A brief review of basics of probabilities

Milos Hauskrecht <u>milos@pitt.edu</u> 5329 Sennott Square

Probability

Let A be an outcome event, and ¬A its complement.
Then

 $P(A) + P(\neg A) = ?$

Probability • Let A be an event, and ¬A its complement. – Then $P(A) + P(\neg A) = 1$ $P(A \land \neg A) = ?$

Probability

Let A be an event, and ¬A its complement.
Then

 $P(A) + P(\neg A) = 1$

 $P(A \land \neg A) = 0$

P(False) = 0

$$P(A \lor \neg A) = ?$$

Probability• Let A be an event, and $\neg A$ its complement.– Then $P(A) + P(\neg A) = 1$ $P(A \land \neg A) = 0$ P(False) = 0P(False) = 0 $P(A \lor \neg A) = 1$ P(True) = 1

Joint probability

Joint probability:

• Let A and B be two events. The probability of an event A, B occurring jointly

 $P(A \land B) = P(A, B)$

We can add more events, say, A,B,C

$$P(A \land B \land C) = P(A, B, C)$$

<section-header>

Independence

Independence :

• Let A, B be two events. The events are independent if:

P(A, B) = P(A)P(B)

Conditional probability • Let A, B be two events. The conditional probability of A given B is defined as: P(A | B) = ?

Conditional probability

Conditional probability :

• Let A, B be two events. The conditional probability of A given B is defined as:

$$P(A \mid B) = \frac{P(A, B)}{P(B)}$$

Product rule:

• A rewrite of the conditional probability

$$P(A, B) = P(A \mid B)P(B)$$

