Course administration

- **Homework 6 is out**
 Due on Friday, March 3, 2006 or earlier (TA office)

- **Homework 7 is out, due on March 17, 2006**

Course web page:
http://www.cs.pitt.edu/~milos/courses/cs441/
Proofs

Basic proof methods:
- Direct, Indirect, Contradiction, By Cases, Equivalences

Proof of quantified statements:
- **There exists x with some property P(x).**
 - It is sufficient to find one element for which the property holds.
- **For all x some property P(x) holds.**
 - Proofs of ‘For all x some property P(x) holds’ must cover all x and can be harder.
- **Mathematical induction** is the technique that can be applied to prove the universal statements for sets of positive integers or their associated sequences.

Mathematical induction

- Used to prove statements of the form $\forall x P(x)$ where $x \in \mathbb{Z}^+$

Mathematical induction proofs consists of two steps:
1) **Basis:** The proposition $P(1)$ is true.
2) **Inductive Step:** The implication $P(n) \rightarrow P(n+1)$, is true for all positive n.
- Therefore we conclude $\forall x P(x)$.

- **Based on the well-ordering property:** Every nonempty set of nonnegative integers has a least element.
Mathematical induction

Example: Prove the sum of first n odd integers is n^2.
 i.e. $1 + 3 + 5 + 7 + ... + (2n - 1) = n^2$ for all positive integers.

Proof:
• What is $P(n)$? $P(n): 1 + 3 + 5 + 7 + ... + (2n - 1) = n^2$

Basic Step
Mathematical induction

Example: Prove the sum of first n odd integers is n^2.

i.e. $1 + 3 + 5 + 7 + \ldots + (2n - 1) = n^2$ for all positive integers.

Proof:

- What is $P(n)$?
 - $P(n)$: $1 + 3 + 5 + 7 + \ldots + (2n - 1) = n^2$

Basis Step Show $P(1)$ is true

- Trivial: $1 = 1^2$

Inductive Step Show if $P(n)$ is true then $P(n+1)$ is true for all n.

-
Mathematical induction

Example: Prove the sum of first \(n \) odd integers is \(n^2 \).

i.e. \(1 + 3 + 5 + 7 + \ldots + (2n - 1) = n^2 \) for all positive integers.

Proof:

- What is \(P(n) \)? \(P(n) \): \(1 + 3 + 5 + 7 + \ldots + (2n - 1) = n^2 \)

Basis Step Show \(P(1) \) is true

- Trivial: \(1 = 1^2 \)

Inductive Step Show if \(P(n) \) is true then \(P(n+1) \) is true for all \(n \).

- Suppose \(P(n) \) be true, that is \(1 + 3 + 5 + 7 + \ldots + (2n - 1) = n^2 \)

- Show \(P(n+1) \): \(1 + 3 + 5 + 7 + \ldots + (2n - 1) + (2n + 1) = (n+1)^2 \) follows:

- \(\underbrace{1 + 3 + 5 + 7 + \ldots + (2n - 1)}_{n^2} + (2n + 1) = (n+1)^2 \)

Correctness of the mathematical induction

Suppose \(P(1) \) is true and \(P(n) \) \(\rightarrow P(n+1) \) is true for all positive integers \(n \). Want to show \(\forall x \ P(x) \).
Correctness of the mathematical induction

Suppose $P(1)$ is true and $P(n) \rightarrow P(n+1)$ is true for all positive integers n. Want to show $\forall x \ P(x)$.

Assume there is at least one n such that $P(n)$ is false. Let S be the set of nonnegative integers where $P(n)$ is false. Thus $S \neq \emptyset$.

Well-Ordering Property: Every nonempty set of nonnegative integers has a least element.
Correctness of the mathematical induction

Suppose $P(1)$ is true and $P(n) \rightarrow P(n+1)$ is true for all positive integers n. Want to show $\forall x \ P(x)$.

Assume there is at least one n such that $P(n)$ is false. Let S be the set of nonnegative integers where $P(n)$ is false. Thus $S \neq \emptyset$.

Well-Ordering Property: Every nonempty set of nonnegative integers has a least element.

By the Well-Ordering Property, S has a least member, say k. $k > 1$, since $P(1)$ is true. This implies $k - 1 > 0$ and $P(k-1)$ is true (since remember k is the smallest integer where $P(k)$ is false).

Now:

$P(k-1) \rightarrow P(k)$ is true

thus, $P(k)$ must be true (a contradiction).

- Therefore $\forall x \ P(x)$.

Correctness of the mathematical induction

Suppose $P(1)$ is true and $P(n) \rightarrow P(n+1)$ is true for all positive integers n. Want to show $\forall x \ P(x)$.

Assume there is at least one n such that $P(n)$ is false. Let S be the set of nonnegative integers where $P(n)$ is false. Thus $S \neq \emptyset$.

Well-Ordering Property: Every nonempty set of nonnegative integers has a least element.

By the Well-Ordering Property, S has a least member, say k. $k > 1$, since $P(1)$ is true. This implies $k - 1 > 0$ and $P(k-1)$ is true (since remember k is the smallest integer where $P(k)$ is false).

Now:

$P(k-1) \rightarrow P(k)$ is true

thus, $P(k)$ must be true (a contradiction).

- Therefore $\forall x \ P(x)$.

Mathematical induction

Example: Prove $n < 2^n$ for all positive integers n.

- $P(n): n < 2^n$

Basis Step: $1 < 2^1$ (obvious)

Inductive Step: If $P(n)$ is true then $P(n+1)$ is true for each n.

- Suppose $P(n): n < 2^n$ is true
- Show $P(n+1): n+1 < 2^{n+1}$ is true.
Mathematical induction

Example: Prove \(n < 2^n \) for all positive integers \(n \).
- \(P(n): \ n < 2^n \)

Basis Step: \(1 < 2^1 \) (obvious)

Inductive Step: If \(P(n) \) is true then \(P(n+1) \) is true for each \(n \).
- Suppose \(P(n): \ n < 2^n \) is true
- Show \(P(n+1): \ n+1 < 2^{n+1} \) is true.
 \[
 n + 1 < 2^n + 1
 < 2^n + 2^n
 = 2^n (1 + 1)
 = 2^n (2)
 = 2^{n+1}
 \]

Mathematical induction

Example: Prove \(n^3 - n \) is divisible by 3 for all positive integers.
- \(P(n): \ n^3 - n \) is divisible by 3

Basis Step: \(P(1): \ 1^3 - 1 = 0 \) is divisible by 3 (obvious)
Mathematical induction

Example: Prove $n^3 - n$ is divisible by 3 for all positive integers.

• $P(n)$: $n^3 - n$ is divisible by 3

Basis Step: $P(1)$: $1^3 - 1 = 0$ is divisible by 3 (obvious)

Inductive Step: If $P(n)$ is true then $P(n+1)$ is true for each positive integer.

• Suppose $P(n)$: $n^3 - n$ is divisible by 3 is true.
• Show $P(n+1)$: $(n+1)^3 - (n+1)$ is divisible by 3.

$(n+1)^3 - (n+1) = n^3 + 3n^2 + 3n + 1 - n - 1$

$\begin{align*}
&= n^3 - n + 3n^2 + 3n \\
&= (n^3 - n) + 3(n^2 + n)
\end{align*}$

\therefore divisible by 3 divisible by 3
Strong induction

- The regular induction:
 - uses the basic step \(P(1) \) and
 - inductive step \(P(n-1) \rightarrow P(n) \)

- Strong induction uses:
 - Uses the basis step \(P(1) \) and
 - inductive step \(P(1) \) and \(P(2) \) \(\ldots \) \(P(n-1) \rightarrow P(n) \)

Example: Show that a positive integer greater than 1 can be written as a product of primes.

Strong induction

Example: Show that a positive integer greater than 1 can be written as a product of primes.

Assume \(P(n) \): an integer \(n \) can be written as a product of primes.

Basis step: \(P(2) \) is true

Inductive step: Assume true for \(P(2), P(3), \ldots P(n) \)

Show that \(P(n+1) \) is true as well.
Strong induction

Example: Show that a positive integer greater than 1 can be written as a product of primes.

Assume P(n): an integer n can be written as a product of primes.

Basis step: P(2) is true

Inductive step: Assume true for P(2), P(3), … P(n)

Show that P(n+1) is true as well.

2 **Cases:**

- If n+1 is a prime then P(n+1) is trivially true
- If n+1 is a composite then it can be written as a product of two integers (n+1) = a*b such that 1 < a, b < n+1
Strong induction

Example: Show that a positive integer greater than 1 can be written as a product of primes.

Assume P(n): an integer n can be written as a product of primes.

Basis step: P(2) is true

Inductive step: Assume true for P(2), P(3), … P(n)

Show that P(n+1) is true as well.

2 Cases:

- If n+1 is a prime then P(n+1) is trivially true
- If n+1 is a composite then it can be written as a product of two integers (n+1) = a*b such that 1 < a, b < n+1
- From the assumption P(a) and P(b) holds.
- Thus, n+1 can be written as a product of primes
- **End of proof**