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Latent Variable Models: Motivation

High
School
Grade

/

Onsite
Interview

Name High School University  1Q score Phone Onsite
Grade Grade Interview Interview
John 4.0 40 120 3/4 ?
Helen 3.2 N/A 112 2/4 ?
Sophia 35 36 N/A 4/4 85/100
Jack 3.6 N/A N/A 3/4 ?

Latent Variable Models: Motivation

Intelligence

Onsite
Interview

School
Grade

Phone
Interview

Name High School University  1Q score Phone Onsite
Grade Grade Interview Interview
John 40 4.0 120 3/4 ?
Helen 32 N/A 112 2/4 ?
Sophia 35 36 N/A 4/4 85/100
Jack 36 N/A N/A 3/4 ?
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Latent Variable Models: Motivation

e Gaussian mixture models

* Asingle Gaussian is not a good fit to data
* But two different Gaussians may do
* True class of each point is unobservable

80 -
60

100

o
60

40
1 2 3 4 5

Single Gaussian

6

40
1 2 3 4 s 6

Mixture of two Gaussians

Example of a dataset that is best fit with a mixture

of two Gaussians. Mixture models allow us to

model clusters in the dataset.

Latent Variable Models

A latent variable model p is a probability distribution over two sets of

variables s, x:

where the x variables are observed at learning time in a dataset D and

the s are never observed

p(s,x;0)
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Latent Variable Models

* The goal of a latent variable model is to express the distribution p(x)
of the variables x4, ..., x4 in terms of a smaller number of latent

variables s = (sy,..., sq) where g < d

S1 S2 S3

Latent variable: s, g-dimensions
q<d
Observed variable: x, d-dimensions

Xy

Expectation-Maximization (EM) algorithm

* EM algorithm is a hugely important and widely used algorithm
for learning directed latent-variable graphical

* The key idea of the method:

* Compute the parameter estimates iteratively by performing the
following two steps:

* 1. Expectation step. For all hidden and missing variables (and their possible
value assignments) calculate their expectations for the current set of
parameters ©'

* 2. Maximization step. Compute the new estimates of © by considering the
expectations of the different value completions

* Stop when no improvement possible
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Factor Analysis

* Assumptions:
* Underlying latent variable has a Gaussian distribution
s~ N(O, 1), independent, Gaussian with unit variance
* Linear relationship between latent and observed variables
* Diagonal Gaussian noise in data dimensions
e ~N(0,¥), Gaussian noise

Factor Analysis

* A common latent variable where the relationship is linear:
x=Ws+ u+e
* d—dimensional observation vector x
* g-dimensional vector of latent variable s
* d X g matrix W relates the two sets of variables, g < d
* u permits the model to have non-zero mean
* s~ N(0O, I), independent, Gaussian with unit variance
* € ~N(0,¥), Gaussian noise
* Thenx~N(u, WWT + ¥)

10
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Factor Analysis o
Latent variable: s, g-dimensions l
Observed variable: x, d-dimensions
$1 $2 S3

Remapping: Ws
(weight matrix: w)

+

u (location parameter)

+

€ ~ N(0,¥), Gaussian

noise
X1 X X3 Xg

Parameters of interest: W (weight matrix), ¥’ (variance of noise), u Xx= Ws+p+e
x~ N, WWT +W¥)

11

Factor Analysis: Optimization

* Use EM to solve parameters
* E-step:
* compute posterior p(s|x)
* M-step:
* Take derivatives of the expected complete log likelihood
with respect to parameters

12
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Principal Component Analysis

* General motivation is to transform the data into
some reduced dimensionality representation /

* Linear transformation of a d dimensional input x \
to q dimensional vector s such that g < d under $
which the retained variance is maximal /

N

e Limitation: >/
* Absence of an associated probabilistic model for the
observed data
* Computational intensive for covariance matrix
* Does not deal properly with missing data

13

Probabilistic PCA

* Motivations:

* The corresponding likelihood measure would permit comparison
with other density—estimation techniques and would facilitate
statistical testing.

* Provides a natural framework for thinking about hypothesis testing
* Offers the potential to extend the scope of conventional PCA.

* Can be utilized as a constrained Gaussian density model.
* Constrained covariance

* Allows us to deal with missing values in the data set.

* Can be used to model class conditional densities and hence it can
be applied to classification problems.

14
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Generative View of PPCA

* Generative view of the PPCA for a 2-d data space and 1-d latent space

b

Density contours for the
marginal distribution p(x).

PPCA

* Assumptions:

* Underlying latent variable g — dim s has a Gaussian distribution

* Linear relationship between g — dim latent s and d — dim
observed x variables

* |sotropic Gaussian noise in observed dimensions
* Noise variances constrained to be equal

16




2/4/2020

PPCA

* A special case of factor analysis
* noise variances constrained to be equal:
+ €~N(0,02%D)

Cov[x]

* the s conditional probability distribution over x-space:
e X|s~NWs + u,c?l)

* latent variables:
* s~N(0,I)

* observed data x be obtained by integrating out the latent variables:

* x~N(u0)

* E[x] =E[u+Ws+ €] = u+WE[s]+E[e]= u+W0+0=u

* C =WWT + ¢?I (the observation covariance model)

e C=Cov[x]=E[(u+Ws+ e — wu+Ws+ e — wT=E[Ws+ e)(Ws+ &)T] = WWT + 521
* The maximum likelihood estimator for p is given by the mean of data, S is sample

covariance matrix of the observations {x;,}
* Estimates for W and a2 can be solved in two ways
* Closed form
* EM Algorithms

17

Latent variable: s, g-dimensions

P PCA Observed variable: x, d-dimensions

X1 X2 X3 Xy

Parameters of interest: W (weight matrix), 6 (variance of noise), i

s~N(0,I)

|

Remapping: Ws
(weight matrix: w)

u (location parameter)

+

Random error (noise):
e ~N(0,0%])

x= Ws+u+e
x~ N WWT + ¢2I)

18
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Factor Analysis vs. PPCA

* PPCA
ex~NuwWWT + ¢2I)
* |sotropic error
* Factor Analysis
x~NuwWWwT + ¥)
* The error covariance is a diagonal matrix
* FA doesn’t change if you scale variables

* FA looks for directions of large correlation in the data

* FA doesn’t chase large-noise features that are uncorrelated with
other features

* FA changes if you rotate data
* can’t interpret multiple factors as being unique

19

Maximum Likelihood for PPCA

* The Iog—likeli}\f]\ood for the observed data under this model is given by

Nd N N
L= Z In{p(x,)} = —TIn(Zn) — 5ln|C| - 5Tr{C_1S}
* where S i??hle sample covarialr\}ce matrix of the observations  {(x,)}
— 1 T
s= Nzl(xn — WG — W)

e C=WWT + 621

* The log-likelihood is maximized when the columns of W span the principal
subspace of the data.

* Fit parameters (W, u, o) to maximum likelihood: make the constrained model
covariance as close as possible to the observed covariance

20

10
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Maximum Likelihood for PPCA

* Consider the derivatives with respect to W

oL _ —1cp-1y7 _ -1
2 = N(CTISCTIW - CTW)

* Maximizing with respect to W
* Wy = Uy(ng —a*DY?R
* Where

* the g column vectors in Ugq are eigenvectors of S, with corresponding
eigenvalues in the diagonal matrix Aq

* Risan arbitrary g X q orthogonal rotation matrix.
* For W = Wy,,, the maximum-likelihood estimator for g2 is given by
eg2, = _Lyd 4
ML d—q j=q+174
* the average variance associated with the discarded dimensions

21

Maximum Likelihood for PPCA

* Consider the derivatives with respect to W

0L _ “1cpr-1y7 _ -1
S = N(CTISCTIW = CTIW)

* At the stationary points SC™'W = W, assuming that C ™1 exists

* Three possible classes of solutions
* W =0, minimum of the log-likelihood
eC=3S

* Covariance model is exact

« WWT =5 — 021 has a known solution at W = U(A — a2I)Y/?R, where U is a square
matrix whose columns are the eigenvectors of S, with A is the corresponding diagonal
matrix of eigenvalues, R is an arbitrary orthogonal matrix

« SCTW =W,but W #0and C # S

22

11
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Maximum Likelihood for PPCA ) ‘ ‘ ‘ AN

* Consider the derivatives with respect to W

aW—N(C 1sc™iw —c7tw)
* At the stationary points SC™1W = W, assuming that C ! exists
* Case:SC™'W =W,but W #0and C # S
* Express the parameter matrix W in terms of singular value decomposition
(SVD):
« W =ULVT, U: d x q orthonormal vectors, L: q x q matrix of singular
values, V: g x g orthogonal matrix
c CTIW =W (I + WTW) 1= UL(c?1 + L*) VT
* At the stationary points
« SUL(c%1 +1?) ~tyT = yLvT
« SUL = U(c?I + L?)L

i

Maximum Likelihood for PPCA

. Cqumn vectors of U, u;, are eigenvectors of §, with eigenvalue /'l-, such
that o2 + l = A
* Su; —(0 +l])uj
. lz W - o?) 1/2
* (substitute into SVD), W = U,(Ay — 0?I) R
* Uy : d x g with g column eigenvectors u;of §

. /\ q x q diagonal matrix with elements: ;... 44, (eigenvalues to u;),
or o? (equivalent to l; =0)

* R: arbitrary orthogonal matrix, equivalent to a rotation in principal
subspace (or a re-parametrization)

24
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EM for PPCA

* Goal: to estimate the model parameters W and a2, based on the
observed dataset

* Rather than solve directly, can apply EM
* EM can be scaled to very large high-dimensional datasets.
* Consider the latent variables {s,,} to be ‘missing’ data

* Need Complete-data log-likelihood:
*Lc= 2%:1 In{p(xp, Sn}
* since
* x|s~NWs+ pu,a%) ands~N(0,I)
* we have

2
|Xn —Wsn — ﬂ”

* P 5u) = (2mo) /2exp(—! )(@m) Fexp( L2l

202
25
EM for PPCA
* E-step
. Compélljte expectation of complete log likelihood with respect to posterior of latent
variables

* Take the expectgtion of L with respect to the distributions p(s,|x,, W, 62)
1 1
* (Ley=—Ea=15In(0) +trUspsa)) + 55 (o — )" G —

26
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PPCA Examples

* Missing data

* A natural approach to the estimation of
the principal axes in cases where some
or indeed all, of the data vectors exhibit
one or more missing (at random) values

* Fig. 1 (a): projection of 38 examples
from the 18-dimensional Tobamovirus
data (Ripley 1996) using standard PCA

* Fig.1 (b): an equivalent PPCA projection
obtained by using an EM algorithm

* Simulated missing data by randomly

removing each value in the data set with
probability 20%

Fig. 1. Projecti
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irus data by using (a) PCA on the full data set and (b) PPCA with 136 missing
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PPCA Examples

* Mixtures of probabilistic principal component analysis models
* Combining multiple PCA models, notably for image compression

* Fig.2: three PCA projections of the virus data obtained from a three-component mixture
model, optimized by using an EM algorithm

* Effectively implements a simultaneous automated clustering and visualizing data

36 22

35

a7 ® 31

45

Fig. 2. Projections of the Tobamovirus data obtained from a three-component PPCA mixture model: the
locations of these three projection planes can be superimposed on the single principal component projection plot

(Fig. 1(a)) to aid the interpretation of the data structure further

28
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PPCA Examples

* Controlling the degrees of freedom
* Applied as a covariance model of data
* Permits control of the model complexity through the choice of q
* The covariance model in PPCA comprises dq + 1 - q(q — 1)/2 free parameters

* Table 1: estimated prediction error for various Gaussian models fitted to the Tobamovirus
data

* PPCA with g = 2 gives the lowest error

Table 1. Complexity and bootstrap estimate of the prediction error for
various Gaussian models of the Tobamovirus datat

Covariance q (equivalent) Number of Prediction
model parameters error
Isotropic 0) 1 18.6
Diagonal (—) 18 19.6
PPCA 1 19 16.8

2 36 14.8

3 52 15.6
Full (17 171 31935

1The isotropic and full covariance models are equivalent to special cases of

PPCA, with ¢ =0 and g = d — 1 respectively. 29

Sensible Principal Component Analysis (SPCA)

* SPCA
* x=Ws+v
* x~NO,WW?2+ 62I)
* Similar to PCA, the differences are:

* Require noise covariance matrix to be a multiple o2 of the identity matrix, but
do not take the limitas g2/ 0

* During EM iterations, data can be directly generated from the SPCA model, and
the likelihood estimated from the test data set

* Likelihood much lower for data far away from the training set, even if they are
near the principal subspace

30

15
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EM for SPCA

* SPCA
x~NO,WWT + ¢2I)
* E-step:
B = WITWwT + o211
*(snlxn) = B(X — W)
*Ig=nl — n.BW + (Snlxn)<5n|xn>T
* Log-likelihood in terms of weight matrix W, and a centered

observed data matrix X — y, noise covariance 21, and
conditional latent mean (s, |x,,)

EM for SPCA

* SPCA
ex~NOWWT + ¢2I)
* M-step:
cW = (X — ) (Splx)" 251
e g2MW = trace[SST — W(s,|x, )X — w)T]/n?
« Differentiate LL in terms of W and ¢ and set to zero

16
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EM for SPCA

* Since a1 is diagonal, the inversion in the e-step can be performed
efficiently using the matrix inversion lemma:

. WWT + g2~ 1= (— — WA+ W /(02)?)

* Since we are only taking the trace of the matrix |n the m—step, we do not
need to compute the full sample covariance SS7, but instead can compute
only the variance along each coordinate

e g2MW = trace[SST — W{(s,|x )X — w)T]/n?
* Shows that learning for SPCA enjoys a complexity limited by O (dnq) and not worse

* Methods that epr|C|tIy compute the sample covariance matrix have

complexities O(nd?)

* EM algorithm does not require computation of sample covariance matrix, 0(dnq)

* Huge advantage when g << d (# of principal components is much smaller than original # of
variables)

33

Software

* Matlab
* https://www.mathworks.com/help/stats/ppca.html

* R Programming

* https://www.rdocumentation.org/packages/pcaMethods/versions/1.64.0/top

ics ca

34

17


https://www.mathworks.com/help/stats/ppca.html
https://www.rdocumentation.org/packages/pcaMethods/versions/1.64.0/topics/ppca
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