A brief review of basics of probabilities

Milos Hauskrecht
milos@pitt.edu
5329 Sennott Square

Probability theory

Studies and describes random processes and their outcomes

- Random processes may result in multiple different outcomes
- Example 1: coin flip
- Outcome is either head or tail (binary outcome)
- Fair coin: outcomes are equally likely

- Example 2: sum of numbers obtained by rolling 2 dice
- Outcome number in between 2 to 12
- Fair dices: outcome 2 is less likely then 3

Probability theory

Studies and describes random processes and their outcomes

- Random processes may have multiple different outcomes
- Example 3: height of a person
- Select randomly a person from your school/city and report her height
- Outcomes can be real numbers
- And many others related to measurements,
 lotteries, etc

Probabilities

When the process is repeated many times outcomes occur with certain relative frequencies or probabilities

- Example 1: coin flip
- Fair coin: outcomes are equally likely
- Probability of head is 0.5 and tail is 0.5
- Biased coin

- Probability of head is 0.8 and tail is 0.2
- Head outcome is 4 times more likely than tail

Probabilities

When the process is repeated many times outcomes occur with certain relative frequencies or probabilities

- Example 2: sum of numbers obtained by rolling 2 dice
- Outcome number in between 2 to 12
- Fair dice: outcome 2 is less likely then 3

4 is less likely then 3 , etc

Probability distribution function

Discrete (mutually exclusive) outcomes - the chance of outcomes is represented by a probability distribution function

- probability distribution function - assigns a number between 0 and 1 to every outcome
- Example 1: coin flip
- Biased coin
- Probability of head is 0.8 and tail is 0.2
- Head outcome is 4 time more likely than tail
$\mathrm{P}($ tail $)=0.2$
$\mathrm{P}($ head $)=0.8$

$$
P(\text { coin })=\left[\begin{array}{l}
0.2 \\
0.8
\end{array}\right]
$$

- What is the condition we need to satisfy ?

Probability distribution function

Discrete (mutually exclusive) outcomes - the chance of outcomes is represented by a probability distribution function

- probability distribution function - assigns a number between 0 and 1 to every outcome
- Example 1: coin flip
- Biased coin
- Probability of head is 0.8 and tail is 0.2
- Head outcome is 4 time more likely than tail
$\mathrm{P}($ tail $)=0.2$
$\mathrm{P}($ head $)=0.8$
$P($ coin $)=\left[\begin{array}{l}0.2 \\ 0.8\end{array}\right]$
- What is the condition we need to satisfy ?
- Sum of probabilities for discrete set of outcomes is 1

Probability for real-valued outcomes

When the process is repeated many times outcomes occur with certain relative frequencies or probabilities

- Example 3: height of a person
- Select randomly a person from your school/city and report her height
- Outcomes can be real numbers
- Different outcomes can be more or less likely

Normal (Gaussian) density

Probability density function

Real-valued outcomes - the chance of outcomes is represented by a probability density function

- probability density function $-\mathbf{p}(\mathbf{x})$

- Condition on $p(x)$ and 1 ?

Probability density function

Real-valued outcomes - the chance of outcomes is represented by a probability density function

- probability density function $-\mathbf{p}(\mathbf{x})$

- Condition on $\mathbf{p}(\mathbf{x})$ and 1?

$$
\int p(x) d x=1
$$

Probability density function

Real-valued outcomes - the chance of outcomes is represented by a probability density function

- probability density function $-\mathbf{p}(\mathbf{x})$

- Can $p(x)$ values for some x be negative?

Probability density function

Real-valued outcomes - the chance of outcomes is represented by a probability density function

- probability density function $-\mathbf{p}(\mathbf{x})$

- Can $p(x)$ values for some x be negative?
- No

Probability density function

Real-valued outcomes - the chance of outcomes is represented by a probability density function

- probability density function $-\mathbf{p}(\mathbf{x})$

- Can $p(x)$ values for some x be >1 ?
- Remember we need $\int p(x) d x=1$

Probability density function

Real-valued outcomes - the chance of outcomes is represented by a probability density function

- probability density function $-\mathbf{p}(\mathbf{x})$

- Can $p(x)$ values for some x be >1 ?
- Remember we need:
$\int p(x) d x=1$
- Yes

Random variable

Random variable $=\mathbf{A}$ function that maps observed outcomes (quantities) to real valued outcomes
Binary random variables: Two outcomes mapped to $\mathbf{0 , 1}$
Example: Coin flip. Tail mapped to 0, Head mapped to 1
Note: Only one value for each outcome: either 0 or 1
probability of tail $\quad P(x=0)$
probability of head $P(x=1)$
Probability distribution: Assigns a probability to each possible outcome
A Biased coin

$P(\mathrm{x})=$| 0.45 |
| :--- |
| 0.55 |

Random variable

Example: roll of a dice

- Outcomes $=1,2,3,4,5,6$ based on the roll of a die
- trivial map to the same number

Biased dice

Example: x height of a person
Real valued outcomes

- trivial map to the same number

Probability

- Let \mathbf{A} be an outcome event, and $\neg \mathbf{A}$ its complement.
- Then

$$
P(A)+P(\neg A)=?
$$

Probability

- Let \mathbf{A} be an event, and $\neg \mathbf{A}$ its complement.
- Then

$$
\begin{aligned}
& P(A)+P(\neg A)=1 \\
& P(A \wedge \neg A)=?
\end{aligned}
$$

Probability

- Let \mathbf{A} be an event, and $\neg \mathbf{A}$ its complement.
- Then

$$
\begin{aligned}
& P(A)+P(\neg A)=1 \\
& P(A \wedge \neg A)=0 \\
& P(\text { False })=0 \\
& P(A \vee \neg A)=?
\end{aligned}
$$

Probability

- Let \mathbf{A} be an event, and $\neg \mathbf{A}$ its complement.
- Then

$$
\begin{aligned}
& P(A)+P(\neg A)=1 \\
& P(A \wedge \neg A)=0 \\
& P(\text { False })=0 \\
& P(A \vee \neg A)=1 \\
& P(\text { True })=1
\end{aligned}
$$

Joint probability

Joint probability:

- Let A and B be two events. The probability of an event A, B occurring jointly

$$
P(A \wedge B)=P(A, B)
$$

We can add more events, say, $\mathrm{A}, \mathrm{B}, \mathrm{C}$

$$
P(A \wedge B \wedge C)=P(A, B, C)
$$

Independence

Independence :

- Let A, B be two events. The events are independent if:

$$
P(A, B)=?
$$

Independence

Independence :

- Let A, B be two events. The events are independent if:

$$
P(A, B)=P(A) P(B)
$$

Conditional probability

Conditional probability :

- Let A, B be two events. The conditional probability of A given B is defined as:

$$
P(A \mid B)=\text { ? }
$$

Conditional probability

Conditional probability :

- Let A, B be two events. The conditional probability of A given B is defined as:

$$
P(A \mid B)=\frac{P(A, B)}{P(B)}
$$

Product rule:

- A rewrite of the conditional probability

$$
P(A, B)=P(A \mid B) P(B)
$$

Bayes theorem

Bayes theorem

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

Why?

$$
\begin{gathered}
P(A \mid B)=\frac{P(A, B)}{P(B)} P(A, B)=P(B \mid A) P(A) \\
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
\end{gathered}
$$

