Congruencies

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Modular arithmetic

• In computer science we often care about the remainder of an integer when it is divided by some positive integer.

Problem: Assume that it is a midnight. What is the time on the 24 hour clock after 50 hours?

Answer: ?
Modular arithmetic

- In computer science we often care about the remainder of an integer when it is divided by some positive integer.

Problem: Assume that it is a midnight. What is the time on the 24 hour clock after 50 hours?

Answer: the result is 2am

How did we arrive to the result:
- Divide 50 with 24. The reminder is the time on the 24 hour clock.
 - $50 = 2*24 + 2$
 - so the result is 2am.

Congruency

Definition: If a and b are integers and m is a positive integer, then a is congruent to b modulo n if m divides $a-b$. We use the notation $a \equiv b \pmod{m}$ to denote the congruency. If a and b are not congruent we write $a \not\equiv b \pmod{m}$.

Example:
- Determine if 17 is congruent to 5 modulo 6?
Congruency

Definition: If a and b are integers and m is a positive integer, then
[a is congruent to b modulo n](#) if m divides a-b. We use the notation \(a \equiv b \pmod{m} \) to denote the congruency. If a and b are not congruent we write \(a \not\equiv b \pmod{m} \).

Example:
- Determine if 17 is congruent to 5 modulo 6?
- 17 - 5 = 12,
- 6 divides 12
- so 17 is congruent to 5 modulo 6.

Theorem. If a and b are integers and m a positive integer. Then
\(a \equiv b \pmod{m} \) if and only if \((a \mod m) = (b \mod m) \).

Example:
- Determine if 17 is congruent to 5 modulo 6?
- 17 mod 6 = …
Congruency

Theorem. If a and b are integers and m a positive integer. Then $a \equiv b \pmod{m}$ if and only if $(a \mod m) = (b \mod m)$.

Example:
- Determine if 17 is congruent to 5 modulo 6?
- $17 \mod 6 = 5$
- $5 \mod 6 = 5$
- Thus 17 is congruent to 5 modulo 6.
Congruencies: properties

Theorem 1. Let \(m \) be a positive integer. The integers \(a \) and \(b \) are congruent modulo \(m \) if and only if there exists an integer \(k \) such that \(a=b+mk \).

Theorem 2. Let \(m \) be a positive integer. If \(a \equiv b \pmod{m} \) and \(c \equiv d \pmod{m} \) then:
\[
 a+c \equiv b+d \pmod{m} \quad \text{and} \quad ac \equiv bd \pmod{m}.
\]

Modular arithmetic in CS

Modular arithmetic and congruencies are used in CS:

- **Pseudorandom number generators**
 - Generate a sequence of random numbers from some interval

- **Hash functions**
 - Identify how to map information that would need to a large sparse table into a small compact table

- **Cryptology**
 - Prevent other people from reading the transmitted messages
Pseudorandom number generators

- Any randomness in the program is implemented using random number generators that generate a sequence of random numbers from some interval
 - The chance of picking any number in the interval is uniform

- Pseudorandom number generators: use a simple formula to define the sequence:
 - The sequence looks like it was generated randomly
 - The next element in the sequence is a deterministic function of the previous element.
 - Typically based on the modulo operation.

Next: the Linear congruential method

Linear congruential method

- We choose 4 numbers:
 - the modulus m,
 - multiplier a,
 - increment c, and
 - seed x_0, such that $2 \leq a < m$, $0 \leq c < m$, $0 \leq x_0 < m$.

- We generate a sequence of numbers $x_1, x_2, x_3, \ldots, x_n, \ldots$ such that $0 \leq x_n < m$ for all n by successively using the congruence:
 - $x_{n+1} = a(x_n + c) \mod m$
Pseudorandom number generators

Linear congruential method:
• \(x_{n+1} = (a \cdot x_n + c) \mod m \)

Example:
• Assume: \(m=9, a=7, c=4, x_0 = 3 \)

• \(x_1 = 7 \cdot 3 + 4 \mod 9 = 25 \mod 9 = 7 \)
• \(x_2 = 53 \mod 9 = 8 \)
• \(x_3 = 60 \mod 9 = 6 \)
• \(x_4 = \)
Pseudorandom number generators

Linear congruential method:
• \(x_{n+1} = a \cdot (x_n + c) \mod m \)

Example:
• Assume: \(m=9, a=7, c=4, x_0 = 3 \)
 • \(x_1 = 7 \cdot 3 + 4 \mod 9 = 25 \mod 9 = 7 \)
 • \(x_2 = 53 \mod 9 = 8 \)
 • \(x_3 = 60 \mod 9 = 6 \)
 • \(x_4 = 46 \mod 9 = 1 \)
 • \(x_5 = \)

• \(x_6 = \)
Pseudorandom number generators

Linear congruential method:
• \(x_{n+1} = a \cdot (x_n + c) \mod m \)

Example:
• Assume: \(m=9, a=7, c=4, x_0 = 3 \)

\[
\begin{align*}
x_1 &= 7 \cdot 3 + 4 \mod 9 = 25 \mod 9 = 7 \\
x_2 &= 53 \mod 9 = 8 \\
x_3 &= 60 \mod 9 = 6 \\
x_4 &= 46 \mod 9 = 1 \\
x_5 &= 11 \mod 9 = 2 \\
x_6 &= 18 \mod 9 = 0 \\
&...
\end{align*}
\]

Cryptology

Encryption of messages.
• An idea: Shift letters in the message
 – e.g. A is shifted to D (a shift by 3)

How to represent the idea of a shift by 3?
• There are 26 letters in the alphabet. Assign each of them a number from 0, 1, 2, 3, .. 25 according to the alphabetical order.

\[
\begin{array}{cccccccccccccccccccc}
\end{array}
\]

• The encryption of the letter with an index \(p \) is represented as:
 • \(f(p) = (p + 3) \mod 26 \)
Cryptology

Encryption of messages using a shift by 3.

• The encryption of the letter with an index p is represented as:

 \[f(p) = (p + 3) \mod 26 \]

Coding of letters:

| A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Z |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |

• Encrypt message:

 – I LIKE DISCRETE MATH

 – L
Cryptology

Encryption of messages using a shift by 3.

• The encryption of the letter with an index p is represented as:
 $$ f(p) = (p + 3) \mod 26 $$

Coding of letters:

| A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |

• Encrypt message:

 – I \text{ LIKE DISCRETE MATH}

 – L \text{ 0L}
Cryptology

Encryption of messages using a shift by 3.

- The encryption of the letter with an index \(p \) is represented as:
 - \(f(p) = (p + 3) \mod 26 \)

Coding of letters:

```
A B C D E F G H I J K L M N O P Q R S T U Y V X W Z
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
```

- Encrypt message:
 - I LIKE DISCRETE MATH
 - L 0LNH GLYFUHVH PDVK.
Cryptology

How to decode the message?

• The encryption of the letter with an index \(p \) is represented as:

 \[f(p) = (p + 3) \mod 26 \]

Coding of letters:

A B C D E F G H I J K L M N O P Q R S T U Y V X W Z
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

• What is method you would use to decode the message:

\[f^{-1}(p) = (p-3) \mod 26 \]
Cryptology

How to decode the message?
- The encryption of the letter with an index \(p \) is represented as:
 - \(f(p) = (p + 3) \mod 26 \)

Coding of letters:

\[
\begin{array}{cccccccccccccccccccc}
\end{array}
\]

- What is method would you use to decode the message:
 - \(f^{-1}(p) = (p-3) \mod 26 \)

- L 0LNH GLYFUHVH PDVK
How to decode the message?

- The encryption of the letter with an index p is represented as:
 - $f(p) = (p + 3) \mod 26$

Coding of letters:

| A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Z |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |

- What is the method you would use to decode the message?
 - $f^{-1}(p) = (p - 3) \mod 26$

- L 0LNH GLYFUHVH PDVK
- I LIKE DISCRETE MATH