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Time Series

• A time series is a sequential set of data points, measured
typically over successive times.

• Time series analysis comprises methods for analyzing time
series data in order to extract meaningful statistics and other
characteristics of the data.
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Categories and Terminologies

• Time-domain vs. Frequency-domain

– Time-domain approach: how does what happened today affect
what will happen tomorrow?
These approaches view the investigation of lagged relationships
as most important, e.g. autocorrelation analysis.

– Frequency-domain approach: what is the economic cycle
through periods of expansion and recession?
These approaches view the investigation of cycles as most
important, e.g. spectral analysis and wavelet analysis.

• This lecture will focus on time-domain approaches.
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Categories and Terminologies (cont.)

• univariate vs. multivariate
A time series containing records of a single variable is termed
as univariate, but if records of more than one variable are
considered then it is termed as multivariate.

• linear vs. non-linear
A time series model is said to be linear or non-linear
depending on whether the current value of the series is a
linear or non-linear function of past observations.

• discrete vs. continuous
In a continuous time series observations are measured at every
instance of time, whereas a discrete time series contains
observations measured at discrete points in time.

• This lecture will focus on univariate, linear, discrete time
series.
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Components of a Time Series
• In general, a time series is affected by four components, i.e.

trend, seasonal,cyclical and irregular components.
– Trend

The general tendency of a time series to increase, decrease or
stagnate over a long period of time.
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The price of chicken: monthly whole bird spot price, Georgia docks, US
cents per pound, August 2001 to July 2016, with fitted linear trend line.
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Components of a Time Series (cont.)
• In general, a time series is affected by four components, i.e.

trend, seasonal,cyclical and irregular components.
– Seasonal variation

This component explains fluctuations within a year during the
season, usually caused by climate and weather conditions,
customs, traditional habits, etc.
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Components of a Time Series (cont.)
• In general, a time series is affected by four components, i.e.

trend, seasonal,cyclical and irregular components.
– Cyclical variation

This component describes the medium-term changes caused by
circumstances, which repeat in cycles. The duration of a cycle
extends over longer period of time.Cardiovascular Mortality
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Average weekly cardiovascular mortality in Los Angeles County. There are
508 six-day smoothed averages obtained by filtering daily values over the
10 year period 1970-1979.
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Components of a Time Series (cont.)

• In general, a time series is affected by four components, i.e.
trend, seasonal,cyclical and irregular components.

– Irregular variation
Irregular or random variations in a time series are caused by
unpredictable influences, which are not regular and also do not
repeat in a particular pattern.
These variations are caused by incidences such as war, strike,
earthquake, flood, revolution, etc.
There is no defined statistical technique for measuring random
fluctuations in a time series.
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Combination of Four Components

• Considering the effects of these four components, two
different types of models are generally used for a time series.

– Additive Model

Y (t) = T (t) + S(t) + C (t) + I (t)

Assumption: These four components are independent of each
other.

– Multiplicative Model

Y (t) = T (t)× S(t)× C (t)× I (t)

Assumption: These four components of a time series are not
necessarily independent and they can affect one another.
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Time Series Example: White Noise

• White Noise
– A simple time series could be a collection of uncorrelated

random variables, {wt}, with zero mean µ = 0 and finite
variance σ2

w , denoted as wt ∼ wn(0, σ2
w ).

• Gaussian White Noise
– A particular useful white noise is Gaussian white noise, wherein

the wt are independent normal random variables (with mean 0
and variance σ2

w ), denoted as wt ∼ iid N (0, σ2
w ).

• White noise time series is of great interest because if the
stochastic behavior of all time series could be explained in
terms of the white noise model, then classical statistical
methods would suffice.
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Time Series Example: Random Walk

• A random walk is the process by which randomly-moving
objects wander away from where they started.

• Consider a simple 1-D process:

– The value of the time series at time t is the value of the series
at time t − 1 plus a completely random movement determined
by wt . More generally, a constant drift factor δ is introduced.

Xt = δ + Xt−1 + wt = δt +
t∑

i=1
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Time Series Analysis

• The procedure of using known data values to fit a time series
with suitable model and estimating the corresponding
parameters. It comprises methods that attempt to understand
the nature of the time series and is often useful for future
forecasting and simulation.

• There are several ways to build time series forecasting models,
but this lecture will focus on stochastic process.

– We assume a time series can be defined as a collection of
random variables indexed according to the order they are
obtained in time, X1,X2,X3, . . . t will typically be discrete and
vary over the integers t = 0,±1,±2, . . .

– Note that the collection of random variables {Xt} is referred to
as a stochastic process, while the observed values are referred
to as a realization of the stochastic process.
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Measures of Dependence

• A complete description of a time series, observed as a
collection of n random variables at arbitrary time points
t1, t2, . . . , tn, for any positive integer n, is provided by the
joint distribution function, evaluated as the probability that
the values of the series are jointly less than the n constants,
c1, c2, . . . , cn; i.e.,

Ft1,t2,...,tn(c1, c2, . . . , cn) = Pr(Xt1 ≤ c1,Xt2 ≤ c2, . . . ,Xtn ≤ cn).

• Unfortunately, these multidimensional distribution functions
cannot usually be written easily.

• Therefore some informative descriptive measures can be
useful, such as mean function and more.
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Measurement Functions

• Mean function
– The mean function is defined as

µt = µXt = E [Xt ] =

∫ ∞
−∞

xft(x)dx ,

provided it exists, where E denotes the usual expected value
operator.

• Clearly for white noise series, µwt = E [wt ] = 0 for all t.

• For random walk with drift (δ 6= 0),

µXt = E [Xt ] = δt +
t∑

i=1

E [wi ] = δt
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Autocovariance for Time Series

• Lack of independence between adjacent values in time series
Xs and Xt can be numerically assessed.
• Autocovariance Function

– Assuming the variance of Xt is finite, the autocovariance
function is defined as the second moment product

γ(s, t) = γX (s, t) = cov(Xs ,Xt) = E [(Xs − µs)(Xt − µt)],

for all s and t.
– Note that γ(s, t) = γ(t, s) for all time points s and t.

• The autocovariance measures the linear dependence between
two points on the same series observed at different times.

– Very smooth series exhibit autocovariance functions that stay
large even when the t and s are far apart, whereas choppy
series tend to have autocovariance functions that are nearly
zero for large separations.
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Autocorrelation for Time Series

• Autocorrelation Function (ACF)
– The autocorrelation function is defined as

ρ(s, t) =
γ(s, t)√

γ(s, s)γ(t, t)

– According to Cauchy-Schwarz inequality

|γ(s, t)|2 ≤ γ(s, s)γ(t, t),

it’s easy to show that −1 ≤ ρ(s, t) ≤ 1.

• ACF measures the linear predictability of Xt using only Xs .

– If we can predict Xt perfectly from Xs through a linear
relationship, then ACF will be either +1 or −1.
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Stationarity of Stochastic Process

• Forecasting is difficult as time series is non-deterministic in
nature, i.e. we cannot predict with certainty what will occur
in the future.
• But the problem could be a little bit easier if the time series is

stationary: you simply predict its statistical properties will be
the same in the future as they have been in the past!

– A stationary time series is one whose statistical properties such
as mean, variance, autocorrelation, etc. are all constant over
time.

• Most statistical forecasting methods are based on the
assumption that the time series can be rendered
approximately stationary after mathematical transformations.

18 / 77



Which of these are stationary?
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Strict Stationarity

• There are two types of stationarity, i.e. strictly stationary and
weakly stationary.
• Strict Stationarity

– The time series {Xt , t ∈ Z} is said to be strictly stationary if
the joint distribution of (Xt1 ,Xt2 , . . . ,Xtk ) is the same as that
of (Xt1+h,Xt2+h, . . . ,Xtk+h).

– In other words, strict stationarity means that the joint
distribution only depends on the “difference” h, not the time
(t1, t2, . . . , tk).

• However in most applications this stationary condition is too
strong.
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Weak Stationarity

• Weak Stationarity
– The time series {Xt , t ∈ Z} is said to be weakly stationary if

1 E [X 2
t ] <∞, ∀t ∈ Z;

2 E [Xt ] = µ, ∀t ∈ Z;
3 γX (s, t) = γX (s + h, t + h), ∀s, t, h ∈ Z.

– In other words, a weakly stationary time series {Xt} must have
three features: finite variation, constant first moment, and
that the second moment γX (s, t) only depends on |t − s| and
not depends on s or t.

• Usually the term stationary means weakly stationary, and
when people want to emphasize a process is stationary in the
strict sense, they will use strictly stationary.
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Remarks on Stationarity

• Strict stationarity does not assume finite variance thus strictly
stationary does NOT necessarily imply weakly stationary.

– Processes like i.i.d Cauchy is strictly stationary but not weakly
stationary.

• A nonlinear function of a strictly stationary time series is still
strictly stationary, but this is not true for weakly stationary.

• Weak stationarity usually does not imply strict stationarity as
higher moments of the process may depend on time t.

• If time series {Xt} is Gaussian (i.e. the distribution functions
of {Xt} are all multivariate Gaussian), then weakly stationary
also implies strictly stationary. This is because a multivariate
Gaussian distribution is fully characterized by its first two
moments.
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Autocorrelation for Stationary Time Series

• Recall that the autocovariance γX (s, t) of stationary time
series depends on s and t only through |s − t|, thus we can
rewrite notation s = t + h, where h represents the time shift.

γX (t + h, t) = cov(Xt+h,Xt) = cov(Xh,X0) = γ(h, 0) = γ(h)

• Autocovariance Function of Stationary Time Series

γ(h) = cov(Xt+h,Xt) = E [(Xt+h − µ)(Xt − µ)]

• Autocorrelation Function of Stationary Time Series

ρ(h) =
γ(t + h, t)√

γ(t + h, t + h)γ(t, t)
=
γ(h)

γ(0)
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Partial Autocorrelation

• Another important measure is called partial autocorrelation,
which is the correlation between Xs and Xt with the linear
effect of “everything in the middle” removed.
• Partial Autocorrelation Function (PACF)

– For a stationary process Xt , the PACF (denoted as φhh), for
h = 1, 2, . . . is defined as

φ11 = corr(Xt+1,Xt) = ρ1

φhh = corr(Xt+h − X̂t+h,Xt − X̂t), h ≥ 2

where X̂t+h and X̂t is defined as:

X̂t+h = β1Xt+h−1 + β2Xt+h−2 + · · ·+ βh−1Xt+1

X̂t = β1Xt+1 + β2Xt+2 + · · ·+ βh−1Xt+h−1

– If Xt is Gaussian, then φhh is actually conditional correlation

φhh = corr(Xt ,Xt+h|Xt+1,Xt+2, . . . ,Xt+h−1)
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ARIMA Models

• ARIMA is an acronym that stands for Auto-Regressive
Integrated Moving Average. Specifically,

– AR Autoregression. A model that uses the dependent
relationship between an observation and some number of
lagged observations.

– I Integrated. The use of differencing of raw observations in
order to make the time series stationary.

– MA Moving Average. A model that uses the dependency
between an observation and a residual error from a moving
average model applied to lagged observations.

• Each of these components are explicitly specified in the model
as a parameter.

• Note that AR and MA are two widely used linear models that
work on stationary time series, and I is a preprocessing
procedure to “stationarize” time series if needed.
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Notations

• A standard notation is used of ARIMA(p, d , q) where the
parameters are substituted with integer values to quickly
indicate the specific ARIMA model being used.

– p The number of lag observations included in the model, also
called the lag order.

– d The number of times that the raw observations are
differenced, also called the degree of differencing.

– q The size of the moving average window, also called the order
of moving average.

• A value of 0 can be used for a parameter, which indicates to
not use that element of the model.

• In other words, ARIMA model can be configured to perform
the function of an ARMA model, and even a simple AR, I, or
MA model.
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Autoregressive Models

• Intuition
– Autoregressive models are based on the idea that current value

of the series, Xt , can be explained as a linear combination of p
past values, Xt−1, Xt−2, . . . , Xt−p, together with a random
error in the same series.

• Definition
– An autoregressive model of order p, abbreviated AR(p), is of

the form

Xt = φ1Xt−1 + φ2Xt−2 + · · ·+ φpXt−p + wt =

p∑
i=1

φiXt−i + wt

where Xt is stationary, wt ∼ wn(0, σ2
w ), and φ1, φ2, . . . , φp

(φp 6= 0) are model parameters. The hyperparameter p
represents the length of the “direct look back” in the series.
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Backshift Operator

• Before we dive deeper into the AR process, we need some new
notations to simplify the representations.
• Backshift Operator

– The backshift operator is defined as

BXt = Xt−1.

It can be extended, B2Xt = B(BXt) = B(Xt−1) = Xt−2, and
so on. Thus,

BkXt = Xt−k

• We can also define an inverse operator (forward-shift
operator) by enforcing B−1B = 1, such that

Xt = B−1BXt = B−1Xt−1.
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Autoregressive Operator of AR Process

• Recall the definition for AR(p) process:

Xt = φ1Xt−1 + φ2Xt−2 + · · ·+ φpXt−p + wt

By using the backshift operator we can rewrite it as:

Xt − φ1Xt−1 − φ2Xt−2 − · · · − φpXt−p = wt

(1− φ1B − φ2B
2 − · · · − φpBp)Xt = wt

• The autoregressive operator is defined as:

φ(B) = 1− φ1B − φ2B
2 − · · · − φpBp = 1−

p∑
j=1

φjB
j ,

then the AR(p) can be rewritten more concisely as:

φ(B)Xt = wt
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AR Example: AR(0) and AR(1)

• The simplest AR process is AR(0), which has no dependence
between the terms. In fact, AR(0) is essentially white noise.

• AR(1) can be given by Xt = φ1Xt−1 + wt .

– Only the previous term in the process and the noise term
contribute to the output.

– If |φ1| is close to 0, then the process still looks like white noise.
– If φ1 < 0, Xt tends to oscillate between positive and negative

values.
– If φ1 = 1 then the process is equivalent to random walk, which

is not stationary as the variance is dependent on t (and
infinite).
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AR Examples: AR(1) Process

• Simulated AR(1) Process Xt = 0.9Xt−1 + wt :

• Mean E [Xt ] = 0

• Variance Var(Xt) =
σ2
w

(1− φ2
1)
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AR Examples: AR(1) Process

• Autocorrelation Function (ACF)

ρh = φh1
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AR Examples: AR(1) Process

• Partial Autocorrelation Function (PACF)

φ11 = ρ1 = φ1 φhh = 0, ∀h ≥ 2
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AR Examples: AR(1) Process

• Simulated AR(1) Process Xt = −0.9Xt−1 + wt :

• Mean E [Xt ] = 0

• Variance Var(Xt) =
σ2
w

(1− φ2
1)

34 / 77



AR Examples: AR(1) Process

• Autocorrelation Function (ACF)

ρh = φh1
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AR Examples: AR(1) Process

• Partial Autocorrelation Function (PACF)

φ11 = ρ1 = φ1 φhh = 0, ∀h ≥ 2
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Stationarity of AR(1)

• We can iteratively expand AR(1) representation as:

Xt = φ1Xt−1 + wt

= φ1(φ1Xt−2 + wt−1) + wt = φ2
1Xt−2 + φ1wt−1 + wt

...

= φk1Xt−k +
k−1∑
j=0

φj1wt−j

• Note that if |φ1| < 1 and supt Var(Xt) <∞, we have:

Xt =
∞∑
j=0

φj1wt−j

This representation is called the stationary solution.
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AR Problem: Explosive AR Process

• We’ve seen AR(1): Xt = φ1Xt−1 + wt while |φ1| ≤ 1.

• What if |φ1| > 1? Intuitively the time series will “explode”.

• However, technically it still can be stationary, because we
expand the representation differently and get:

Xt = −
∞∑
j=1

φ−j1 wt+j

• But clearly this is not useful because we need the future
(wt+j) to predict now (Xt).

• We use the concept of causality to describe time series that is
not only stationary but also NOT future-dependent.
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General AR(p) Process

• An important property of AR(p) models in general is

– When h > p, theoretical partial autocorrelation function is 0:

φhh = corr(Xt+h − X̂t+h,Xt − X̂t) = corr(wt+h,Xt − X̂t) = 0.

– When h ≤ p, φpp is not zero and φ11, φ22, . . . , φh−1,h−1 are
not necessarily zero.

• In fact, identification of an AR model is often best done with
the PACF.
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AR Models: Parameters Estimation

• Note that p is like a hyperparameter for the AR(p) process,
thus fitting an AR(p) model presumes p is known and only
focusing on estimating coefficients, i.e. φ1, φ2, . . . , φp.
• There are many feasible approaches:

• Method of moments estimator (e.g. Yule-Walker estimator)
• Maximum Likelihood Estimation (MLE) estimator
• Ordinary Least Squares (OLS) estimator

• If the observed series is short or the process is far from
stationary, then substantial differences in the parameter
estimations from various approaches are expected.
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Moving Average Models (MA)

• The name might be misleading, but moving average models
should not be confused with the moving average smoothing.
• Motivation

– Recall that in AR models, current observation Xt is regressed
using the previous observations Xt−1,Xt−2, . . . ,Xt−p, plus an
error term wt at current time point.

– One problem of AR model is the ignorance of correlated noise
structures (which is unobservable) in the time series.

– In other words, the imperfectly predictable terms in current
time, wt , and previous steps,wt−1,wt−2, . . . ,wt−q, are also
informative for predicting observations.
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Moving Average Models (MA)

• Definition
– A moving average model of order q, or MA(q), is defined to be

Xt = wt + θ1wt−1 + θ2wt−2 + · · ·+ θqwt−q = wt +

q∑
j=1

θjwt−j

where wt ∼ wn(0, σ2
w ), and θ1, θ2, . . . , θq (θq 6= 0) are

parameters.
– Although it looks like a regression model, the difference is that

the wt is not observable.

• Contrary to AR model, finite MA model is always stationary,
because the observation is just a weighted moving average
over past forecast errors.
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Moving Average Operator

• Moving Average Operator
– Equivalent to autoregressive operator, we define moving

average operator as:

θ(B) = 1 + θ1B + θ2B
2 + · · ·+ θqB

q,

where B stands for backshift operator, thus B(wt) = wt−1.

• Therefore the moving average model can be rewritten as:

Xt = wt + θ1wt−1 + θ2wt−2 + · · ·+ θqwt−q

Xt = (1 + θ1B + θ2B
2 + · · ·+ θqB

q)wt

Xt = θ(B)wt
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MA Examples: MA(1) Process

• Simulated MA(1) Process Xt = wt + 0.8× wt−1:

• Mean E [Xt ] = 0

• Variance Var(Xt) = σ2
w (1 + θ2

1)
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MA Examples: MA(1) Process

• Autocorrelation Function (ACF)

ρ1 =
θ1

1 + θ2
1

ρh = 0, ∀h ≥ 2
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MA Examples: MA(1) Process

• Partial Autocorrelation Function (PACF)

φhh = −(−θ1)h(1− θ2
1)

1− θ2(h+1)
1

, h ≥ 1
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MA Examples: MA(2) Process

• Simulated MA(2) Process Xt = wt + 0.5×wt−1 + 0.3×wt−2:

• Mean E [Xt ] = 0

• Variance Var(Xt) = σ2
w (1 + θ2

1 + θ2
2)

47 / 77



MA Examples: MA(2) Process

• Autocorrelation Function (ACF)

ρ1 =
θ1 + θ1θ2

1 + θ2
1 + θ2

2

ρ2 =
θ2

1 + θ2
1 + θ2

2

ρh = 0,∀h ≥ 3
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General MA(q) Process

• An important property of MA(q) models in general is that
there are nonzero autocorrelations for the first q lags, and
ρh = 0 for all lags h > q.

• In other words, ACF provides a considerable amount of
information about the order of the dependence q for MA(q)
process.

• Identification of an MA model is often best done with the
ACF rather than the PACF.
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MA Problem: Non-unique MA Process

• Consider the following two MA(1) models:

– Xt = wt + 0.2wt−1, wt ∼ iid N (0, 25),
– Yt = vt + 5vt−1, vt ∼ iid N (0, 1)

• Note that both of them have Var(Xt) = 26 and ρ1 =
5

26
.

• In fact, these two MA(1) processes are essentially the same.
However, since we can only observe Xt (Yt) but not noise
terms wt (vt), we cannot distinguish them.

• Conventionally, we define the concept invertibility and always
choose the invertible representation from multiple alternatives.

– Simply speaking, for MA(1) models the invertibility condition
is |θ1| < 1.
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Comparisons between AR and MA

• Recall that we have seen for AR(1) process, if |φ1| < 1 and
supt Var(Xt) <∞,

Xt =
∞∑
j=0

φj1wt−j

• In fact, all causal AR(p) processes can be represented as
MA(∞); In other words, infinite moving average processes
are finite autoregressive processes.

• All invertible MA(q) processes can be represented as AR(∞).
i.e. finite moving average processes are infinite
autoregressive processes.

51 / 77



MA Models: Parameters Estimation

• A well-known fact is that parameter estimation for MA model
is more difficult than AR model.

– One reason is that the lagged error terms are not observable.

• We can still use method of moments estimators for MA
process, but we won’t get the optimal estimators with
Yule-Walker equations.

• In fact, since MA process is nonlinear in the parameters, we
need iterative non-linear fitting instead of linear least squares.

• From a practical point of view, modern scientific computing
software packages will handle most of the details after given
the correct configurations.
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ARMA Models

• Autoregressive and moving average models can be combined
together to form ARMA models.
• Definition

– A time series {xt ; t = 0,±1,±2, . . . } is ARMA(p, q) if it is
stationary and

Xt = wt +

p∑
i=1

φiXt−i +

q∑
j=1

θjwt−j ,

where φp 6= 0, θq 6= 0, and σ2
w > 0, wt ∼ wn(0, σ2

w ).
– With the help of AR operator and MA operator we defined

before, the model can be rewritten more concisely as:

φ(B)Xt = θ(B)wt
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ARMA Problems: Redundant Parameters

• You may have observed that if we multiply a same factor on
both sides of the equation, it still holds.

η(B)φ(B)Xt = η(B)θ(B)wt

• For example, consider a white noise process Xt = wt and
η(B) = (1− 0.5B):

(1− 0.5B)Xt = (1− 0.5B)wt

Xt = 0.5Xt−1 − 0.5wt−1 + wt

• Now it looks exactly like a ARMA(1, 1) process!

• If we were unaware of parameter redundancy, we might claim
the data are correlated when in fact they are not.
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Choosing Model Specification

• Recall we have discussed that ACF and PACF can be used for
determining ARIMA model hyperparamters p and q.

AR(p) MA(q) ARMA(p, q)

ACF Tails off
Cuts off

after lag q
Tails off

PACF
Cuts off

after lag p
Tails off Tails off

• Other criterions can be used for choosing q and q too, such as
AIC (Akaike Information Criterion), AICc (corrected AIC) and
BIC (Bayesian Information Criterion).

• Note that the selection for p and q is not unique.
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“Stationarize” Nonstationary Time Series

• One limitation of ARMA models is the stationarity condition.

• In many situations, time series can be thought of as being
composed of two components, a non-stationary trend series
and a zero-mean stationary series, i.e. Xt = µt + Yt .
• Strategies

– Detrending: Subtracting with an estimate for trend and deal
with residuals.

Ŷt = Xt − µ̂t

– Differencing: Recall that random walk with drift is capable of
representing trend, thus we can model trend as a stochastic
component as well.

µt = δ + µt−1 + wt

∇Xt = Xt − Xt−1 = δ + wt + (Yt − Yt−1) = δ + wt +∇Yt

∇ is defined as the first difference and it can be extended to
higher orders.
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Differencing

• One advantage of differencing over detrending for trend
removal is that no parameter estimation is required.
• In fact, differencing operation can be repeated.

– The first difference eliminates a linear trend.
– A second difference, i.e. the difference of first difference, can

eliminate a quadratic trend.

• Recall the backshift operator Xt = BXt−1:

∇Xt = Xt − Xt−1 = Xt − BXt = (1− B)Xt

∇2Xt = ∇(∇Xt) = ∇(Xt − Xt−1)

= (Xt − Xt−1)− (Xt−1 − Xt−2)

= Xt − 2Xt−1 + Xt−2 = Xt − 2BXt + B2Xt

= (1− 2B + B2)Xt = (1− B)2Xt
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Detrending vs. Differencing

●
● ●

●
● ● ● ● ● ● ● ● ● ●

●
● ● ● ● ● ●

●
●

●
● ● ● ● ● ●

●
●

●
●

●
● ●

●
●

●
● ● ● ● ● ● ● ● ● ● ●

●
●

● ●
● ● ●

●
● ● ●

● ● ●
●

●

●
●

●
● ● ● ●

●
●

● ●
●

● ●
●

●

● ● ● ● ● ● ● ●
● ●

●
● ●

●
●

● ● ●
● ● ●

●
● ● ● ● ●

●
● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ●

●
●

●
●

●
●

● ● ● ●
● ● ● ● ● ●

●
●

●
● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ●
● ● ● ● ● ● ● ● ●

original

Time

ch
ic

ke
n

2005 2010 2015

60
70

80
90

11
0

●
●

●

●

●
● ●

●
●

● ● ●
●

●

●

●
●

●
●

●
●

●

●

●
●

●

●
● ● ●

●

●

●

●

●

●

●

●

●

●

●
● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

● ●
●

● ● ●

●

● ●

●

●

●

●

●

● ● ● ●

●

●

● ●

●

●
●

●

●

● ● ●

●

● ● ●

●

●
●

●

● ●

●

●

●

● ●
● ●

●

●

●
●

●
●

●

●

●
●

● ●
● ● ● ● ●

●
● ● ● ● ●

●

● ●
● ● ● ●

● ●
●

●

●
●

●
●

●

●
● ●

●

●
●

● ● ●
●

●

●

●

● ●
● ● ●

● ●
● ● ●

● ●
●

●
●

●

●
●

●
●

● ● ●
●

●

detrended

Time

re
si

d(
fit

)

2005 2010 2015

−
5

0
5

10

●

●

●

●

●

●
● ●

●

● ●

● ●

● ●

●

● ●
●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●

●
● ●

●
● ●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

● ●

● ●

●

●

●

●

●

●

●
●

● ●

● ●

●
●

● ●

●

●

●

●

●
● ●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

● ●

●
●

●

●
●

●

●

●

●

●

first difference

Time

di
ff(

ch
ic

ke
n)

2005 2010 2015

−
2

−
1

0
1

2
3

58 / 77



From ARMA to ARIMA

• Order of Differencing
– Differences of order d are defined as

∇d = (1− B)d ,

where (1− B)d can be expanded algebraically for higher
integer values of d .

• Definition
– A process Xt is said to be ARIMA(p, d , q) if

∇dXt = (1− B)dXt

is ARMA(p, q).
– In general, ARIMA(p, d , q) model can be written as:

φ(B)(1− B)dXt = θ(B)wt

.
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Box-Jenkins Methods

• As we have seen ARIMA models have numerous parameters
and hyper parameters, Box and Jenkins suggests an iterative
three-stage approach to estimate an ARIMA model.
• Procedures

1 Model identification: Checking stationarity and seasonality,
performing differencing if necessary, choosing model
specification ARIMA(p, d , q).

2 Parameter estimation: Computing coefficients that best fit the
selected ARIMA model using maximum likelihood estimation
or non-linear least-squares estimation.

3 Model checking: Testing whether the obtained model conforms
to the specifications of a stationary univariate process (i.e. the
residuals should be independent of each other and have
constant mean and variance). If failed go back to step 1.

• Let’s go through a concrete example together for this
procedure.
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Air Passenger Data

Monthly totals of a US airline passengers, from 1949 to 1960
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Model Identification

• As with any data analysis, we should construct a time plot of
the data, and inspect the graph for any anomalies.

• The most important thing in this phase is to determine if the
time series is stationary and if there is any significant
seasonality that needs to be handled.
• Test Stationarity

– Recall the definition, if the mean or variance changes over time
then it’s non-stationary, thus an intuitive way is to plot rolling
statistics.

– We can also make an autocorrelation plot, as non-stationary
time series often shows very slow decay.

– A well-established statistical test called augmented
Dickey-Fuller Test can help. The null hypothesis is the time
series is non-stationary.
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Stationarity Test: Rolling Statistics

Rolling statistics with sliding window of 12 months
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Stationarity Test: ACF Plot

Autocorrelation with varying lags
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Stationarity Test: ADF Test

• Results of Augmented Dickey-Fuller Test

Item Value
Test Statistic 0.815369

p-value 0.991880
#Lags Used 13.000000

Number of Observations Used 130.000000
Critical Value (1%) -3.481682
Critical Value (5%) -2.884042

Critical Value (10%) -2.578770

• The test statistic is a negative number.

• The more negative it is, the stronger the rejection of the null
hypothesis.
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Stationarize Time Series

• As all previous methods show that the initial time series is
non-stationary, it’s necessary to perform transformations to
make it stationary for ARMA modeling.

– Detrending
– Differencing
– Transformation: Applying arithmetic operations like log, square

root, cube root, etc. to stationarize a time series.
– Aggregation: Taking average over a longer time period, like

weekly/monthly.
– Smoothing: Removing rolling average from original time series.
– Decomposition: Modeling trend and seasonality explicitly and

removing them from the time series.
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Stationarized Time Series: ACF Plot

First order differencing over logarithm of passengers
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Stationarized Time Series: ADF Test

• Results of Augmented Dickey-Fuller Test

Item Value
Test Statistic -2.717131

p-value 0.071121
#Lags Used 14.000000

Number of Observations Used 128.000000
Critical Value (1%) -3.482501
Critical Value (5%) -2.884398

Critical Value (10%) -2.578960

• From the ACF plot, we can see that the mean and std
variations have much smaller variations with time.

• Also, the ADF test statistic is less than the 10% critical value,
indicating the time series is stationary with 90% confidence.
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Choosing Model Specification

• Firstly we notice an obvious peak at h = 12, because for
simplicity we didn’t model the cyclical effect.

• It seems p = 2, q = 2 is a reasonable choice. Let’s see three
models, AR(2), MA(2) and ARMA(2, 2).
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AR(2): Predicted on Residuals

• RSS is a measure of the discrepancy between the data and the
estimation model.

– A small RSS indicates a tight fit of the model to the data.
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MA(2): Predicted on Residuals
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ARMA(2, 2): Predicted on Residuals

• Here we can see that the AR(2) and MA(2) models have
almost the same RSS but combined is significantly better.
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Forecasting

• The last step is to reverse the transformations we’ve done to
get the prediction on original scale.
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SARIMA: Seasonal ARIMA Models

• One problem in the previous model is the lack of seasonality,
which can be addressed in a generalized version of ARIMA
model called seasonal ARIMA.
• Definition

– A seasonal ARIMA model is formed by including additional
seasonal terms in the ARIMA models, denoted as

ARIMA (p, d , q) (P,D,Q)m,

i.e.

φ(Bm) φ(B) (1− Bm)D (1− B)d Xt = θ(Bm) θ(B) wt

where m represents the number of observations per year.
– The seasonal part of the model consists of terms that are

similar to the non-seasonal components, but involve backshifts
of the seasonal period.
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Off-the-shelf Packages

• R has arima function in standard package stats.

• Mathematica has a complete library of time series functions
including ARMA.

• MATLAB includes functions such as arima.

• Python has a statsmodels module provides time series
analysis including ARIMA. Another Python module called
pandas provides dedicated class for time series objects.

• STATA includes the function arima for estimating ARIMA
models.

• SAS has an econometric package, ETS, for ARIMA models.

• GNU Octave can estimate AR models using functions from
extra packages.

75 / 77



References

• Forecasting: principles and practice, Hyndman, Rob J and
Athanasopoulos, George, 2018.

• Time series analysis and its applications, Shumway, Robert H
and Stoffer, David S, 2017.

• A comprehensive beginner’s guide to create a Time Series
Forecast (with Codes in Python),
https://www.analyticsvidhya.com/blog/2016/02/time-series-
forecasting-codes-python/

• STAT510: Applied Time Series Analysis, Penn State Online
Courses

• An Introductory Study on Time Series Modeling and
Forecasting, Ratnadip Adhikari, R. K. Agrawal, 2013.

• Wikipedia articles for various concepts.

76 / 77



Thanks for your attention!
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