Approximate probabilistic inference:
- Markov Chain Monte Carlo (MCMC)
- Variational methods

Markov chain Monte Carlo
- Importance sampling: samples are generated according to Q and every sample from Q is reweighted according to w, but the Q distribution may be very far from the target
- MCMC is a strategy for generating samples from the target distribution, including conditional distributions
- MCMC:
 - Markov chain defines a sampling process that
 - initially generates samples very different from the target distribution (e.g. posterior)
 - but gradually refines the samples so that they are closer and closer to the posterior.
MCMC

- The construction of a Markov chain requires two basic ingredients
 - a transition matrix P
 - an initial distribution π_0
- Assume a finite set $S=\{1,\ldots,m\}$ of states, then a transition matrix is
 \[
P = \begin{pmatrix}
p_{11} & p_{12} & \cdots & p_{1m} \\
p_{21} & p_{22} & \cdots & p_{2m} \\
\vdots & \vdots & \ddots & \vdots \\
p_{m1} & p_{m2} & \cdots & p_{mm}
\end{pmatrix}
\]
 Where $p_{ij} \geq 0 \quad \forall (i,j) \in S^2$ and $\sum_{j \in S} p_{ij} = 1 \quad \forall i \in S$

Markov Chain

- Markov chain defines a random process of selecting states
 $X^{(0)}, X^{(1)}, \ldots, X^{(m)}, \ldots$

 Initial state selected based on π_0

 Subsequent states selected based on the previous state and the transition matrix

 $X^{(t)} \rightarrow X^{(t+1)}$

- Chain Dynamics
 \[P^{(t+1)}(X^{(t+1)} = x') = \sum_{x \in \text{Dom}(X)} P^{(t)}(X^{(t)} = x) T(x \rightarrow x')\]
 Probability of a state x' being selected at time $t+1$
MCMC

• **Markov chain** satisfies
 \[P(X_{n+1} = j \mid X_0 = i_0, X_1 = i_1, \ldots, X_n = i_n) = P(X_{n+1} = j \mid X_n = i_n) \]

• **Irreducibility**: A MC is called irreducible (or un-decomposable) if there is a positive transition probability for all pairs of states within a limited number of steps.

 • In irreducible chains there may still exist a periodic structure such that for each state \(i \in \mathcal{S} \), the set of possible return times to \(i \) when starting in \(i \) is a subset of the set \(\mathcal{P} = \{ p, 2p, 3p, \ldots \} \) containing all but a finite set of these elements. The smallest number \(p \) with this property is the so-called **period of the chain**

 \[p = \gcd\{n \in \mathbb{N} : p^{(n)}_{ii} > 0\} \]

MCMC

• **Aperiodicity**: An irreducible chain is called aperiodic (or acyclic) if the period \(p \) equals 1 or, equivalently, if for all pairs of states there is an integer \(n_{ij} \) such that for all \(n \geq n_{ij} \), the probability \(p^{(n)}_{ij} > 0 \).

 • If a Markov chain satisfies both **irreducibility and aperiodicity**, then it converges to an invariant distribution \(q(x) \)

 • A Markov chain with transition matrix \(P \) will have an **equilibrium distribution** \(q \) **iff** \(q = qP \).

 • A sufficient, but not necessary, condition to ensure a particular \(q(x) \) is the invariant distribution of transition matrix \(P \) is the following **reversibility (detailed balance) condition**

 \[q(x^i)P(x^{i-1} \mid x^i) = q(x^{i-1})P(x^i \mid x^{i-1}) \]
Objective: generate samples from the posterior distribution

- **Idea:**
 - Markov chain defines a sampling process that
 - initially generates samples very different from the target posterior
 - but gradually refines the samples so that they are closer and closer to the posterior.

MCMC

- $P(X|e)$ — the query we want to compute
- e_1 & e_2 are known evidence
- Sampling from the distribution $P(X)$ is very different from the desired posterior $P(X|e)$
Markov Chain Monte Carlo (MCMC)

- **Goal**: a sample from $P(X|e)$
- Start from some $P(X)$ and generate a sample x_1
MCMC (Cont.)

- **Goal:** a sample from \(P(X|e) \)
- Start from some \(P(X) \) and generate a sample \(x_1 \)

\[X_1 \]

\[\text{Apply T} \]

MCMC (Cont.)

- **Goal:** a sample from \(P(X|e) \)
- Start from some \(P(X) \) and generate a sample \(x_1 \)
- From \(x_1 \) and transition generate \(x_2 \)

\[X_1 \rightarrow X_2 \]

\[\text{Apply T} \]

\[\text{Apply T} \]
MCMC (Cont.)

- **Goal**: a sample from $P(X|e)$
- Start from some $P(X)$ and generate a sample x_1
- From x_1 and transition generate x_2

\[X_1 \xrightarrow{\text{Apply T}} X_2 \]

\[X_2 \xrightarrow{\text{Apply T}} X_3 \]

...

\[X_n \xrightarrow{\text{Apply T}} \]

MCMC (Cont.)

- **Goal**: a sample from $P(X|e)$
- Start from some $P(X)$ and generate a sample x_1
- From x_1 and transition generate x_2
- Repeat for n steps

\[P'(X|e) \]

\[X_1 \xrightarrow{\text{Apply T}} X_2 \]

...

\[X_n \xrightarrow{\text{Apply T}} \]
MCMC (Cont.)

- **Goal:** a sample from $P(X|e)$
- Start from some $P(X)$ and generate a sample x_1
- From x_1 and transition generate x_2
- Repeat for n steps

\[P'(X|e) \]

\[X_1 \rightarrow X_2 \rightarrow \cdots \rightarrow X_n \]

Apply T Apply T Apply T

MCMC (Cont.)

- **Goal:** a sample from $P(X|e)$
- Start from some $P(X)$ and generate a sample x_1
- From x_1 and transition generate x_2
- Repeat for n steps

\[P'(X|e) \]

\[X_1 \rightarrow X_2 \rightarrow \cdots \rightarrow X_n \rightarrow X_{n+1} \rightarrow X_{n+2} \rightarrow \cdots \]

Apply T Apply T Apply T

MCMC

- In general, an MCMC sampling process doesn’t have to converge to a stationary distribution
- A finite state Markov Chain has a unique stationary distribution iff the Markov chain is regular
 - regular: exist some \(k \), for each pair of states \(x \) and \(x' \), the probability of getting from \(x \) to \(x' \) in exactly \(k \) steps is greater than 0
- We want Markov chains that converge to a unique target distribution from any initial state

Big question:
- How to build such Markov chains?

Gibbs Sampling

- A simple method to define MC for BBN can benefit from the structure (independences) in the network

- **Evidence:**
 - \(x_5 = T \)
 - \(x_6 = T \)
- all variables have binary values T or F
Gibbs Sampling

Initial state

x_0

Update Value of x_4

$x_1 = F, x_2 = T$

$x_3 = T, x_4 = T$

$x_5 = x_6 = T$ (Fixed)

$x_1 = F, x_2 = T$

$x_3 = T, x_4 = T$

$x_5 = x_6 = T$ (Fixed)
Gibbs Sampling

\[x_0 \rightarrow x_1 \]

\[x_1 = F, \ x_2 = T, \ x_3 = T, \]
\[x_4 = F, \ x_5 = T, \ x_6 = T \]

CS 3750 Advanced Machine Learning
Gibbs Sampling

After many reassignments

Samples from desired $P(X_{rest} \mid e)$
Gibbs Sampling

Keep resampling each variable using the value of variables in its local neighborhood (Markov blanket).

\[P(X_4 \mid x_2, x_3, x_5, x_6) \]

Gibbs Sampling

- Gibbs sampling takes advantage of the graphical model structure
- Markov blanket makes the variable independent from the rest of the network

\[P(X_4 \mid x_2, x_3, x_5, x_6) \]
Building a Markov Chain

• **A reversible Markov chain:**
 - A sufficient, but not necessary, condition to ensure a particular $q(x)$ is the invariant distribution of transition matrix P is the following reversibility (detailed balance) condition
 \[q(x^i)P(x^{i-1}|x^i) = q(x^{i-1})P(x^i|x^{i-1}) \]

• **Metropolis-Hastings algorithm**
 - builds a reversible Markov Chain
 - Uses a proposal distribution to generate candidate states
 - Either accept it and take a transition to state x'
 - Or reject it and stay at current state x

Building a Markov Chain

• **Metropolis-Hastings algorithm**
 - builds a reversible Markov Chain
 - uses the **proposal distribution** (similar to proposal the distribution in importance sampling) to generate candidates for x'
 - A proposal distribution Q: $T^Q (x \rightarrow x')$
 - Example: Uniform over the values of variables
 - Either accept a proposal and take a transition to state x'
 - Or reject it and stay at current state x
 - Acceptance probability
 \[A(x \rightarrow x') \]
Building a Markov Chain

• Transition for the MH:

\[T(x \rightarrow x') = T^Q(x \rightarrow x')A(x \rightarrow x') \quad \text{if} \quad x \neq x' \]

\[T(x \rightarrow x) = T^Q(x \rightarrow x) + \sum_{x \neq x} T^Q(x \rightarrow x')(1 - A(x \rightarrow x')) \quad \text{otherwise} \]

• From reversibility condition:

\[q(x)T(x \rightarrow x') = q(x')T(x' \rightarrow x) \]

• We get

\[A(x \rightarrow x') = \min[1, \frac{q(x')T^Q(x' \rightarrow x)}{q(x)T^Q(x \rightarrow x')}] \]

Building a Markov Chain

• Comparing Metropolis Hastings with Gibbs sampling
 – For Gibbs

\[A(u_i, x_i \rightarrow u_i, x_i') = \min[1, \frac{P(x_i' | u_i)T^Q(u_i, x_i' \rightarrow u_i, x_i)}{P(x_i | u_i)T^Q(u_i, x_i \rightarrow u_i, x_i)}] \]

\[= \min[1, \frac{P(x_i' | u_i)P(x_i | u_i)}{P(x_i | u_i)P(x_i' | u_i)}] = \min[1, 1] = 1 \]

 – Special MH, for which acceptance probability is 1.
Metropolis Hastings algorithm

- **Assumptions:**
 - We can’t draw the samples from \(q(x) \)
 - We can evaluate \(q(x) \) for any \(x \)
- We use a Markov chain that moves towards \(x^* \) with acceptance probability

\[
A(x, x^*) = \min \left[1, \frac{q(x^*) p(x | x^*)}{q(x) p(x^* | x)} \right]
\]

- The transition kernel defined by this process satisfies the detailed balance condition

Mixing Time in Using Markov Chain

- **Mixing Time**
 - The number of steps we take until we collect a sample from the target distribution. \((# = n)\)
Summary

- **Markov Chain Monte Carlo method** attempts to generate samples from posterior distribution.
- **Metropolis Hastings algorithm** is a general scheme for specifying a Markov chain.
- **Gibbs sampling** is a special case that takes advantage of the network structure (Markov Blanket).

Variational approximations
Variational approximation

Assume we have a function \(f(Z) \) that is hard to calculate.

Example: posterior probability in a complex BBNs

\[P(Z \mid X) \]

- this inference can be very hard

Idea: replace calculations of \(f(Z) \) with an optimization over a simpler parametric function \(q(Z \mid \lambda) \)

\[f(Z) \sim \max_{\lambda} q(Z \mid \lambda) \]

Variational lower bound

Let \(X \) denote observed variables and \(Z \) denote target variables

\[P(Z \mid X) = \frac{P(X,Z)}{P(X)} \]

\[\log P(Z \mid X) = \log P(X,Z) - \log P(X) \]

\[\log P(X) = \log P(X,Z) - \log P(Z \mid X) \]

Assume some distribution: \(Q_\theta(Z \mid X) \) defined by parameters \(\theta \)

Average both sides with \(E_{Q_\theta} \)

\[
\sum_z Q_\theta(Z \mid X) \log P(X) = \sum_z Q_\theta(Z \mid X) \log P(X,Z) - \sum_z Q_\theta(Z \mid X) \log P(Z \mid X) \\
\log P(X) = E_{Q_\theta} (\log P(X,Z)) - E_{Q_\theta} (\log P(Z \mid X))
\]
Variational lower bound

\[\log P(X) = E_{Q_\theta} \left(\log P(X, Z) \right) - E_{Q_\theta} \left(\log P(Z \mid X) \right) \]

\[\log P(X) = \sum_z Q_\theta(Z \mid X) \log P(X, Z) - \sum_z Q_\theta(Z \mid X) \log P(Z \mid X) \]

\[\log P(X) = \sum_z Q_\theta(Z \mid X) \log P(X, Z) - \sum_z Q_\theta(Z \mid X) \log P(Z \mid X) \]

\[+ \sum_z Q_\theta(Z \mid X) \log Q_\theta(Z \mid X) - \sum_z Q_\theta(Z \mid X) \log Q_\theta(Z \mid X) \]

Kullback-Leibler divergence: distance between 2 distributions

\[KL(Q \mid P) = \sum_z Q_\theta(Z \mid X) \log Q_\theta(Z \mid X) - \sum_z Q_\theta(Z \mid X) \log P(Z \mid X) \]

Functional (Evidence lower bound or ELBO):

\[F(Q, P) = \sum_z Q_\theta(Z \mid X) \log P(X, Z) - \sum_z Q_\theta(Z \mid X) \log Q_\theta(Z \mid X) \]

\[\log P(X) = F(Q, P) + KL(Q \mid P) \]

Variational lower bound

\[\log P(X) = F(Q, P) + KL(Q \mid P) \]

\[\downarrow \]

distance between \(Q_\theta(Z \mid X), P(Z \mid X) \)

Always \(\geq 0 \)

Equals 0 if \(Q_\theta(Z \mid X) = P(Z \mid X) \)

We can optimize the approximation \(Q_\theta(Z \mid X) \) by minimizing

\[\min_\theta KL(Q_\theta \mid P) \]

We can also do this by maximizing \(F(Q_\theta, P) \)

\[\max_\theta F(Q_\theta, P) \quad \text{Often much easier} \]

\[F(Q, P) = \sum_z Q_\theta(Z \mid X) \log P(X, Z) - \sum_z Q_\theta(Z \mid X) \log Q_\theta(Z \mid X) \]
Latent variable models

Let X denote observed variables and Z denote hidden (latent variables)

Inference opposite the links is hard: $P(Z \mid X)$

Solution: Define a simpler distribution: $Q_{\theta}(Z \mid X)$ to approximate $P(Z \mid X)$

Optimize:

$$
\max_{\theta} ~ F(Q_{\theta}, P)
$$

$$
F(Q, P) = \sum_{z} Q_{\theta}(Z \mid X) \log P(X \mid Z) + \sum_{z} Q_{\theta}(Z \mid X) \log P(Z) - \sum_{z} Q_{\theta}(Z \mid X) \log Q_{\theta}(Z \mid X)
$$

Mean field approximation

How to construct approximation of $Q_{\theta}(Z \mid X)$

Mean field approximation:

$$
Q_{\theta}(Z \mid X) = \prod_{i} Q_{i}(Z_{i} \mid \theta_{i})
$$

Optimize:

$$
\max_{\theta} ~ \sum_{z_{1}, z_{2}, \ldots, z_{i}} Q_{\theta}(Z \mid X) \log P(X, Z) - \sum_{z_{1}, z_{2}, \ldots, z_{i}} Q_{\theta}(Z \mid X) \log Q_{\theta}(Z \mid X)
$$

$$
\max_{\theta_{1}, \theta_{2}, \ldots, \theta_{i}} ~ \sum_{z_{1}, z_{2}, \ldots, z_{i}} \prod_{i} Q_{i}(Z_{i} \mid \theta_{i}) \log P(X, Z)
$$

$$
- \sum_{z_{1}, z_{2}, \ldots, z_{i}} \prod_{i} Q_{i}(Z_{i} \mid \theta_{i}) \log \prod_{i} Q_{i}(Z_{i} \mid \theta_{i})
$$
Latent variable models

Let X denote observed variables and Z denote hidden (latent variables)

\[Q_\theta(Z \mid X) = \prod_i Q_i(Z_i \mid \theta_i) \]

\[
\max_\theta F(Q_\theta, P) \]

\[
\max_{\theta_1, \theta_2, \ldots, \theta_l} \sum_{Z_1, Z_2, \ldots, Z_l} \prod_i Q_i(Z_i \mid \theta_i) \log P(X \mid Z) \\
+ \sum_{Z_i} \prod_i Q_i(Z_i \mid \theta_i) \log P(Z_i) \\
- \sum_{Z_i} \prod_i Q_i(Z_i \mid \theta_i) \log \prod_i Q_i(Z_i \mid \theta_i)
\]

Express analytically F, differentiate wrt parameters and set to 0

\[\Rightarrow \text{Mean field equations that can be used to get optimal set } \theta \]