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Lecture 6

Approximate probabilistic inference:
« Markov Chain Monte Carlo (MCMC)
« Variational methods
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Markov chain Monte Carlo

« Importance sampling: samples are generated according to Q
and every sample from Q is reweighted according to w, but the
Q distribution may be very far from the target

« MCMC is a strategy for generating samples from the target
distribution, including conditional distributions
« MCMC:
— Markov chain defines a sampling process that
— initially generates samples very different from the target
distribution (e.g. posterior)
— but gradually refines the samples so that they are closer and
closer to the posterior.
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MCMC

« The construction of a Markov chain requires two basic
ingredients
—atransition matrix P
— an initial distribution

+ Assume a finite set S={1,...m} of states, then a
transition matrix is
pll p12 s plm
P— p‘21 p.zz p.Zm
pml me e pmm

Where p; 20 V(i,j)eS* and D, p;=1 Vie$

jeS
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Markov Chain

» Markov chain defines a random process of selecting states

X x® x™
N ’ Subsequent states selected based on the

Initial state selected previous state and the transition matrix

based on m, - -
t t+1

« Chain Dynamics
POV =x) = T PUXO =xT(x—>x)

xeDom(X) \

Probability of a state x’ being selected . _
at time t+1 transition matrix
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MCMC

Markov chain satisfies
P(Xpa= 11X, =lg, Xy =h,... X =i,)=P(X, ;= ][ X, =i,)

n+1

Irreducibility: A MC is called irreducible (or un-
decomposable) if there is a positive transition probability for
all pairs of states within a limited number of steps

In irreducible chains there may still exist a periodic structure
such that for each state i € 8, the set of possible return times
to i when starting in i is a subset of the set PN ={p.2p.3p,.. }
containing all but a finite set of these elements. The smallest
number p with this property is the so-called period of the
chain

p=gcd{neN:p,"” >0}
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MCMC

Aperiodicity: An irreducible chain is called aperiodic (or
acyclic) if the period p equals 1 or, equivalently, if for all pairs
of states there is an integer n;; such that for all n=n;, the
probability p®;>0.

If a Markov chain satisfies both irreducibility and
aperiodicity, then it converges to an invariant distribution
q(x)

A Markov chain with transition matrix P will have an
equilibrium distribution g iff g =qgP.

A sufficient, but not necessary, condition to ensure a particular
g(x) is the invariant distribution of transition matrix P is the
following reversibility (detailed balance) condition

()P X)) = q(x P(X' [ X)
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Markov Chain Monte Carlo

Objective: generate samples from the posterior distribution
* ldea:
— Markov chain defines a sampling process that

— initially generates samples very different from the target
posterior

— but gradually refines the samples so that they are closer and
closer to the posterior.
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MCMC

« P(X|e)— the query we want
to compute
* e, &e, are known evidence

» Sampling from the
distribution P(X) is very
different from the desired
posterior P(X|e)

P(X]e)

€ €,
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Markov Chain Monte Carlo (MCMC)
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MCMC (Cont.)

» Goal: a sample from P(X|e)
« Start from some P(X) and generate a sample x1
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MCMC (Cont.)

« Goal: a sample from P(X|e)
« Start from some P(X) and generate a sample x1

S
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MCMC (Cont.)

« Goal: a sample from P(X|e)
« Start from some P(X) and generate a sample x1
« From x1 and transition generate x2

Apply T Apply T
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MCMC (Cont.)

« Goal: a sample from P(X|e)
« Start from some P(X) and generate a sample x1
« From x1 and transition generate x2

K
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MCMC (Cont.)

« Goal: a sample from P(X|e)

« Start from some P(X) and generate a sample x1
« From x1 and transition generate x2

» Repeat for n steps

P'(X]e)

.
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MCMC (Cont.)

« Goal: a sample from P(X|e)

« Start from some P(X) and generate a sample x1
« From x1 and transition generate x2

» Repeat for n steps

P'(Xle)

g —5

CS 3750 Advanced Machine Learning

MCMC (Cont.)

« Goal: a sample from P(X|e)

« Start from some P(X) and generate a sample x1
« From x1 and transition generate x2

» Repeat for n steps

P’(X|e) Samples from desired P (X|e)

g —8
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MCMC

* In general, an MCMC sampling process doesn’t have
to converge to a stationary distribution

« Afinite state Markov Chain has a unique stationary
distribution iff the markov chain is regular

— regular: exist some k, for each pair of states x and
x’, the probability of getting from x to x’ in exactly
k steps is greater than O

« We want Markov chains that converge to a unique
target distribution from any initial state

Big question:
» How to build such Markov chains?
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Gibbs Sampling

- A simple method to define MC for BBN

can benefit from the structure (independences) in the network

» Evidence:

» all variables have

binary values T or F

X5 Xe
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Gibbs Sampling

Initial state

X1=F, X,=T
X3=T, X,=T

Xs=Xc=T (Fixed)
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Gibbs Sampling

Initial state

Update
Value of x,

X1=F, X,=T
X3=T, X,=T

Xs=Xg=T (Fixed)
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Gibbs Sampling

X,=F, X,=T,
X5=T,
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Gibbs Sampling

Update
Value of
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Gibbs Sampling

Update
Value of

P
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Gibbs Sampling

After many reassignments

Samples from desired P(X .| €)
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Gibbs Sampling

Keep resampling each variable using the value of variables
in its local neighborhood (Markov blanket)

4 X2'X3’X5’X6)
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Gibbs Sampling

« Gibbs sampling takes advantage of the graphical model structure
» Markov blanket makes the variable independent from
the rest of the network

4 | X2’X3’X5’X6)
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Building a Markov Chain

» A reversible Markov chain:

 Asufficient, but not necessary, condition to ensure a particular
g(x) is the invariant distribution of transition matrix P is the
following reversibility (detailed balance) condition

a(x )P [x) =q(x)P(x' [x7)
» Metropolis-Hastings algorithm
— builds a reversible Markov Chain
— Uses a proposal distribution to generate candidate states

* Either accept it and take a transition to state x’
« Or reject it and stay at current state X
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Building a Markov Chain

« Metropolis-Hastings algorithm
— builds a reversible Markov Chain

— uses the proposal distribution (similar to proposal the
distribution in importance sampling) to generate candidates
for x’

 Aproposal distributionQ: T Qx = x")
« Example: Uniform over the values of variables
— Either accept a proposal and take a transition to state x’
— Or reject it and stay at current state x
« Acceptance probability
A(X — x")
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Building a Markov Chain

 Transition for the MH:
T(X—>Xx)=T% (x> x)A(Xx—> x') if x=x'
T(x—>xX)=T%(x>x)+ D TUX—>X)1-A(X —> X))
o otherwise
« From reversibility condition:

gX)T(x—> x)=q(X")T (X'— x)

* We get

A(X — X')=min[l Q)T (X' = x)
"q(X)T(x = x")
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Building a Markov Chain

+ Comparing Metropolis Hastings with Gibbs sampling

— For Gibbs

AU, X —> Uy, X5)

P [u)T 2 (u;, X' = Ui, %)
P(x [u)T (U, x; —>u;, Xil)
P Tu)P(X; Iui)]
PO Tup)P(X5 [ u)
=min[11l] =1

= min[i,

1

= min[l,

— Special MH, for which acceptance probability is 1.
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Metropolis Hastings algorithm

« Assumptions:
— We can’t draw the samples from q(x)
— We can evaluate g(x) for any x

» We use a Markov chain that moves towards x* with
acceptance probability

Al X*):min{ . q(x*)p(x|x*)}
| - q(x)p(x*]X)

 The transition kernel defined by this process satisfies the
detailed balance condition
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Mixing Time in
Using Markov Chain
* Mixing Time

— The number of steps we take until we collect a sample
from the target distribution. (# =n)

Mixing Time Samples from desired P(X|e)
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Summary

« Markov Chain Monte Carlo method attempts to generate
samples from posterior distribution

« Metropolis Hastings algorithm is a general scheme for
specifying a Markov chain.

« Gibbs sampling is a special case that takes advantage of the
network structure (Markov Blanket)
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Variational approximations
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Variational approximation

Assume we have a function f (Z) thatis hard to calculate
Example: posterior probability in a complex BBNs
P(Z| X)
« this inference can be very hard
Idea: replace calculations of f (Z) with an optimization over
a simpler parametric function q(Z | A)

f(2) ~max, q(2]A4)

CS 3750 Machine Learning

Variational lower bound

Let X denote observed variables and
Z denote target variables

P(X,Z)
P(X)
log P(Z | X) =log P(X,Z)—log P(X)

log P(X)=log P(X,Z)—log P(Z| X)

Assume some distribution: | Q,(Z | X) |defined by parameters &

P(Z|X)=

Average both sides with E,
2.Q,(ZX)log P(X)=2"Q,(Z|X)log P(X,Z)~> Q,(Z|X)log P(Z | X)

log P(X) = Eg, (log P(X,Z))-E,, (log P(Z | X))

CS 3750 Machine Learning

18



Variational lower bound
log P(X) = E, (log P(X,Z))-E,, (log P(Z | X))
log P(X) =;QH(Z | X)log P(X.Z)—;QQ(Z | X)log P(Z | X)
log P(X) =Z,Q9(Z | X)log P(X,Z)—;QH(Z | X)log P(Z | X)

+2.Q,(Z 1 X)log Qu(Z | X) =D Q,(Z | X)log Qy(Z | X)

Kullback-Leibler divergence: distance between 2 distributions

KLQ|P)=2Q,(Z|X)log Q,(Z|X)~> Q,(Z|X)log P(Z| X)
Functional (Evidence lower bound or ELBO):
F(Q,P)=>Q,(Z|X)log P(X,Z)~> Q,(Z | X)log Q,(Z | X)

log P(X)=F(Q,P)+KL(Q|P)
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Variational lower bound

log P(X)=F(Q,P)+ KL(Q|P)

\

distance between Q,(Z|X),P(Z|X)
Always >0
Equals 0 if Q,(Z|X)=P(Z]|X)
We can optimize the approximation Q,(Z | X) by minimizing
min , KL(Q, | P)
We can also do this by maximizing F(Q,,P)
max , F(Q,,P) <—— Often much easier

F(Q.P)=>.Q,(Z|X)log P(X,Z)~> Q,(Z| X)log Q,(Z | X)
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Latent variable models

Let X denote observed variables and
Z denote hidden (latent variables)

Latent variables Z

z

§ 0000

Observed variables x
Inference opposite the links is hard: P(Z | X)

Solution: Define a simpler distribution : Q,(Z | X) to approximate P(Z | X)
Optimize: max, F(Q,,P)

F(Q.P)=2.Q,(Z1X)log P(X |Z)+ Q,(Z| X)log P(Z) - Q,(Z | X)log Q,(Z | X)
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Mean field approximation

How to construct approximation of Q,(Z | X)
Mean field approximation: ?
QzIX)=[TQ(z16)

max , F(Q,,P)

max, > Q,(ZIX)log P(X,Z)~ > Q,(Z]X)logQ,(Z|X)

2,.25.-Z; 2,.75.-Z;

maxg o, ..o Z HQ| (Z;16,)log P(X,Z)

20,2,.2; i

- > TIQ@16)og[[Q(z16)

2,,25,.Z; i i
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Latent variable models

Let X denote observed variables and Latent variables Z

Z denote hidden (latent variables)

Q,Z1X)=[1Q(z10)

max , F(Q,,P)

Observed variables x

max,, o,..a Z HQi(Zi |6,)log P(X |2)

21.25,.Z;

+ z HQi(Zi |6)log P(Z;)

20,2,.2; i

- > TIQ@l16)g[1Q(z 16)

2,.25,.Z; i
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Latent variable models

Let X denote observed variables and Latent variables Z

Z denote hidden (latent variables)

QIX)=T]Qz16)
max , F(Q,,P)

maX, , ., Z HQ‘ (Z,16)log P(X | Z) Observed variables x

21,252

+2. 2.Qi(Zi16)log P(Z))
_Z ZQi(Zi |6,)log Q,(Z; ]6))

Express analytically F, differentiate wrt parameters and set to 0
- Mean field equations that can be used to get optimal set &
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