
School of 
Computing and Information 1

PCA and Autoencoders
Mesut Erhan Unal



School of 
Computing and Information

Roadmap

1. PCA 
• Definition and introduction 
• Optimization perspective 
• Pros and cons 
• Example: Eigenfaces 
• Computational aspect 

2. Autoencoders 
• Definition and introduction 
• Sub-types 

• Sparse Autoencoders  
• Denoising Autoencoders 
• Contractive Autoencoders 

• Example 
3. Q&A

2



School of 
Computing and Information

PCA: Definition and introduction

Principal Component Analysis (PCA) is a linear 
transformation that projects data vectors from -dimensional 
space to -dimensional space where ,while retaining 
as much as possible variance present in the dataset. 

PCA assumes data is generated by a few hidden causes or 
factors, so each data point can be described compactly by 
how much each factor contributes to generate it. 

Why we use it? 
• To visualize data more easily 
• To remove noise present in data 
• To have lower resource requirements to store / process 

data 
• and many more.

d
k k < d

3Credit: CS2750 Spring 2019 Lecture Slides (22) by Milos Hauskrecht



School of 
Computing and Information

PCA: Change of basis

Let us assume we have a data matrix , in which n data points reside as column vectors, it can be 
written as a linear combination of orthonormal basis vectors as  where  is an orthogonal 
matrix. 

=   or  =   

Since  is , we also have . 

Goal: Find the best  basis vectors (principal components) to re-express  while keeping as much 
variance as possible.

Md×n

UZ = M Ud×d

[1 0
0 1][5

3] [5
3]

1

2

1

2
1

2
− 1

2

4 2

2 [5
3]

UTU I Z = UT M

k M

4



School of 
Computing and Information

We want to find best  that maximizes the variance of among  (make s as 
scattered as possible). 

 

So, the variance among projected data will be 

 

u x̃ x̃

X̃ = uT X
¯̃X =

x̃1 + x̃2 + x̃3 + x̃4

4

¯̃X =
uT(x1 + x2 + x3 + x4)

4
¯̃X = uT X̄

(x̃1 − ¯̃X )2 + (x̃2 − ¯̃X )2 + (x̃3 − ¯̃X )2 + (x̃4 − ¯̃X )2

4

5

PCA: How to choose basis vectors?

u

d1

d2

x1
x2

x3 x4

x̃4

x̃1

x̃3x̃2

We want to 
maximize this



School of 
Computing and Information

 

Our optimization problem turns out to be 

J(u) =
1
N

N

∑
n=1

(uT xn − uT X̄ )2

=
1
N

N

∑
n=1

uT(xn − X̄ )(xn − X̄ )Tu

= uT[
1
N

N

∑
n=1

(xn − X̄ )(xn − X̄ )T]u

= uTΣu

max J(u) = uTΣu
s . t : uTu = 1

6

PCA: How to choose basis vectors?

u

d1

d2

x1
x2

x3 x4

x̃4

x̃1

x̃3x̃2

Covariance 
matrix



School of 
Computing and Information

After bringing the constraint with its Lagrange multiplier into the original equation 
we have: 

 

Now we know  must be an eigenvector of 's covariance matrix, and  is 
corresponding eigenvalue. But which  pair we need to pick? Remember 
out initial objective was maximizing . 

min J(u, λ) = uTΣu − λ(uTu − 1)
∂J
∂u

= 2Σu − 2λu = 0

Σu = λu

u X λ
(u, λ)

uTΣu

max J(u) = uTΣu
= uT λu
= λuTu
= λ

7

PCA: How to choose basis vectors?

u

d1

d2

x1
x2

x3 x4

x̃4

x̃1

x̃3x̃2

We want  to be 
as large as 
possible.

λ



School of 
Computing and Information

There is also another way to prove this using 
reconstruction error. For the sake of the simplicity, let us 
assume data is mean normalized and we are projecting 
our data from  to . 

 

So  transformations can be defined as 

 

ℝ2 ℝ

[z1 z2 z3 z4] = […uT
1 …

…uT
2 …]

⋮ ⋮
x1 x2 x3 x4

⋮ ⋮

x → z → ̂x
zi = uT

1 xi

̂xi = u1zi

= u1uT
1 xi

8

PCA: How to choose basis vectors?

u1

d1

d2

x1
x2

x3 x4

x̃4

x̃1

x̃3x̃2

We are dropping 
this orthonormal 

basis



School of 
Computing and Information

Then we can write mean reconstruction error as follows 

 

J =
1
N

N

∑
i=1

xi − x̃i
2

=
1
N

N

∑
i=1

xi − u1uT
1 xi

2

=
1
N

N

∑
i=1

u2uT
2 xi

2

=
1
N

N

∑
i=1

(uT
2 xi)2 u2

2

=
1
N

N

∑
i=1

uT
2 xixT

i u2

= uT
2 [

1
N

N

∑
i=1

xixT
i ]u2

9

PCA: How to choose basis vectors?

u1

d1

d2

x1
x2

x3 x4

x̃4

x̃1

x̃3x̃2

Since  is an orthonormal basis, 
this equals to 1.

u2

Covariance 
matrix

Reconstruction error can be thought as how the basis we 
dropped would project  and reconstruct it back.xi



School of 
Computing and Information

Our optimization problem turns to be: 

 

After plugging the constraint into the equation with its Lagrange multiplier: 

  

We know  is an eigenvector of 's covariance matrix, and  is its corresponding eigenvalue. 
But which ( ) pair to drop? Remember our initial objective was minimizing . 

min J(u2) = uT
2 Σu2

s . t : uT
2 u2 = 1

min J(u2, λ) = uT
2 Σu2 − λ(uT

2 u2 − 1)
∂J
∂u2

= 2Σu2 − 2λu2 = 0

Σu2 = λu2

u2 X λ
u2, λ uT

2 Σu2

min J(u) = uT
2 Σu2

= uT
2 λu2

= λuT
2 u2

= λ

10

PCA: How to choose basis vectors?

u1

d1

d2

x1
x2

x3 x4

x̃4

x̃1

x̃3x̃2

We want  to be 
as small as 
possible.

λ



School of 
Computing and Information

PCA: Pros and cons

Pros 
• Deterministic. 
• Relative differences in data points tend to be preserved. 
• Easy to implement.

11



School of 
Computing and Information

PCA: Pros and cons

Pros 
• Deterministic. 
• Relative differences in data points tend to be preserved. 
• Easy to implement. 

Cons 
• Relies on linearity assumption.

12

Kernel PCA 
may be a better 

choice



School of 
Computing and Information

PCA: Pros and cons

Pros 
• Deterministic. 
• Relative differences in data points tend to be preserved. 
• Easy to implement. 

Cons 
• Relies on linearity assumption. 
• Relies on orthogonal transformations.

13

Independent 
component analysis 

to rescue



School of 
Computing and Information

PCA: Pros and cons

Pros 
• Deterministic. 
• Relative differences in data points tend to be preserved. 
• Easy to implement. 

Cons 
• Relies on linearity assumption. 
• Relies on orthogonal transformations. 
• Assumes mean and covariance can describe the distribution.

14



School of 
Computing and Information

Eigenfaces

(Turk & Pentland, 1991) applied PCA to produce low dimensional representations of faces. 

Approach 
• Flatten every image as a vector. 
• Calculate mean vector (face) over dataset. 
• Subtract mean from each face. 
• Calculate covariance matrix on mean-normalized data. 
• Perform eigendecomposition and select  eigenvectors (PCs) to define bases for 

-dimensional projection space. 
• Basis vectors are called Eigenfaces. 
• During reconstruction, add mean face vector onto reconstructed face.

k k

15



School of 
Computing and Information

Eigenfaces

Reconstruction using 4 basis vectors (principal components). 

16

q1 + q2 + q3 + q4 + μ

O
rig

in
al 

im
ag

es

Re
co

ns
tru

ct
ed

 im
ag

es

Credit: PCA Lecture notes by Václav Hlaváč



School of 
Computing and Information

PCA: Computational aspect

• Eigendecomposition of covariance matrix 
Let  be the mean-normalized data matrix, then calculating covariance matrix  as  
yields . Eigendecomposition on  yields . 
 
If , we can use a trick to perform eigendecomposition on  instead and this gives 

 for covariance matrix calculation and  for eigendecomposition. 
 

 

• Covariance-free methods 
• Iterative computation of PCs with power iteration 
• The NIPALS method 
• and more

Md×n Σ MMT

O(nd2) Σ O(d3)

d ≫ n MT M
O(dn2) O(n3)

MT Mu = λu → MMT(Mu) = λ(Mu)

17



School of 
Computing and Information

Autoencoders: Definition and introduction

Autoencoder is an artificial neural network that tries to encode data efficiently in an unsupervised manner by being 
trained to reconstruct its input on its output. 

It consists of two functions, 
• An encoder function that maps input to a hidden representation 

  

• A decoder function that performs reconstruction from hidden representation 
 

If they are trained to minimize mean squared reconstruction loss 

  

they span the same subspace as PCA if no non-linearity involved in both  and .

f : x → h

g : h → ̂x

L(ξf , ξg) =
1
N

N

∑
i=0

xi − g( f (xi; ξf ); ξg)
2

f g

18



School of 
Computing and Information

Autoencoders: Definition and introduction

If the projection space is larger than input 
space in terms of dimensions (  where 

), autoencoders tend 
to learn  as an identity function. 

If the projection space is smaller than input 
space, an autoencoder is said to be 
undercomplete.

d′ ≥ d
x ∈ ℝd, f(x; ξf ) ∈ ℝd′ 

f ∘ g

19

x ̂xh

x ̂xh



School of 
Computing and Information

Sparse Autoencoders

Even with a large projection space, 
autoencoders can be forced to extract useful 
representations by imposing a sparsity penalty 
on code layer, . We can interpret this penalty as 
we want only a small subset of hidden units to 
be active at once. For sparse autoencoders, 
total loss can be written as: 

 

h

J = L(x, ̂x) + Ω(h)

20

Reconstruction 
loss

Sparsity 
penalty

x ̂x

h ∈ ℝd′ 



School of 
Computing and Information

Sparse Autoencoders

There are different ways to define a sparsity penalty on code layer, . 
Some of them includes:  

• To penalize  norm of  with a scalar . 

 

• To introduce a Bernoulli random variable with mean , and 
force every hidden unit activations to follow this distribution. 

 

• To zero-out all hidden unit activations but top K.

h

L1 h λ

J = L(x, ̂x) + λ
d′ 

∑
i=1

|hi |

p

J = L(x, ̂x) + β
d′ 

∑
j=1

KL(p | | ̂pj)

̂pj =
1
N

N

∑
i=1

[aj(xi)]

21

x ̂x

h ∈ ℝd′ 

Activation of  hidden 
unit averaged over entire 
dataset.

jth



School of 
Computing and Information

Denoising Autoencoders

Rather than adding a penalty term 
 to the cost function, another way 

to make an autoencoder to learn 
useful representations is changing 
its reconstruction criteria. 

A denoising autoencoder takes 
inputs that are partially corrupted 
through a stochastic mapping 

, and tries to 
reconstruct uncorrupted versions.

Ω

x̃ ∼ qD(x̃ |x)

22

x̃ ̂xhx
qD(x̃ |x)

L(ξf , ξg) =
1
T

T

∑
i=1

xi − g( f(x̃i; ξf ); ξg))
2



School of 
Computing and Information

Contractive Autoencoders

One other way to regularize an autoencoder is to add a penalty term  to penalize derivatives of hidden 
units with respect to model input. 

 

This penalty forces the model to learn a function that does not change much when  is subject to small 
perturbations. As we can see, both denoising autoencoders and contractive autoencoders want to achieve 
robustness but there are some differences: 

• Contractive autoencoders explicitly encourage robustness on encoder , whereas denoising 
autoencoders encourage it on reconstruction . 

• Denoising autoencoders' robustness is achieved stochastically, while contractive autoencoders 
achieve it analytically.

Ω

J = L(x, ̂x) + λ
∂h
∂x

2

F

x

f(x)
( f ∘ g)(x)

23

Squared Frobenius norm 
of the Jacobian matrix.



School of 
Computing and Information

Example

• Implemented a deep 
autoencoder that maps 784-D 
(flattened) MNIST images to 2-D 
and reconstructs back. 

• MNIST dataset contains 70,000 
(60,000 train + 10,000 test) 
28x28 handwritten digits. 

• The model has been trained for 
100 epochs.

24

https://github.com/meunal/AutoencoderExample

784-D

64-D

64-D

64-D

2-D

784-D

64-D



School of 
Computing and Information

Off-the-shelf implementations

• PCA 
• Comes built-in in Matlab and R. 
• Available within 3rd party libraries for Python (sklearn, 

statsmodels, mlxtend, etc.). 
• AutoEncoders 

• Can be implemented using modern machine learning 
frameworks (or using just NumPy, if you want to write 
backpropagation). 

• TensorFlow 
• PyTorch 
• MXNet 
• CNTK 
• Theano 
• and more

25



School of 
Computing and Information

References

• Vincent, P., Larochelle, H., Bengio, Y. and Manzagol, P.A., 2008, July. Extracting and composing robust features with denoising 
autoencoders. In Proceedings of the 25th international conference on Machine learning (pp. 1096-1103). 

• Jiang, P., Maghrebi, M., Crosky, A. and Saydam, S., 2017. Unsupervised deep learning for data-driven reliability and risk analysis of 
engineered systems. In Handbook of Neural Computation (pp. 417-431). Academic Press. 

• Rifai, S., Vincent, P., Muller, X., Glorot, X. and Bengio, Y., 2011. Contractive auto-encoders: Explicit invariance during feature 
extraction. 

• Wold, S., Esbensen, K. and Geladi, P., 1987. Principal component analysis. Chemometrics and intelligent laboratory systems, 2(1-3), 
pp.37-52. 

• Goodfellow, I., Bengio, Y. and Courville, A., 2016. Deep learning. MIT press. 
• Hauskrecht, M., 2019. CS2750 Lecture notes, 22 (2019) 
• Ng, A., 2011. Sparse autoencoder. CS294A Lecture notes, 72(2011), pp.1-19. 
• Tong, H., 2018. CSE535 Lecture notes, 4 (2018) 
• Kontorovich, A. and Sabato, S., 2017. Introduction to learning and analysis of big data lecture notes, 14 (2017)

26


