WORD-SENSE DISAMBIGUATION
WITH SELECTIONAL PREFERENCE

Yoonjung Choi (yjchoi@cs.pitt.edu)
Introduction

- A word can have one or more meaning.
 - E.g., *carry*
 - S: (v) carry (win in an election) "The senator carried his home state"
 - S: (v) carry (keep up with financial support) "The Federal Government carried the province for many years"
 - S: (v) carry (capture after a fight) "The troops carried the town after a brief fight"
 - ...

- **Word-sense Disambiguation (WSD)** is a problem to identify which sense (i.e. meaning) of a word is used in a sentence.
Introduction

- Predicates often have a preference for particular arguments.

 The vocalist *sings* *a ballad.*

 vs.

 The exception *sings* *a tomato.*

- This inclination of predicates to select for particular arguments is known as *selectional preference.*
Method

- Latent Dirichlet Allocation (LDA)
 - A generative model that discovers similarities in data using latent variables.

- Intuition: We assume that each sense is associated with a distribution over semantic classes (“topics”) and these classes are shared across senses.

- Modeling document-term co-occurrence
 → Modeling sense-argument co-occurrence
Method

• The model produces arguments as follows:
 1. For each verb sense s, draw a multinomial distribution Θ_s over argument classes from a Dirichlet distribution with parameters α.
 2. For each argument class z, draw a multinomial distribution Φ_z over argument from a Dirichlet distribution with parameters β.
 3. To generate an argument for s, draw an argument class z from Θ_s and then draw an argument n from Φ_z.
Why LDA?

- LDA naturally consider the class-based selectional preference without a pre-defined set of classes.

- LDA naturally handle ambiguous arguments since they are able to assign different topics to the same phrase in different contexts.

- Once a topic distribution has been learned over a set of training relations, one can efficiently apply inference to unseen relations.
Data

- SensEval
 - The purpose of SensEval is to evaluate the strengths and weaknesses of WSD program with respect to different words, different varieties of language, and different languages.

- SensEval-2
 - TrainData contains 3,794 instances.
 - # terms : 131
 - # senses: 452
 - TestData contains 1,908 instances.
 - # terms: 101
 - # senses: 353
Data

• Sample Data

<instance id="promise.0528">
<answer instance="promise.0528" senseid="537584"/>
<context>

Before she had a chance to answer he had gone into the fields. The forecasts <head>promised</head> several days of hot weather and because he had help in the house Moran decided to cut all the meadows.

</context>
</instance>
Experiment

• **MALLET**
 • It provides efficient, sampling-based implementations of LDA. Also, it includes an extremely fast and highly scalable implementation of Gibbs sampling.

• For each term, the different model is built.
 • # topics: 100
 • # iterations: 1,000
Results

• Measurement
 • Recall: percentage of right answers on all instances in the test set.
 • Precision: percentage of right answers in the set of answered instances.

• Results of participants in SensEval-2
 • F-score Range: 0.141~0.642
 • Average F-score: 0.434

• Our Results
 • Precision, Recall, and F-score: 0.461
Conclusion

- LDA has several advantages for selection preference system.

- Even though our model didn’t show the best performance, it is better than the average.

- It shows that considering selectional preference is helpful to WSD system.

- If we combine other features/models, we can get better WSD performance.
Reference

THANK YOU 😊