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Latent Variable Models: Motivation
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Latent Variable Models: Motivation
• Gaussian mixture models

• A single Gaussian is not a good fit to data 

• But two different Gaussians may do 

• True class of each point is unobservable

5

Latent Variable Models

A latent variable model p is a probability distribution over two sets of 
variables s,x:

𝑝(𝑠, 𝑥; 𝜃)

where the x variables are observed at learning time in a dataset D and 
the s are never observed
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Latent Variable Models

• The goal of a latent variable model is to express the distribution p(x) 
of the variables 𝑥1, … , 𝑥𝑑 in terms of a smaller number of latent 
variables s = (𝑠1,..., 𝑠𝑞) where q < d

𝑥4

𝑠1 𝑠2 𝑠3

𝑥1 𝑥2 𝑥3

Latent variable: s, q-dimensions
q < d

Observed variable: x, d-dimensions
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Expectation-Maximization (EM) algorithm

• EM algorithm is a hugely important and widely used algorithm 
for learning directed latent-variable graphical

• The key idea of the method: 
• Compute the parameter estimates iteratively by performing the 

following two steps: 
• 1. Expectation step. For all hidden and missing variables (and their possible 

value assignments) calculate their expectations for the current set of 
parameters Θ' 

• 2. Maximization step. Compute the new estimates of Θ by considering the 
expectations of the different value completions 

• Stop when no improvement possible 

8
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Factor Analysis

• Assumptions:
• Underlying latent variable has a Gaussian distribution

• s ~ 𝑁(0, I), independent, Gaussian with unit variance
• Linear relationship between latent and observed variables 
• Diagonal Gaussian noise in data dimensions 

• 𝜖 ~ 𝑁 0,Ψ , Gaussian noise

9

Factor Analysis
• A common latent variable where the relationship is linear:

x = 𝑊𝑠 + 𝜇 + 𝜖

• d−dimensional observation vector x
• q-dimensional vector of latent variable s
• 𝑑 × 𝑞 matrix W relates the two sets of variables, 𝑞 < 𝑑

• 𝜇 permits the model to have non-zero mean

• s ~ 𝑁(0, I), independent, Gaussian with unit variance
• 𝜖 ~ 𝑁 0,Ψ , Gaussian noise

• Then x ~ 𝑁(𝜇,𝑊𝑊𝑇 + Ψ)

10
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Factor Analysis

𝑥4

𝑠1 𝑠2 𝑠3

𝑥1 𝑥2 𝑥3

Latent variable: s, q-dimensions
Observed variable: x, d-dimensions

s ~ 𝑁(0, 𝐼)

𝑅𝑒𝑚𝑎𝑝𝑝𝑖𝑛𝑔:Ws
(weight matrix: w)

𝜇 (location parameter)

𝜖 ~ 𝑁 0,Ψ , Gaussian 
noise

x = Ws + 𝜇 + 𝜖
𝑥~ 𝑁 𝜇,𝑊𝑊𝑇 +Ψ

+

+

Parameters of interest: W (weight matrix),Ψ (variance of noise), 𝝁
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Factor Analysis: Optimization

• Use EM to solve parameters

• E-step:
• compute posterior p(s|x)

• M-step:
• Take derivatives of the expected complete log likelihood 

with respect to parameters

12
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Principal Component Analysis

• General motivation is to transform the data into 
some reduced dimensionality representation

• Linear transformation of a d dimensional input x 
to q dimensional vector s such that q < d under 
which the retained variance is maximal

• Limitation:
• Absence of an associated probabilistic model for the 

observed data

• Computational intensive for covariance matrix

• Does not deal properly with missing data

13

Probabilistic PCA
•Motivations: 

• The corresponding likelihood measure would permit comparison
with other density–estimation techniques and would facilitate 
statistical testing. 
• Provides a natural framework for thinking about hypothesis testing

• Offers the potential to extend the scope of conventional PCA.
• Can be utilized as a constrained Gaussian density model.

• Constrained covariance

• Allows us to deal with missing values in the data set. 
• Can be used to model class conditional densities and hence it can 

be applied to classification problems. 

14
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Generative View of PPCA 

15

• Generative view of the PPCA for a 2-d data space and 1-d latent space

s
s

s

s

s

s

s

PPCA

• Assumptions:

• Underlying latent variable 𝑞 − dim𝑠 has a Gaussian distribution

• Linear relationship between 𝑞 − dim latent 𝑠 and 𝑑 − dim
observed 𝑥 variables

• Isotropic Gaussian noise in observed dimensions

• Noise variances constrained to be equal

16
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PPCA
• A special case of factor analysis

• noise variances constrained to be equal:
• 𝜖 ~ 𝑁(0, 𝜎2I)

• the s conditional probability distribution over x-space:
• x|𝑠 ~ 𝑁(𝑊𝑠 + 𝜇, 𝜎2I)

• latent variables:
• s ~𝑁(0, 𝐼)

• observed data x be obtained by integrating out the latent variables:
• x ~𝑁 𝜇, 𝐶

• 𝐸 𝑥 = 𝐸 𝜇 +𝑊𝑠 + 𝜖 = 𝜇 +𝑊𝐸 𝑠 + 𝐸 𝜖 = 𝜇 +𝑊0 + 0 = 𝜇

• 𝐶 = 𝑊𝑊𝑇 + 𝜎2I (the observation covariance model)

• 𝐶 = 𝐶𝑜𝑣 𝑥 = 𝐸 𝜇 +𝑊𝑠 + 𝜖 − 𝜇 𝜇 +𝑊𝑠 + 𝜖 − 𝜇 𝑇 = 𝐸 𝑊𝑠 + 𝜖 𝑊𝑠 + 𝜖 𝑇 = 𝑊𝑊𝑇 + 𝜎2I

• The maximum likelihood estimator for 𝜇 is given by the mean of data, S is sample 
covariance matrix of the observations {𝑥𝑛}

• Estimates for 𝑊 and 𝜎2 can be solved in two ways
• Closed form 
• EM Algorithms

17

PPCA

𝑥4

𝑠1 𝑠2 𝑠3

𝑥1 𝑥2 𝑥3

Latent variable: s, q-dimensions
Observed variable: x, d-dimensions s ~ 𝑁(0, 𝐼)

𝑅𝑒𝑚𝑎𝑝𝑝𝑖𝑛𝑔:Ws
(weight matrix: w)

𝜇 (location parameter)

Random error (noise):
𝜖 ~ 𝑁 0, 𝜎2𝐼

x = Ws + 𝜇 + 𝜖
x ~ 𝑁(𝜇,𝑊𝑊𝑇 + 𝜎2I)

+

+

Parameters of interest: W (weight matrix), 𝝈𝟐 (variance of noise), 𝝁

18
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Factor Analysis vs. PPCA

• PPCA
• x ~ 𝑁(𝜇,𝑊𝑊𝑇 + 𝜎2I)
• Isotropic error

• Factor Analysis
• x ~ 𝑁(𝜇,𝑊𝑊𝑇 + Ψ)
• The error covariance is a diagonal matrix
• FA doesn’t change if you scale variables

• FA looks for directions of large correlation in the data
• FA doesn’t chase large-noise features that are uncorrelated with 

other features 
• FA changes if you rotate data 

• can’t interpret multiple factors as being unique 

19

Maximum Likelihood for PPCA

• The log-likelihood for the observed data under this model is given by 

ℒ = 

𝑛=1

𝑁

ln 𝑝 𝑥𝑛 = −
𝑁𝑑

2
ln 2𝜋 −

𝑁

2
ln C −

𝑁

2
𝑇𝑟{𝐶−1𝑆}

• where 𝑆 is the sample covariance matrix of the observations 𝑥𝑛

𝑆 =
1

𝑁


𝑛=1

𝑁

(𝑥𝑛 − 𝜇)(𝑥𝑛 − 𝜇)𝑇

• 𝐶 = 𝑊𝑊𝑇 + 𝜎2I

• The log-likelihood is maximized when the columns of W span the principal 
subspace of the data. 
• Fit parameters (𝑾, 𝜇, 𝜎) to maximum likelihood: make the constrained model 

covariance as close as possible to the observed covariance 

20
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Maximum Likelihood for PPCA
• Consider the derivatives with respect to W 

•
𝜕ℒ

𝜕𝑊
= 𝑁(𝐶−1𝑆𝐶−1𝑊 − 𝐶−1W)

• Maximizing with respect to W
• 𝑊𝑀𝐿 = 𝑈𝑞(∧𝑞 −𝜎

2𝐼)1/2𝑅

• Where
• the 𝑞 column vectors in 𝑈𝑞 are eigenvectors of 𝑆, with corresponding 

eigenvalues in the diagonal matrix Λ𝑞
• 𝑅 is an arbitrary 𝑞 × 𝑞 orthogonal rotation matrix.

• For 𝑊 = 𝑊𝑀𝐿, the maximum-likelihood estimator for 𝜎2 is given by
• 𝜎𝑀𝐿

2 =
1

𝑑−𝑞
σ𝑗=𝑞+1
𝑑 𝜆𝑗

• the average variance associated with the discarded dimensions 

21

Maximum Likelihood for PPCA

• Consider the derivatives with respect to W 

•
𝜕ℒ

𝜕𝑊
= 𝑁(𝐶−1𝑆𝐶−1𝑊 − 𝐶−1W)

• At the stationary points 𝑆𝐶−1𝑊 = 𝑊, assuming that 𝐶−1 exists

• Three possible classes of solutions
• 𝑊 = 0, minimum of the log-likelihood

• 𝐶 = 𝑆
• Covariance model is exact

• 𝑊𝑊𝑇 = 𝑆 − 𝜎2𝐼 has a known solution at 𝑊 = 𝑈(∧ − 𝜎2𝐼)1/2𝑅, where 𝑈 is a square 
matrix whose columns are the eigenvectors of 𝑆, with ∧ is the corresponding diagonal 
matrix of eigenvalues, 𝑅 is an arbitrary orthogonal matrix

• 𝑆𝐶−1𝑊 = 𝑊, 𝑏𝑢𝑡 𝑊 ≠ 0 𝑎𝑛𝑑 𝐶 ≠ 𝑆

22
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Maximum Likelihood for PPCA

• Consider the derivatives with respect to W 

•
𝜕ℒ

𝜕𝑊
= 𝑁(𝐶−1𝑆𝐶−1𝑊 −𝐶−1W)

• At the stationary points 𝑆𝐶−1𝑊 = 𝑊, assuming that 𝐶−1 exists

• Case: 𝑆𝐶−1𝑊 = 𝑊, 𝑏𝑢𝑡 𝑊 ≠ 0 𝑎𝑛𝑑 𝐶 ≠ 𝑆

• Express the parameter matrix 𝑊 in terms of singular value decomposition 
(SVD):

• 𝑊 = 𝑈𝐿𝑉𝑇, 𝑼: 𝑑 𝑥 𝑞 orthonormal vectors, 𝑳: 𝑞 𝑥 𝑞 matrix of singular 
values, 𝑽: 𝑞 𝑥 𝑞 orthogonal matrix 

• 𝐶−1𝑊 = W (𝜎2𝐼 +𝑊𝑇𝑊) −1= 𝑈𝐿(𝜎2𝐼 + 𝐿2) −1𝑉𝑇

• At the stationary points

• 𝑆𝑈𝐿(𝜎2𝐼 + 𝐿2) −1𝑉𝑇 = 𝑈𝐿𝑉𝑇

• 𝑆𝑈𝐿 = 𝑈(𝜎2𝐼 + 𝐿2)𝐿
23

W L

Maximum Likelihood for PPCA

• Column vectors of 𝑼, 𝑢𝑗 , are eigenvectors of 𝑺, with eigenvalue 𝜆𝑗 , such 
that 𝜎2 + 𝑙𝑗

2 = 𝜆𝑗
• 𝑆𝑢𝑗 = (𝜎2 + 𝑙𝑗

2)𝑢𝑗
• 𝑙𝑗

2 = (𝜆𝑗 − 𝜎2) 1/2

• (substitute into SVD) , 𝑊 = 𝑈𝑞(⋀𝑞 − 𝜎2𝐼) 𝑅
• 𝑈𝑞 : d x q with q column eigenvectors 𝑢𝑗of S 
• ⋀𝑞 : q x q diagonal matrix with elements: 𝜆1... 𝜆𝑞, (eigenvalues to 𝑢𝑗), 

or 𝜎2 (equivalent to 𝑙𝑗 = 0) 
• R: arbitrary orthogonal matrix, equivalent to a rotation in principal 

subspace (or a re-parametrization) 

24
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EM for PPCA
• Goal: to estimate the model parameters W and 𝜎2, based on the 

observed dataset  

• Rather than solve directly, can apply EM

• EM can be scaled to very large high-dimensional datasets. 

• Consider the latent variables 𝑠𝑛 to be ‘missing’ data 

• Need Complete-data log-likelihood:
• ℒ𝐶 = σ𝑛=1

𝑁 ln{𝑝(𝑥𝑛, 𝑠𝑛}

• since 
• x|𝑠 ~ 𝑁(𝑊𝑠 + 𝜇, 𝜎2I) and s ~𝑁(0, 𝐼)

• we have 

• 𝑝(𝑥𝑛, 𝑠𝑛) = (2𝜋𝜎2)−𝑑/2exp(−
𝑥𝑛 −𝑊𝑠𝑛 − 𝜇

2

2𝜎2
)(2𝜋)−

𝑞

2exp(−
𝑠𝑛

2

2
)

25

EM for PPCA
• E-step

• Compute expectation of complete log likelihood with respect to posterior of latent 
variables 

• Take the expectation of ℒ𝐶 with respect to the distributions 𝑝(𝑠𝑛|𝑥𝑛, W, 𝜎2)

• ℒ𝐶 = −σ𝑛=1
𝑁 𝑑

2
ln(𝜎2) +

1

2
𝑡𝑟 𝑠𝑛𝑠𝑛

𝑇 +
1

2𝜎2
(𝑥𝑛 − 𝜇)𝑇(𝑥𝑛 −

26
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PPCA Examples

• Missing data
• A natural approach to the estimation of 

the principal axes in cases where some 
or indeed all, of the data vectors exhibit 
one or more missing (at random) values

• Fig. 1 (a): projection of 38 examples 
from the 18-dimensional Tobamovirus
data (Ripley 1996) using standard PCA

• Fig.1 (b): an equivalent PPCA projection 
obtained by using an EM algorithm
• Simulated missing data by randomly 

removing each value in the data set with 
probability 20%

27

PPCA Examples

• Mixtures of probabilistic principal component analysis models
• Combining multiple PCA models, notably for image compression

• Fig.2: three PCA projections of the virus data obtained from a three-component mixture 
model, optimized by using an EM algorithm 

• Effectively implements a simultaneous automated clustering and visualizing data

28
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PPCA Examples
• Controlling the degrees of freedom

• Applied as a covariance model of data

• Permits control of the model complexity through the choice of q

• The covariance model in PPCA comprises 𝑑𝑞 + 1 – 𝑞(𝑞 − 1)/2 free parameters

• Table 1: estimated prediction error for various Gaussian models fitted to the Tobamovirus
data

• PPCA with q = 2 gives the lowest error

29

Sensible Principal Component Analysis (SPCA)

• SPCA
• x = Ws + v

• x ~ 𝑁(0,𝑊𝑊2 + 𝜎2𝐼)

• Similar to PCA, the differences are:
• Require noise covariance matrix to be a multiple 𝜎2𝐼 of the identity matrix, but 

do not take the limit as 𝜎2𝐼 0

• During EM iterations, data can be directly generated from the SPCA model, and 
the likelihood estimated from the test data set 

• Likelihood much lower for data far away from the training set, even if they are 
near the principal subspace 

30
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EM for SPCA
• SPCA

• x ~ 𝑁(0,𝑊𝑊𝑇 + 𝜎2𝐼)

• E-step:
• 𝛽 = 𝑊𝑇(𝑊𝑊𝑇 + 𝜎2𝐼)−1

• 𝑠𝑛|𝑥𝑛 = 𝛽(𝑋 − 𝜇)

• Σ𝑠 = 𝑛𝐼 − 𝑛𝛽𝑊 + 𝑠𝑛|𝑥𝑛 𝑠𝑛|𝑥𝑛
𝑇

• Log-likelihood in terms of weight matrix 𝑊, and a centered 
observed data matrix X − 𝜇, noise covariance 𝜎2𝐼, and 
conditional latent mean 𝑠𝑛|𝑥𝑛

31

EM for SPCA

• SPCA

• x ~ 𝑁(0,𝑊𝑊𝑇 + 𝜎2𝐼)

• M-step:

•𝑊𝑛𝑒𝑤 = (X − 𝜇) 𝑠𝑛|𝑥𝑛
𝑇 Σ𝑠

−1

• 𝜎2 𝑛𝑒𝑤 = trace[𝑆𝑆𝑇 −𝑊 𝑠𝑛|𝑥𝑛 X − 𝜇 𝑇]/𝑛2

• Differentiate LL in terms of 𝑊 and 𝜎2 and set to zero

32
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EM for SPCA
• Since 𝜎2𝐼 is diagonal, the inversion in the e-step can be performed 

efficiently using the matrix inversion lemma:

• (𝑊𝑊𝑇 + 𝜎2𝐼)−1= (
𝐼

𝜎2
−𝑊(𝐼 +

𝑊𝑇𝑊

𝜎2
)−1𝑊𝑇/(𝜎2)2)

• Since we are only taking the trace of the matrix in the m–step, we do not 
need to compute the full sample covariance 𝑆𝑆𝑇 , but instead can compute 
only the variance along each coordinate
• 𝜎2 𝑛𝑒𝑤 = trace[𝑆𝑆𝑇 −𝑊 𝑠𝑛|𝑥𝑛 X − 𝜇 𝑇]/𝑛2

• Shows that learning for SPCA enjoys a complexity limited by 𝑂(𝑑𝑛𝑞) and not worse

• Methods that explicitly compute the sample covariance matrix have 
complexities O(𝑛𝑑2)
• EM algorithm does not require computation of sample covariance matrix, 𝑂(𝑑𝑛𝑞)

• Huge advantage when q << d (# of principal components is much smaller than original # of 
variables) 

33

Software

• Matlab
• https://www.mathworks.com/help/stats/ppca.html

• R Programming
• https://www.rdocumentation.org/packages/pcaMethods/versions/1.64.0/top

ics/ppca

34

https://www.mathworks.com/help/stats/ppca.html
https://www.rdocumentation.org/packages/pcaMethods/versions/1.64.0/topics/ppca
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