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Approximate probabilistic inference:

• Markov Chain Monte Carlo (MCMC)

• Variational methods
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Markov chain Monte Carlo

• Importance sampling: samples are generated according to Q 

and every sample from Q is reweighted according to w, but the 

Q distribution may be very far from the target

• MCMC is a strategy for generating samples from the target 

distribution, including conditional distributions

• MCMC:

– Markov chain defines a sampling process that

– initially generates samples very different from the target 

distribution (e.g. posterior) 

– but gradually refines the samples so that they are closer and 

closer to the posterior.  
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MCMC

• The construction of a Markov chain requires two basic 

ingredients

– a transition matrix    P 

– an initial distribution  0

• Assume a finite set S={1,…m} of states, then a 

transition matrix is

Where                                     and
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Markov Chain

• Markov chain defines a random process of selecting states

• Chain Dynamics
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MCMC

• Markov chain satisfies

• Irreducibility: A MC is called irreducible (or un-

decomposable) if there is a positive transition probability for 

all pairs of states within a limited number of steps

• In irreducible chains there may still exist a periodic structure 

such that for each state         , the set of possible return times 

to i when starting in i is a subset of the set                              

containing all but a finite set of these elements. The smallest 

number p with this property is the so-called period of the 

chain
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• Aperiodicity: An irreducible chain is called aperiodic (or 

acyclic) if the period p equals 1 or, equivalently, if for all pairs 

of states there is an integer nij such that for all              , the 

probability p(n)
ij>0. 

• If a Markov chain satisfies both irreducibility and 

aperiodicity, then it converges to an invariant distribution 

q(x)

• A Markov chain with transition matrix P will have an 

equilibrium distribution q iff q = qP.

• A sufficient, but not necessary, condition to ensure a particular 

q(x) is the invariant distribution of transition matrix P is the 

following reversibility (detailed balance) condition
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Markov Chain Monte Carlo

Objective: generate samples from the posterior distribution

• Idea:

– Markov chain defines a sampling process that

– initially generates samples very different from the target 

posterior 

– but gradually refines the samples so that they are closer and 

closer to the posterior. 
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MCMC

• P(X|e)— the query we want 

to compute

• e1 & e2 are known evidence

• Sampling from the 

distribution P(X) is very 

different from the desired 

posterior P(X|e)

e1 e2

P(X|e)
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Markov Chain Monte Carlo (MCMC)

State 
Space

………

X1

X2

X3

X4
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MCMC (Cont.)

• Goal: a sample from P(X|e)

• Start from some P(X) and generate a sample x1

X1
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MCMC (Cont.)

X1

Apply T

• Goal: a sample from P(X|e)

• Start from some P(X) and generate a sample x1
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MCMC (Cont.)

X2X1

Apply T Apply T

• Goal: a sample from P(X|e)

• Start from some P(X) and generate a sample x1

• From x1 and transition generate x2
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MCMC (Cont.)

X2X1

Apply T Apply T

• Goal: a sample from P(X|e)

• Start from some P(X) and generate a sample x1

• From x1 and transition generate x2
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MCMC (Cont.)

…… XnX2X1

Apply T Apply T Apply T

P’(X|e)

• Goal: a sample from P(X|e)

• Start from some P(X) and generate a sample x1

• From x1 and transition generate x2

• Repeat for n steps
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MCMC (Cont.)

…… XnX2X1

P’(X|e)

Apply T Apply T Apply T

• Goal: a sample from P(X|e)

• Start from some P(X) and generate a sample x1

• From x1 and transition generate x2

• Repeat for n steps
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MCMC (Cont.)

…… XnX2X1

Apply T Apply T Apply T

Xn+2Xn+1 ……

Samples from desired P (X|e)P’(X|e)

• Goal: a sample from P(X|e)

• Start from some P(X) and generate a sample x1

• From x1 and transition generate x2

• Repeat for n steps



9

CS 3750 Advanced Machine Learning

MCMC

• In general, an MCMC sampling process doesn’t have 
to converge to a stationary distribution

• A finite state Markov Chain has a unique stationary 
distribution iff the markov chain is regular

– regular: exist some k, for each pair of states x and 
x’, the probability of getting from x to x’ in exactly 
k steps is greater than 0

• We want Markov chains that converge to a unique 
target distribution from any initial state

Big question: 

• How to build such Markov chains?
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Gibbs Sampling

• Evidence:

– x5 =T

– x6 =T

• all variables have 

binary values T or F

x5

x4

x6

x2 x3

x1

- A simple method to define MC for BBN

can benefit from the structure (independences) in the network
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Gibbs Sampling

x5

x4

x6

x2 x3

x1

X0

x5=x6=T (Fixed)

x1=F, x2=T

x3=T, x4=T

Initial state
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Gibbs Sampling

x5

x4

x6

x2 x3

x1

X0

x5=x6=T (Fixed)

x1=F, x2=T

x3=T, x4=T

Update 
Value of x4

Initial state
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Gibbs Sampling

x5

x4

x6

x2 x3

x1

X0

x5

x4

x6

x2 x3

x1

X1

x4=F

x5=T

x6=T

x1=F, x2=T,

x3=T,
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Gibbs Sampling

x5

x4

x6

x2 x3

x1

X0

x5

x4

x6

x2 x3

x1

X1

Update 
Value of 

x3

x4=F

x5=T

x6=T
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Gibbs Sampling

x5

x4

x6

x2 x3

x1

X1

Update 
Value of 

x3

x4=F

x5=T

x6=T
x5

x4

x6

x2 x3

x1

X2

x3=T

x4=F

x5=T

x6=T
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Gibbs Sampling

x5

x4

x6

x2 x3

x1

……

x5

x4

x6

x2 x3

x1

……

Xn Samples from desired P(Xrest|e)

After many reassignments
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Gibbs Sampling

x5

x4

x6

x2 x3

x1

x5

x4

x6

x2 x3

x1

Keep resampling each variable using the value of variables 

in its local neighborhood  (Markov blanket)
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Gibbs Sampling

x5

x4

x6

x2 x3

x1

• Gibbs sampling takes advantage of the graphical model structure

• Markov blanket makes the variable independent from 

the rest of the network 
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Building a Markov Chain

• A reversible Markov chain:

• A sufficient, but not necessary, condition to ensure a particular 

q(x) is the invariant distribution of transition matrix P is the 

following reversibility (detailed balance) condition

• Metropolis-Hastings algorithm

– builds a reversible Markov Chain

– Uses a proposal distribution to generate candidate states

• Either accept it and take a transition to state x’

• Or reject it and stay at current state x

)|()()|()( 111   iiiiii xxPxqxxPxq
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Building a Markov Chain

• Metropolis-Hastings algorithm

– builds a reversible Markov Chain

– uses the proposal distribution (similar to proposal the 

distribution in importance sampling) to generate candidates 

for x’

• A proposal distribution Q:

• Example: Uniform over the values of variables

– Either accept a proposal and take a transition to state x’

– Or reject it and stay at current state x

• Acceptance probability

)'( xxT Q 

)'( xxA 
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Building a Markov Chain

• Transition for the MH:

• From reversibility condition: 

• We get
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Building a Markov Chain

• Comparing Metropolis Hastings with Gibbs sampling

– For Gibbs

– Special MH, for which acceptance probability is 1.
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Metropolis Hastings algorithm

• Assumptions:

– We can’t draw the samples from q(x)

– We can evaluate q(x) for any x

• We use a Markov chain that moves towards x* with 

acceptance probability

• The transition kernel defined by this process satisfies the 

detailed balance condition
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Mixing Time in

Using Markov Chain

• Mixing Time

– The number of steps we take until we collect a sample 

from the target distribution.  (# = n)

…… XnX2X1

Local 
Rules

Local 
Rules

Local 
Rules

Mixing Time

Xn+2Xn+1 ……

Samples from desired P(X|e)
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Summary

• Markov Chain Monte Carlo method attempts to generate 
samples from posterior distribution

• Metropolis Hastings algorithm is a general scheme for 
specifying a Markov chain.

• Gibbs sampling is a special case that takes advantage of the 
network structure (Markov Blanket)

CS 3750 Machine Learning

Variational approximations
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Variational approximation

Assume we have a function               that is hard to calculate

Example: posterior probability in a complex BBNs 

• this inference can be very hard

Idea: replace calculations of             with an optimization over 

a simpler parametric function
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Variational lower bound

Let X denote observed variables and

Z denote target variables

Assume some distribution:                      defined by parameters  

)(log),(log)|(log XPZXPXZP 

Average both sides with           
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Variational lower bound
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Kullback-Leibler divergence: distance between 2 distributions 
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Variational lower bound

distance between

)|(),()(log PQKLPQFXP 

)|(),|( XZPXZQ

Always 0

Equals 0 if )|()|( XZPXZQ 

We can optimize the approximation                 by minimizing)|( XZQ

)|(min PQKL 

We can also do this by maximizing ),( PQF 
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Often much easier
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Latent variable models

Observed variables  x

Let X denote observed variables and

Z denote hidden (latent variables)
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x
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Latent variables  Z

Inference opposite the links is hard: P(Z | X)

Solution: Define a simpler distribution :                      to approximate P(Z | X))|( XZQ
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Mean field approximation

)|( XZQHow to construct approximation of 

Mean field approximation:                    ? 
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Latent variable models

Observed variables  x

Let X denote observed variables and

Z denote hidden (latent variables)

Latent variables  Z
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Latent variable models

Observed variables  x

Let X denote observed variables and

Z denote hidden (latent variables)

Latent variables  Z
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Express analytically F, differentiate wrt parameters and set to 0

 Mean field equations that can be used to get optimal set 


