
in designing effective treatments targeted at youth in
order to prevent cardiovascular events in adulthood
and to dramatically reduce the costs associated with
cardiovascaular dieases.

Our major contribution is to demonstrate the impact
of machine learning on CHD research. We show that
relationships between the measured risk factors and
the development of advanced CAD lesions and over-
all plaque burden can be automatically extracted and
understood. As the cohort ages and sufficient clinical
events occur, this work will allow us to apply these
methods to clinical events such as AMI and heart fail-

ure. Specifically, we propose to use the longitudinal

1See http://www.world-heart-federation.org/
cardiovascular-health/global-facts-map/
economic-impact/ and references in there.



data collected from the Coronary Artery Risk Devel-
opments in Young Adults (CARDIA)? study over dif-
ferent years to automatically estimate models using
machine learning techniques for predicting the Coro-
nary Artery Calcification (CAC) amounts, a measure
of subclinical CAD, at year 20 given the measurements
from the previous years. This longitudinal study be-
gan in 1985 — 86 and measured risk factors in different
years (5,10,15,20) respectively. Several vital factors
such as body mass index (bmi), cholesterol-levels, blood
pressure and exercise level are measured along with
family history, medical history, nutrient intake, obesity
questions, pyschosocial, pulmonary function etc. Us-
ing the predictions of the CAC levels we can predict
cardiovascular events such as heart attacks. This in
turn allows us to enable pro-active treatment planning
for the high-risk patients i.e., identify young adult pa-
tients who are potentially at high-risk to cardiovascu-
lar events and design patient-specific treatments that
would mitigate the risks.

We use Statistical Relational Learning (SRL) (Getoor
& Taskar, 2007) algorithms for predicting CAC-levels
in year 20 (corresponding to year 2005 when the pa-
tients were between 38 and 50 years old) given the
measurements from all the previous years. SRL ap-
proaches, unlike what is traditionally done in statis-
tical learning, seek to avoid explicit state enumera-
tion as, in principle, is traditionally done in statistical
learning through a symbolic representation of states.
The advantage of these models is that they can suc-
cinctly represent probabilistic dependencies among the
attributes of different related objects leading to a com-
pact representation of learned models that allow for
sharing of parameters between similar objects. Given
that the CARDIA data is highly relational (multi-
ple measurements are performed over examinations for
each participant) and temporal, we use SRL methods
to learn to predict CAC-levels. We use a de-identified
version of the data set for methodological develop-
ment.

More precisely, we use two kinds of SRL algorithms for
this task — Relational Probability Trees (RPT) (Neville
et al., 2003) and a more recently popular Relational
Functional Gradient Boosting (RFGB) (Kersting &
Driessens, 2008; Natarajan et al., 2011) approach.
RPTs upgrade the attribute-value representation used
within classical classification trees. The RFGB ap-
proach, on the other hand, involves learning a set of
regression trees, each of which represents a potential
function. The functional gradient approach has been
found to give state of the art results in many relational

2http://www.cardia.dopm.uab.edu/

problems and we employ the same for CAC prediction.
We use a sub-set of measurements from the CARDIA
data set and predict the CAC-levels. We compared the
SRL algorithms against propositional machine learn-
ing algorithms and demonstrated the superiority of the
SRL algorithms. The learned models were also veri-
fied by a domain expert and the results conform to
known medical risks. The results also provided a few
insights about the relationships between risk factors
and age of the individual. Identifying risk factors such
as cholesterol level in young adulthood has potential
to enable both the physician and the subject to de-
vise a personalized plan to optimize it. Keeping track
of these risk factors in young adulthood will prevent
serious cardio-vascular events in their late adulthood.

The introduction of this domain to the SRL com-
munity itself is the second major contribution of the
present paper. So far, significant performance gains
have been reported for classical machine learning ap-
plications such as entity resolution, link prediction,
and social network analysis. Discovering and under-
standing relationships between the measured risk fac-
tors and the development of advance CAD lesions and
overall plaque burden has not been studied so far.
Indeed, there has been some work on using machine
learning for CAC prediction. For instance, in the work
by Sun et al. (Sun et al., 2008), the authors use SNP
data in a sub-set of population and employ ensemble
methods such as random forests and RuleFit to predict
CAC levels. This approach mainly relies on genetic
information which are harder to obtain than clinical
measurements. Others have employed machine learn-
ing techniques for identifying the presence of coro-
nary artery disease. For instance the work by Hung
et al. (Hung et al., 1985) predicts CAD on men us-
ing a logistic regression method. Lewis et al. (Lewis
et al., 2006) use multivariate logistic regression models
to identify whether chronic exposure to everyday dis-
crimination affects the CAC levels in a certain section
of the society. As far as we are aware, none of these
methods take into account the clinical measurements
from such a rich data set such as CARDIA spanning
over 20 years to predict CAC-levels. Our current work
is the first attempt at using ML techniques for this
very significant problem.

2. Methodology

Before explaining how to adapt the CARDIA data to
the relational setting, we will justify and detail our
relational methodology.



2.1. The Need for Relational Models

Are relational models really beneficial? Could we also
use propositional models? As we show, relational ap-
proaches are able to comprehensively outperform stan-
dard machine learning and data mining approaches.
Beyond this, there are several justifications for adopt-
ing statistical relational analyses. First, the data con-
sists of several diverse features (e.g., demographics,
psychosocial, family history, dietary habits) that in-
teract with each other in many complex ways mak-
ing it relational. Second, the data was collected as
part of a longitudinal study, i.e., over many different
time periods such as 0, 5, 10, years etc., making it
temporal. Third, like most data sets from biomedical
applications, it contains missing values i.e., all data
are not collected for all individuals. Fourth, the na-
ture of SRL algorithms allow for more complex inter-
actions between features. Finally, the learned models
can be generalized across different sub-groups of par-
ticipants and across different studies themselves. This
data poses the following challenges for SRL methods
creating the need for some preprocessing.

(1) Since the data are longitudinal, there are mul-
tiple measurements of many of the risk factors over
different years of study. Hence time has to be incor-
porated into the model. To do so, the features are
treated as fluents with time being the last argument.
For instance, weight(X,W,T) would refer to person
X having weight W at time T. (2) CAC-levels of the
participants are negligible (and often actually unob-
served) in early years. This prevents us from using
standard Dynamic Bayesian Network or HMMs; the
values are nearly always zero in the initial years, be-
ing non-zero only in 10% at year 15 and 18% at year
20. (3) The input data consists of mainly continu-
ous values. SRL methods use predicate logic where
attributes are binary. In the case of features such
as cholesterol level, ldl, bmi, we discretized them into
bins based on domain knowledge. This is one of the
key lessons learned: wusing the domain expert’s knowl-
edge (for discretization in our case) makes it possible
to learn very highly predictive models in real problems.
(4) The cohort decreased over the years. There were
a number of participants who did not appear for a cer-
tain number of years and returned for others. We did
not try to normalize the data set by removing all the
missing participants or replacing them with the most
commonly observed value. Instead, we allowed the val-
ues to be missing. The only case where we dropped
the participants from the data base was when they
were not present in year 20 where we predict the CAC-
levels. This is to say that we are not considering the
problem to be a semi-supervised learning problem but

treat it as a strictly supervised learning one. (5) Re-
call the goal of the study is to identify the effect of the
factors in early adulthood on cardiovascular risks in
middle-aged adults. The algorithm should be allowed
to search through all the risk factors in all the years
for predicting CAC-levels. This implies that the data
must not be altered or tailored in any form. In this
work, we did not make any modifications to the data
except for the discretizations mentioned earlier. As
we show, our methods are very successful in identify-
ing long-range correlations. One of the biggest lessons
learned from this work is that risk factors between the
ages of 25 through 40 are very significant for CAC-level
prediction at age 38 to 50.

However, which SRL approach should we use?

2.2. Relational Gradient Boosting

One of the most important challenges in SRL is learn-
ing the structure of the models, i.e., the weighted re-
lational rules. This problem has received much atten-
tion lately. Most approaches (Kok & Domingos, 2010)
follow a traditional greedy hill-climbing search: first
obtain the candidate rules/clauses, score them, i.e.,
learn the weights, and select the best candidate. The
temporal nature of our task at hand makes it difficult
to use these approaches. Therefore, we use a boosting
approach based on functional gradients recently pro-
posed that learns the structure and parameters simul-
taneously (Natarajan et al., 2011). It was proven suc-
cessful in several classical SRL domains and achieves
state-of-the art performances. Also, it easily allows —
as we will show — to account for the temporal aspects
of CAC-level prediction.

Functional gradient methods have been used previ-
ously to train conditional random fields (CRF) (Di-
etterich et al.(2004)) and their relational extensions
(TILDE-CRF) (Gutmann & Kersting, 2006). Assume
that the training examples are of the form (x;,y;)
fori = 1,....,N and y; € {1,...,K}. We use x to
denote the vector of features. The goal is to fit a
model P(y|x) oc e¥®X). Dietterich et al. used an ap-
proach to train the potential functions based on Fried-
man’s(2001) gradient-tree boosting algorithm where
the potential functions are represented by sums of re-
gression trees that are grown stage-wise. Since the
stage-wise growth of these regression trees are similar
to the Adaboost algorithm (Freund & Schapire, 1996),
this is called as gradient-tree boosting. More formally,
functional gradient ascent starts with an initial poten-
tial ¥y and iteratively adds gradients A;.After m itera-
tions, the potential is given by 1, = Yo+ A1+...4+A,,.
Here, A, is the functional gradient at episode m and



is
Ay = N X Ex,y[a/a¢m—llogp(y|x§7//m—1)] (1)

where 7, is the learning rate. Dietterich et al. sug-
gested evaluating the gradient at every position in ev-
ery training example and fitting a regression tree to
these derived examples i.e., fit a regression tree h,,
on the training examples [(@;,yi), Am(yi; 2;)]. They
point out that although the fitted function h,, is not
exactly the same as the desired A,,, it will point in
the same direction (assuming that there are enough
training examples). So ascent in the direction of A,
will approximate the true functional gradient.

Let us denote the CAC-level as y and for ease of ex-
planation assume that it is binary valued (i.e., present
vs absent). Let us denote all the other variables mea-
sured over the different years as x. Our aim is to learn
P(y|x) where, P(y|x) = ew(y?x)/zy e?wx) Note that
in the functional gradient presented in Equation 1, the
expectation E, ,[..] cannot be computed as the joint
distribution P(x,y) is unknown. Instead of computing
the functional gradients over the potential function,
they are instead computed for each training example 4
given as (x;j,y;). Now this set of local gradients form
a set of training examples for the gradient at stage m.
The main idea in the gradient-tree boosting is to fit a
regression-tree on the training examples at each gra-
dient step. In this work, we replace the propositional
regression trees with relational regression trees.
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Figure 1. Relational Functional Gradient Boosting. This
is similar to the standard FGB where trees are induced in
stage-wise manner the key difference being that the trees
are relational regression trees.

The functional gradient with respect to ¢ (y; = 1;x;) of
the likelihood for each example (y;,x;) can be shown
to be: %a]:im = Iy, = Lixi) - Plyi = 1;%),
where [ is the indicator function that is 1 if y; = 1
and 0 otherwise. The expression is simply the adjust-
ment required to match the predicted probability with
the true label of the example. If the example is pos-
itive (i.e., if the participant has significant CAC-level

in year 20) and the predicted probability is less than 1,
this gradient is positive indicating that the predicted
probability should move towards 1. Conversely, if the
example is negative and the predicted probability is
greater than 0, the gradient is negative driving the
value the other way.

We use Relational Regression Trees (RRTs) (Blockeel
& Raedt, 1998) to fit the gradient function for every
training example. Each RRT can be viewed as defining
several new feature combinations, one corresponding
to each path from the root to a leaf. The resulting
potential functions from all these different RRT's still
have the form of a linear combination of features but
the features can be quite complex.

This idea is illustrated in Figure 1. First a tree is
learned from the training examples and this tree is
used to determine the weights (i.e., functional gradi-
ents) of the examples for the next iteration (which in
this case is the difference between the true probabil-
ity of being true and the predicted probability). Once
the examples are weighted, a new tree is induced from
the examples. The trees are then considered together
and the regression values are added when weighing the
examples and the process is repeated.

At a fairly high level, the learning of RRT proceeds as
follows: The learning algorithm starts with an empty
tree and repeatedly searches for the best test for a node
according to some splitting criterion such as weighted
variance. Next, the examples in the node are split into
success and failure according to the test. For each
split, the procedure is recursively applied further ob-
taining subtrees for the splits. We use weighted vari-
ance on the examples as the test criterion. In our
method, we use a small depth limit (of at most 3) to
terminate the search. In the leaves, the average regres-
sion values are computed.

The key idea underlying the present work is to repre-
sent the distribution over CAC-levels as a set of RRT's
on the features. When learning to predict the CAC-
levels in year 20, we use the data collected from all
the previous years. We ignore the CAC-levels that are
present for some individuals at year 15 since we are
interested in planning preventive treatments in early
adulthood based on other risk factors. We bear in
mind that CAC rarely regresses from present to ab-
sent or from a higher level to a lower level.

These trees are learned such that at each iteration
the new set of RRTs aim to maximize the likeli-
hood of the distributions w.r.t ¢». When computing
P(cac(X)|f(X)) for a particular patient X, given the
feature set f, each branch in each tree is considered



to determine the branches that are satisfied for that
particular grounding (z) and their corresponding re-
gression values are added to the potential .

To investigate the wusefulness of other relational
learners, we also considered Relational Probability
Trees (Neville et al., 2003). We modified the RPT
learning algorithm to learn a regression tree similar to
TILDE to predict positive examples and turn the re-
gression values in the leaves into probabilities by expo-
nentiating the regression value and normalizing them.
We modified TILDE to automatically include aggre-
gate functions such as count, mode, max, mean etc.
while searching for the next node to add to the tree.
Also, the regression tree learner can use conjunctions
of predicates in the inner nodes as against a single
test by the traditional RPT learner. This modifica-
tion has been shown to have better performance than
RPTs (Natarajan et al., 2011) and hence we employ
this modified RPT learner in our experiments.

3. Adapting the CARDIA Data

The CARDIA Study examines the development and
determinants of clinical and subclinical cardiovascu-
lar disease and its risk factors. It began in 1985 — 6
(Year 0) with a group of 5115 men and women whose
age were between 18-30 years from 4 centers.The same
participants were asked to participate in follow-up ex-
aminations during 87 — 88 (Year 2), 90 — 91 (Year 5),
92 — 93 (Year 7), 95 — 96 (Year 10), 2000 — 2001 (Year
15), and 05 — 06 (Year 20). A majority of the group
has been examined at each of the follow-up exami-
nations (90%, 86%, 81%, 79%, 74%, and 72%, respec-
tively). Data has been collected on a variety of factors
believed to be related to heart disease. This rich data
set provides a valuable opportunity to identify risk fac-
tors in young adults that could cause serious cardio-
vascular issues in their adulthood. This in turn, will
allow physicians to develop patient-specific preventive
treatments that can improve the quality of life in later
years.

We used known risk factors such as age, sex, choles-
terol, bmi, glucose, hdl level, ldl level, exercise, trig
level, systolic bp and diastolic bp that are measured
between years 0 and 20 over the patients. Our goal is
to predict if the CAC-levels of the patients are above
0 for year 20 given the above mentioned factors. Any
CAC-level over 0 indicates the presence of advanced
coronary atheroma and elevated risk for future CHD
and need to be monitored. So, we are in a binary clas-
sification setting of predicting 0 vs non-0 CAC levels.
In our data set, most of the population had CAC-level
of 0 (2981 out of 3043 subjects) in year 20. Hence

[ Feature | Thresholds

cholestrol | 70, 100, 150, 200, 250, 300, 400
dbp 0, 30, 50, 70, 90, 100, 150
glucose 0, 50, 100, 200, 300, 400
hdl 10, 30, 50, 70, 100,120,200
1d1 0,50,100,150,200,400
trig 0,25,50,100,300,1000,3000
bmi 0,16,18.5,25,30,35,40,100

[ Classifier | Parameters

J48 C0.25M 2
SVM C 1.0, L 0.01, P 1E12, N0, V 1, W 1 Poly Kernel
AdaBoost | P 100, S 1,110
Bagging P 100,S1,110,M 2,V 0.001, N3,S1,L-1
Logistic R 1.0E-8, M -1

Table 1. (Top) Domain expert’s discretization of some of
the input features. (Bottom) Parameters of the proposi-
tional classifiers

there is a huge skew in the data set where there is
a very small number of positive examples (less than
20% of subjects had significant CAC-levels). It must
be mentioned that the data for year 25 is still being
compiled and hence our prediction models have been
designed for year 20 data.

We converted the data set into predicate logic, see
e.g. (De Raedt, 2008) for an introduction. The first ar-
gument of every predicate is the ID of the person and
the last argument is the year of measurement. It is
possible for our algorithm to search at the level of the
variables or ground the variable to a constant while
searching for the next predicate to add to the tree.
For example, we could use some values such as “never
smoked”, “quit smoking” etc. directly in the learned
model and in other cases, use variables in the node.
This is yet another reason for employing a relational
learning algorithm.

The risk factors, however, are continuous variables.
For instance, Idl, hdl, glucose, bmi, dbp, sdp etc.
all take real numbered values with different ranges.
While many methods exist that can discretize the data
and/or directly operate on the continuous data and au-
tomatically discretizing the features based on the data
is preferred, some of these risk factors have been ana-
lyzed by the medical community for decades and the
thresholds have been identified. For instance a bmi of
less than 16 is severely underweight, greater than 40
is extremely obese etc. Hence, we used inputs from a
domain expert to identify the thresholds for discretiz-
ing the numeric features and these are presented in
Table 1.

We also included the difference between the two suc-
cessive measurements as input features. This repre-



sents the “change” in risk factor for the subject. For
the boosting algorithm (RFGB), we used the preset
number of parameters of trees, namely 20. The tree-
depth of the trees were set to 3 and hence we preferred
a reasonably large set of small trees. As mentioned
above, we allowed the algorithm to construct the ag-
gregators on the fly. We compare against learning a
single tree(RPT) of depth 10. This is due to the fact
that every path from root to leaf indicates an interac-
tion between the risk factors and our domain expert
indicated that 10 should be the upper limit of the in-
teractions. We also compared our algorithms against
the standard ML algorithms using the weka package.
Hence, we propositionalized our features by creating
one feature for every measurement at every year. We
included the change (difference between measurements
in successive years) features for the propositional data
set as well. The default parameters for the proposi-
tional classifiers are presented in Table 1. We tried a
few different parameter settings for the algorithms in
Weka and report the best results.

We performed 5-fold cross-validation. Since there is
an unequal distribution of the pos and neg examples
measuring accuracy can be misleading, and hence we
present the area under PR and ROC curves in the next
section.

4. Predicting CAC Levels

Comparison with Propositional Learners: We
present the results of learning to predict CAC-levels
using our algorithms and the standard ML techniques.
A full test set has a very large skew towards one class.
Hence in the test set (since accuracies in relational
data can be very inflated), we sampled twice the num-
ber of negatives as positives. Recall that the positive
class would mean that the CAC-level of the subject
in year 20 is significant (i.e., greater than 0). Ta-
ble 2 compares the results of our techniques — boost-
ing (RFGB) and RPT — against decision-trees (J48),
SVM, AdaBoost, Bagging, Logistic Regression (LR)
and Naive Bayes (NB).

SRL approaches output probabilities instead of labels.
Hence, to measure accuracy, we computed the mean
probability of the true class i.e., 2 3. P(y;|x;) where
y; is the true class label for subject i. Accuracies in this
data set do not really reflect the true performance of
the algorithms and the accuracies of all the algorithms
are very close to each other and there is no significance
in the results (every accuracy was around 0.667). A
key property of most relational data sets is the number
of negative examples. This is also seen in our data set
since most CAC-levels are zero and hence the number

AUC-ROC

Figure 2. AUC ROC values for the different algorithms.

of negatives can be order of magnitude more than the
number of positives. In these cases, simply measuring
accuracy or conditional loglikelihood (CLL) over the
entire data set can be misleading. It can be shown
easily that predicting all the examples as the majority
class (when the number of examples in one class are
far greater than the other) can have a very good CLL
value, but a very low AUC-ROC or AUC-PR value
(nearly 0).

The AUC-ROC results presented in Figure 2 clearly
show that the SRL approaches dominate the proposi-
tional ones. Most of the standard algorithms classify
nearly all the examples as negative and hence pre-
senting accuracies can be misleading. We chose to
present AUC-ROC instead. SVM and AdaBoost clas-
sify all examples as negative while Bagging, LR, Naive
Bayes and J48 classify a very small number of exam-
ples (nearly 5% of positive examples correctly). In
contrast, the SRL approaches have a smoother clas-
sification performance and hence have a higher AUC-
ROC with RFGB having the best ROC.

Detailed Analysis of SRL Algorithms: We
present the Precision Recall curves for the SRL al-
gorithms in Figure 3.a. We did not include the other
algorithms since their PR values were very low. The
boosting approach has a better performance particu-
larly in the medically-relevant high recall region. Eval-
uating precision at high recalls assesses an algorithm’s
ability to predict while disallowing many false nega-
tives, which is the critical component to a good screen-
ing tool. In the case of predicting CAC levels, a false
negative means categorizing a patient as “low-risk”
who goes on to have a heart attack, a costly outcome
we wish to avoid. It is clear that RFGB has a better
precision in high recall regions.

The effect of the number of trees on the performance
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of RFGB is presented in Figure 3.b. We have pre-
sented both the AUC-ROC and AUC-PR values as a
function of the number of trees. As the number of
trees increase, there is an increase in the performance
of RFGB. Also, it can be noted that beyond a certain
number of trees (in our case 10), there is not a signif-
icant increase in the performance. When we look at
the trees closer, it appears that with larger number of
trees (say 30), the last few trees are picking up random
correlations in the data (though the regression values
in the leaves are quite low). Figure 3.c presents the
effect of the depth of the tree when learning a single
tree (i.e., RPT). It appears that the performance of the
algorithm stablizes around a depth of 5. Increasing be-
yond 5 does not have a statistically significant impact
on the performance showing that interactions between
5 risk factors is sufficient to predict the CAC-levels.

Analysis of Learned Relational Models: Fig-
ure 4 illustrates a part of one tree learned. The first
argument a of every predicate is the subject’s ID and
the last argument of every predicate (except sex) indi-
cates the year. The left branch out of every node is the
true branch, the right branch the false branch. The
leaves indicate the probability of cac-level (say p) being
greater than 0. We use _bw in predicates to indicate
that the value of a certain variable is between two val-
ues. For instance, ldl_bw(a, b, 0,100, 10) indicates that
the 1dl level of the person a is b and is between 0 and
100 in year 10.

We are not presenting the entire tree and indicate the
missing branches by dots. As one can see, the first
test checks the sex of the subject. So the first right
probability (box with value 0.05) indicates that if the
person is a female and she does not smoke in year 5,
smoke(a,No,5) where No is the value of smoke, then
p = 0.05. However, if she smokes in year 5, but has
a low ldl cholesterol level in year 7 and does not have
high blood pressure in year 7, then p = 0.2. This
indicates that even if she is a smoker, if her cholesterol
level and blood pressure are under control, she has

Left - True
Right - False

T 0>

Figure 4. Learned Tree for predicting CAC-level greater
than 0. The leaves indicates P(cac(a)) > 0.

low risk. However, if the subject is a male, things are
significantly different. If he is in middle age in year
7 and has a high 1dl level, p = 0.79. If he is young
and has a high cholesterol level in year 7 (under the
age of 35) and he smokes in year 0, then p = 0.97.
When boosting was employed, the shorter trees had
very similar structures. The first tree in fact splits
the population based on sex and then on smoking and
cholesterol respectively.

Prediction Based on Early Adulthood Data
only: We repeated the experiment with one major
change. Instead of considering all the risk factors at all
years, we considered the measurements only till year
10 i.e., only the risk factors from young adulthood.
The goal is again to predict the CAC-level in year 20.
The average AUC-ROC values are 0.77940.01 and are
not significantly different from the ones learned using
the entire data set. This confirms our hypothesis that
the risk factors in young age are responsible for the
cardio-vascular risks in older age thus validating our
claim that changing the lifestyle in younger years can
lead to a healthier life in older years. This validates the
observations made by Loria et al. (Loria et al., 2007)
where individual correlations between risk factors at
different years and CAC-level at year 15 are measured
to show that year O risk factors are as informative as



later years.

4.1. Assessment of the Results

The results were verified by our radiologist, and are
very interesting from a medical perspective for several
reasons: First, as our last set of experiments show, the
risk of CAC levels in later years is mostly indicated by
risk factors in early years (ages 25 through 45). This
is very significant from the point of view of the CAR-
DIA study since the goal is to identify risk factors in
early adult stage so as to prevent cardio-vascular is-
sues in late adulthood. Second, the tree conforms to
some known or hypothesized facts. For instance, it is
believed that females are less prone to cardio-vascular
issues than males. The tree identifies sex as the top
splitting criterion. Similarly, in men, it is believed that
the 1dl and hdl levels are very predictive and the tree
confirms this. It can be seen that all the cases pre-
sented in the earlier paragraph make sense w.r.t clini-
cal knowledge. Third, the tree also identifies complex
interaction between risk factors at different years. For
instance — (i) smoking in year 5 interacts with choles-
terol level in later years in the case of females, and (ii)
the triglyceride level in year 5 interacts with the choles-
terol level in year 7 for males. Finally, the structure
of the tree enables the physician to identify treatable
risk factors and plan preventive treatments leading to
a healthier lifestyle.

5. Conclusion

Coronary heart disease (CHD) kills millions of people
each year. The broadening availability of longitudinal
studies and electronic medical records presents both
opportunities and challenges to apply Al techniques to
improve CHD treatment. We discussed them for the
important problem of identifying risk factors in young
adults that can lead to cardio-vascular issues in their
late adulthood. We addressed the specific problem of
uncovering interactions among risk factors and of using
them for predicting CAC levels in adults given the risk
factor measurements of their youth. Our experimental
results indicate that statistical relational models are
superior to non-relational ones. More importantly, our
learned models were verified by the domain expert and
the results conform to the current clinical knowledge.

Motivated by the initial success of our work, we plan
to pursue research in several different directions. First,
we plan to include all the collected features for train-
ing the models. This will allow one to identify complex
relationships between different types of features such
as demographics and psychosocial etc. Second, while
the boosted set of trees have high predictive accuracy,

they may not necessarily be easy to interpret by physi-
cians. Hence our goal is to convert the set of trees into
a single tree. Finally, we are focussing on understand-
ing the development of risks over time (i.e., explicit
temporal modeling).
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