CS 441 Discrete Mathematics for CS
 Lecture 7

Sets and set operations

Milos Hauskrecht

milos@cs.pitt.edu
5329 Sennott Square

Basic discrete structures

- Discrete math =
- study of the discrete structures used to represent discrete objects
- Many discrete structures are built using sets
- Sets = collection of objects

Examples of discrete structures built with the help of sets:

- Combinations
- Relations
- Graphs

Set

- Definition: A set is a (unordered) collection of objects. These objects are sometimes called elements or members of the set. (Cantor's naive definition)
- Examples:
- Vowels in the English alphabet

$$
V=\{a, e, i, o, u\}
$$

- First seven prime numbers.

$$
X=\{2,3,5,7,11,13,17\}
$$

Representing sets

Representing a set by:

1) Listing (enumerating) the members of the set.
2) Definition by property, using the set builder notation

$$
\{\mathrm{x} \mid \mathrm{x} \text { has property } \mathrm{P}\} .
$$

Example:

- Even integers between 50 and 63.

1) $\mathrm{E}=\{50,52,54,56,58,60,62\}$
2) $E=\{x \mid 50<=x<63, x$ is an even integer $\}$

If enumeration of the members is hard we often use ellipses.
Example: a set of integers between 1 and 100

$$
\cdot A=\{1,2,3 \ldots, 100\}
$$

Important sets in discrete math

- Natural numbers:
$-\mathbf{N}=\{0,1,2,3, \ldots\}$
- Integers
$-\mathbf{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$
- Positive integers
$-\mathbf{Z}^{+}=\{1,2,3 \ldots$.
- Rational numbers
$-\mathbf{Q}=\{p / q \mid p \in Z, q \in Z, q \neq 0\}$
- Real numbers
- R

Russell's paradox

Cantor's naive definition of sets leads to Russell's paradox:

- Let $S=\{\mathbf{x} \mid \mathbf{x} \notin \mathbf{x}\}$, is a set of sets that are not members of themselves.
- Question: Where does the set \mathbf{S} belong to?
- Is $S \in S$ or $S \notin S$?
- Cases
$-\mathbf{S} \in \mathbf{S}$?: S does not satisfy the condition so it must hold that $S \notin S$ (or $S \in S$ does not hold)
$-\mathbf{S} \notin \mathbf{S}$?: S is included in the set S and hence $S \notin S$ does not hold
- A paradox: we cannot decide if S belongs to S or not
- Russell's answer: theory of types - used for sets of sets

Equality

Definition: Two sets are equal if and only if they have the same elements.

Example:

- $\{1,2,3\}=\{3,1,2\}=\{1,2,1,3,2\}$

Note: Duplicates don't contribute anything new to a set, so remove them. The order of the elements in a set doesn't contribute anything new.

Example: Are $\{1,2,3,4\}$ and $\{1,2,2,4\}$ equal?
No!

Special sets

- Special sets:
- The universal set is denoted by \mathbf{U} : the set of all objects under the consideration.
- The empty set is denoted as \varnothing or $\{$ \}.

Venn diagrams

- A set can be visualized using Venn Diagrams:
$-\mathrm{V}=\{\mathrm{A}, \mathrm{B}, \mathrm{C}\}$

A Subset

- Definition: A set A is said to be a subset of B if and only if every element of A is also an element of B . We use $\mathbf{A} \subseteq \mathbf{B}$ to indicate \mathbf{A} is a subset of \mathbf{B}.

- Alternate way to define A is a subset of B :

$$
\forall \mathrm{x}(\mathrm{x} \in \mathrm{~A}) \rightarrow(\mathrm{x} \in \mathrm{~B})
$$

Empty set/Subset properties

Theorem $\varnothing \subseteq S$

- Empty set is a subset of any set.

Proof:

- Recall the definition of a subset: all elements of a set A must be also elements of B: $\forall x(x \in A \rightarrow x \in B)$.
- We must show the following implication holds for any S $\forall \mathrm{x}(\mathrm{x} \in \varnothing \rightarrow \mathrm{x} \in \mathrm{S})$
- Since the empty set does not contain any element, $x \in \varnothing$ is always False
- Then the implication is always True.

End of proof

Subset properties

Theorem: $\mathrm{S} \subseteq \mathrm{S}$

- Any set S is a subset of itself

Proof:

- the definition of a subset says: all elements of a set A must be also elements of B: $\forall x(x \in A \rightarrow x \in B)$.
- Applying this to S we get:
- $\forall x(x \in S \rightarrow x \in S)$ which is trivially True
- End of proof

Note on equivalence:

- Two sets are equal if each is a subset of the other set.

A proper subset

Definition: A set A is said to be a proper subset of B if and only if $\mathbf{A} \subseteq \mathbf{B}$ and $\mathbf{A} \neq \mathbf{B}$. We denote that A is a proper subset of B with the notation $\mathrm{A} \subset \mathrm{B}$.

A proper subset

Definition: A set A is said to be a proper subset of B if and only if $\mathbf{A} \subseteq \mathbf{B}$ and $\mathbf{A} \neq \mathbf{B}$. We denote that A is a proper subset of B with the notation $\mathrm{A} \subset \mathrm{B}$.

Example: $A=\{1,2,3\} B=\{1,2,3,4,5\}$
Is: $\mathrm{A} \subset \mathrm{B}$? Yes.

Cardinality

Definition: Let S be a set. If there are exactly n distinct elements in S , where n is a nonnegative integer, we say S is a finite set and that n is the cardinality of S. The cardinality of S is denoted by | $\mathbf{S} \mid$.

Examples:

- $V=\{1234$ 5
$|V|=5$
- $A=\{1,2,3,4, \ldots, 20\}$
$|A|=20$
- $|\varnothing|=0$

Infinite set

Definition: A set is infinite if it is not finite.

Examples:

- The set of natural numbers is an infinite set.
- $\mathrm{N}=\{1,2,3, \ldots\}$
- The set of reals is an infinite set.

Power set

Definition: Given a set S, the power set of S is the set of all subsets of S. The power set is denoted by $\mathbf{P}(\mathbf{S})$.

Examples:

- Assume an empty set \varnothing
- What is the power set of \varnothing ? $\mathrm{P}(\varnothing)=\{\varnothing\}$
- What is the cardinality of $\mathrm{P}(\varnothing)$? $|\mathrm{P}(\varnothing)|=1$.
- Assume set $\{1\}$
- $P(\{1\})=\{\varnothing,\{1\}\}$
- $|\mathrm{P}(\{1\})|=2$

Power set

- $P(\{1\})=\{\varnothing,\{1\}\}$
- $|\mathrm{P}(\{1\})|=2$
- Assume $\{1,2\}$
- $P(\{1,2\})=\{\varnothing,\{1\},\{2\},\{1,2\}\}$
- $|\mathrm{P}(\{1,2\})|=4$
- Assume $\{1,2,3\}$
- $P(\{1,2,3\})=\{\varnothing,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}$
- $\mid \mathrm{P}(\{1,2,3\} \mid=8$
- If S is a set with $|S|=n$ then $|P(S)|=$?

Power set

- $P(\{1\})=\{\varnothing,\{1\}\}$
- $|\mathrm{P}(\{1\})|=2$
- Assume $\{1,2\}$
- $P(\{1,2\})=\{\varnothing,\{1\},\{2\},\{1,2\}\}$
- $|P(\{1,2\})|=4$
- Assume $\{1,2,3\}$
- $P(\{1,2,3\})=\{\varnothing,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}$
- $\mid \mathrm{P}(\{1,2,3\} \mid=8$
- If S is a set with $|S|=n$ then $|P(S)|=2^{n}$

N-tuple

- Sets are used to represent unordered collections.
- Ordered-n tuples are used to represent an ordered collection.

Definition: An ordered n-tuple ($\mathrm{x} 1, \mathrm{x} 2, \ldots, \mathrm{xN}$) is the ordered collection that has x 1 as its first element, x 2 as its second element, \ldots, and xN as its N -th element, $\mathrm{N} \geq 2$.

Example:

- Coordinates of a point in the 2-D plane $(12,16)$

Cartesian product

Definition: Let S and T be sets. The Cartesian product of S and T, denoted by S x T, is the set of all ordered pairs (s, t), where s $\in S$ and $t \in T$. Hence,

- $\quad S \times T=\{(s, t) \mid s \in S \wedge t \in T\}$.

Examples:

- $\quad S=\{1,2\}$ and $T=\{a, b, c\}$
- $\quad \mathrm{S} \times \mathrm{T}=\{(1, a),(1, b),(1, c),(2, a),(2, b),(2, c)\}$
- \quad TxS = $(\mathrm{a}, 1),(\mathrm{a}, 2),(\mathrm{b}, 1),(\mathrm{b}, 2),(\mathrm{c}, 1),(\mathrm{c}, 2)\}$
- Note: S x T $=$ T x S !!!!

Cardinality of the Cartesian product

- $|S \times T|=|S| *|T|$.

Example:

- A= \{John, Peter, Mike $\}$
- $B=\{$ Jane, Ann, Laura $\}$
- A x B= \{(John, Jane),(John, Ann) , (John, Laura), (Peter, Jane), (Peter, Ann) , (Peter, Laura) , (Mike, Jane) , (Mike, Ann) , (Mike, Laura) \}
- $|\mathrm{A} \times \mathrm{B}|=9$
- $|\mathrm{A}|=3,|\mathrm{~B}|=3 \rightarrow|\mathrm{~A}||\mathrm{B}|=9$

Definition: A subset of the Cartesian product A x B is called a relation from the set A to the set B.

Set operations

Definition: Let A and B be sets. The union of A and B, denoted by $A \cup B$, is the set that contains those elements that are either in A or in B, or in both.

- Alternate: $A \cup B=\{x \mid x \in A \vee x \in B\}$.

- Example:
- $A=\{1,2,3,6\} \quad B=\{2,4,6,9\}$
- $A \cup B=\{1,2,3,4,6,9\}$

Set operations

Definition: Let A and B be sets. The intersection of A and B, denoted by $\mathrm{A} \cap \mathrm{B}$, is the set that contains those elements that are in both A and B .

- Alternate: $A \cap B=\{x \mid x \in A \wedge x \in B\}$.

Example:

- $A=\{1,2,3,6\} \quad B=\{2,4,6,9\}$
- $A \cap B=\{2,6\}$

Disjoint sets

Definition: Two sets are called disjoint if their intersection is empty.

- Alternate: A and B are disjoint if and only if $A \cap B=\varnothing$.

Example:

- $A=\{1,2,3,6\} \quad B=\{4,7,8\} \quad$ Are these disjoint?
- Yes.
- $\mathrm{A} \cap \mathrm{B}=\varnothing$

Cardinality of the set union

Cardinality of the set union.

- $|A \cup B|=|A|+|B|-|A \cap B|$

- Why this formula?

Cardinality of the set union

Cardinality of the set union.

- $|A \cup B|=|A|+|B|-|A \cap B|$

- Why this formula? Correct for an over-count.
- More general rule:
- The principle of inclusion and exclusion.

Set difference

Definition: Let A and B be sets. The difference of A and B, denoted by $\mathbf{A}-\mathbf{B}$, is the set containing those elements that are in A but not in B. The difference of A and B is also called the complement of B with respect to A .

- Alternate: $\mathrm{A}-\mathrm{B}=\{\mathrm{x} \mid \mathrm{x} \in \mathrm{A} \wedge \mathrm{x} \notin \mathrm{B}\}$.

Example: $A=\{1,2,3,5,7\} \quad B=\{1,5,6,8\}$

- $\mathrm{A}-\mathrm{B}=\{2,3,7\}$

