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Monte Carlo inference

« Let us assume we have a probability distribution P(X)
represented e.g. using BBN or MRF, and we want calculate

P(x)or P(x]|e)
« We can use exact probabilistic inference, but it may be hard to
calculate
« Monte Carlo approximation:
— ldea: The probability P(x) is approximated using sample
frequencies
 ldea (first method):
— Generate a random sample D of size M from P(X)

— Estimate P(x) as:
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Absolute Error Bound

* Hoeffding’s bound lets us bound the probability with
which the estimate P, (x) differs from P(X) by more
than ¢

P(P,(X) 2[P(X)—&,P(X)+&]) <2e2™ <5

The bound can be used to decide on how many samples are
required to achieve a desired accuracy:

In(2/5)

M >
27

Relative Error Bound

« Chernoff’s bound lets us bound the probability of the estimate
P,(x) exceeding arelative error £ of the true value P(X)

P (P, (X) 2 P(X)(1+ €)) < 28 PR < 5
« This leads to the following sample complexity bound:

In(2/5)

M >3 5
P(X)e




Monte Carlo inference challenges

Challenge 1: How to generate M (unbiased) examples from
the target distribution P(X) or P(X |e)?
— Generating (unbiased) examples from P(X) or P(X|e) may
be hard, or very inefficient
Example:
« Assume | have a distribution over 100 binary variables
— There are 219 possible configurations of variable values
 Trivial sampling solution:
— Calculate and store the probability of each configuration
— Pick randomly a configuration based on its probability
» Problem: terribly inefficient in time and memory
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Monte Carlo inference challenges

Challenge 2: How to estimate the expected value of f(x) for P(x):

« Generally, we can estimate this expectation by generating samples
x[1], ..., x[M] from P, and then estimating it as:

E[f1=3 P(X)f (x) Eo[f1=[ p(x) f (x)dx

=EB[f]=-> F(im)

2
« Using the central limit theorem, the estimate & follows N[O,Gﬁ]
— Where the variance for f(x) is

o” = [ pOOLT (X) — E, (F (X)) dx

* Problem: we are unable to efficiently sample P(x). What to do?
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Central limit theorem

+ Central limit theorem:
Let random variables X,, X,,--- X, form a random sample
from a distribution with mean ¢ and variance o2 then if
the sample n is large, the distribution

Zm:Xi ~N(u,o?/m)

i=1

3|+

m
> X; = N(mu,ma?) or

i=1

Effect of increasing the sample size m on the sample mean:

™ m=100 1 =0
2
/m—50
‘ m =30
/
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Monte Carlo inference: BBNSs

Challenge 1: How to generate M (unbiased) examples from
the target distribution P(X) defined by a BBN?

» Good news: Sample generation for the full joint defined by
the BBN is easy

— One top down sweep through the network lets us generate
one example according to P(X)

— Example:
OB E
\ Examples are generated
A in a top down manner,

/ x) following the links
J M
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BBN sampling example

Burglary

P(B) P(E)

T F | T F |
0.001 0.999 | ( Earthquake ) [0.002 0.998
P(A|B,E)

/ BE| T F
T T |0.95 0.05
T F | 0.94 0.06
F T | 029 071
F F | 0.0010.999
PAIA) \ P(M|A)
Al T F Al T F
T | 0.90 0.1 T!10.7 0.3
F]0.050.95 F| 0.01 0.99
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Burglary

BBN sampling example

P(B) P(E)

T °F T F
0.001 0.999 Earthquake 0.002 0.998
P(A|B,E)

/ BE| T F
T T | 0,95 0.05
T F 0.94 0.06
F T 0.29 0.71
F F 0.001 0.999
PAIA) \ P(M|A)
Al T F Al T F
T | 0.90 0.1 T!10.7 0.3
F | 0.05 0.95 F| 0.0l 0.99
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Burglary

BBN sampling example

P(B) P(E)
T F T F
0.001 0.999 | ( Earthquake ) [0.002 0.998
P(A|B,E) F
/ BE| T F

T T |095 0.05

T F | 094 0.06

F T |02 071

F F | 0.0010.999

PQAIA)

Al T F
T| 0.90 0.1 T107 03
F | 0.05 0.95 F| 0.01L 0.99
CS 3750 Advanced Machine Learning
BBN sampling example
P(B) P(E)
T F T F
Burglary )|0.001 0.999 | ( Earthquake ) [0.002 0.998
F P(A|B,E) F
/ BE| T F
T T | 0.95 0.05
T F | 0.94 0.06
F T | 029 0.71
F F | 0.0010.999 | <==m

PQAIA)

Al T F
T| 0.90 0.1 T!10.7 0.3
F | 0.05 0.95 F| 0.0l 0.99

CS 3750 Adva

nced Machine Learning




BBN sampling example

Burglary

P(B) P(E)
T F T F
0.001 0.999 | ( Earthquake ) [0.002 0.998
P(A|B,E) F
/ BE| T F
T T |0.95 0.05
T F | 0.94 0.06
F T |0.29 0.71
F F | 0.0010.999
PAIA) \ P(M|A)
Al T F Al T F
T 0.90 0.1 T 0.7 0.3
F]0.05 095 F| 0.01 0.99
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Burglary

BBN sampling example

P(B) P(E)
T T F |
0.001 0.999 | ( Earthquake ) 0.002 0.998
P(A|B,E) F
/ BE| T F
T T | 095 0.05
T F | 0.94 0.06
F T | 0.29 0.71
F F | 0.0010.999
P(JIA) \ P(M|A)
Al T F Al T F
T|0.90 0.1 107 o053
F 0.05 0.95 F F 0.01 0.99_
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BBN sampling example

P(B) P(E)
T F T F
Burglary )| 0.001 0.999 | ( Earthquake ) [0.002 0.998

= P(A|B,E) F
B E| T ‘
/ Sample:
T T |09
T F |09 F =
F T |02
F F | 0.0 F
P(JIA) \ F F
Al T F .

T1| 0.90 0.1
F | 0.05 0.95

n o
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Monte Carlo inference: BBNSs

Challenge 1: How to generate M (unbiased) examples from
the target distribution P(X) defined by BBN?
» Good news: Sample generation for the full joint defined by
the BBN is easy
— One top down sweep through the network lets us generate
one example according to P(X)

— Example:
QOB E
Examples are generated
in a top down manner,

A
/ x) following the links
J M

— Repeat many times to get enough of examples
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Monte Carlo inference: BBNSs

Knowing how to generate efficiently examples from the full
joint lets us efficiently estimate:

— Joint probabilities over a subset variables
— Marginals on variables

« Example: OB E
\O})
A
O/J x) M
The probability is approximated using sample frequency

«—— H#sampleswithB=T,J =T

P(B=T,J =T)=—NB:T'~‘:T
N <«— total # samples
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Monte Carlo inference: BBNSs

« MC approximation of conditional probabilities:
— The probability can approximated using sample frequencies
— Example:
_ N — #sampleswithB=T,J =T
P(B=T|J=T) =—IB\|:T~J:T
T #sampleswith J =T
« Solution 1 (rejection sampling):
— Generate examples from P(X) which we know how to do
efficiently

» Use only samples that agree with the condition (J=T), the
remaining samples are rejected
« Problem: many examples are rejected. What if P(J=T) is very
small?
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Monte Carlo inference: BBNSs

MC approximation of conditional probabilities
Solution 2 (likelihood weighting)
— Avoids inefficiencies of rejection sampling
— ldea: generate only samples consistent with an evidence
(or conditioning event); If the value is set no sampling
» Problem: using simple counts is not enough since these may
occur with different probabilities
Likelihood weighting:
— With every sample keep a weight with which it should
count towards the estimate

WBT

samples with B=T and J=T

PB=T|J=T)=
W,

samples with any value of Band J=T

B=x
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BBN likelihood weighting example

P(E)
P(B) T F
T_F | ooez
Burglary )|0.001 0.999 .‘
P(A|B,E)
/ BE| T F
T T |0.95 0.05
T F | 094 0.06
F T 029 071
F F | 0.0010.999

PQAIA)

\ P(M|A)
A T F A F
T1| 0.90 0.1
F | 0.05 0.95

m -

J=T (set!)
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BBN likelihood weighting example

Burglary

J=T (set !l

P(B)

T F

0.001 0.999 -

P(A|B,E)

P(E)
T F
0.002

E =F (set !!)

T F

m

7

0.95 0.0
0.94 0.0

0.001 0.9

T
F
T | 0.29 0.71
F

5
6

99

PQAIA)

T | 0.90 0.1
F | 0.05 0.95

Al T F \

P(M|A)

-
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BBN likelihood weighting example

Burglary

J=T (set 1)

P(B) P(E)
T F T F
0.001 0.999 - 0.002 0.99%]
E=F(set!l)
P(A|B,E)
/ BE| T F
T T |0.95 0.05
T F | 0.94 0.06
F T |029 071
F F | 0.0010.999
P(JIA) \ P(M|A)
Al T F Al T F
T]0.90 0.1 T]07 03
F | 0.05 0.95 F| 001 099
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BBN likelihood weighting example

Burglary

P(B) P(E)
T F T F
0.001 0.999 - 0.002
E = F (set 1)
P(A|B,E)
/ B E| T
T T |0.95 0.05
T F | 0.94 0.06 | <==m
F T |029 071
F F | 0.0010.999
PQIA) \ P(M|A)
Al T F Al T F
T1| 0.90 0.1 T!10.7 0.3
F | 0.05 0.95 F| 0.01L 0.99

J=T (set !l
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BBN likelihood weighting example

Burglary

J =T (set I

P(B) P(E)
T F T F
0.001 0.999 - 0.002 0.99%]
E=F(set!l)
P(A|B,E)
/ BE| T F
T T | 0095 0.05
T F | 094 0.06
FT|029 071
F F | 0.0010.999
P(JIA) \ P(M|A)
Al T F Al T F
T]0.90 0.1 T]07 03
F | 0.050.95 F|0.01 0.99

=
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BBN likelihood weighting example

P(B) P(E)
T F T F
Burglary ) 0.001 0.999 - 0.002
E = F (set I!1)
T P(A|B,E)
/ BE| T F

T T |095 0.05
Y Alarm T F | 094 0.06
FT|029 071
F F | 0.0010.999

PUIA) \ P(M|A)
ANT F A F
_#770.050.95

-
oo
oy |

J=T (set ! F
v
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BBN likelihood weighting example

P(E)
P(B) T F
T F 0.002
Burglary )|0.001 0.999 .‘
T P(A[B,E)
/ BE| T F
T T |0.95 0.05
TY Alarm T F | 0.94 0.06
F T |02 071
F F | 0.0010.999
PUIA) \ P(M|A)
AN F Al T F
T 0.1 T|07 03
1005095 F| 0.01 0.99

J=T (set !l F
\_/
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BBN likelihood weighting example

P(E)
P(B) T F
= 5 0.002
Burglary )| 0.001 0.999 -
E =F (set!!
T P(A|B,E :
/ S E | - Sample:
T T|oO. T F
T Alarm T F 1O T
FT|o.
FF|o. T F
P(JIA) \ e
AN _F Al T F
T 0.1 T|07 03
~F170.050.95 F|0.01 099

J=T (set ! F
v
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BBN likelihood weighting example

P(E)
P(B) T F
T F 0.002
Burglary )|0.001 0.999 .‘

-
Evidence J=T,E=F
in combination with B=T, A=T,M=
T K Alah_weight = 0.998*0.9=0.89

999
P(J|A) P(M|A)
ANT F Al T F
T 0.1 T]07 03
_F7170.05 0.95 F| 0.01 0.99
J=T (set Il F
\—/
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BBN likelihood weighting example

P(E)
P(B) T F |
T F nonz
Burglary )| 0.001 0.999 .‘
P(A|B,E)
/ BE| T F
T T |0.95 0.05
T F | 0.94 0.06
F T |0.29 0.71
F F | 0.0010.999

PQAIA)

\ P(M|A)
Al T F Al T F
T|0.90 0.1
F | 0.05 0.95

m -

J=T (set !)
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BBN likelihood weighting example

Second sample

P(B) P(E)
T F T F
Burglary )| 0.001 0.999 - 0.002
E=F(set!l)
F P(A[B,E)
/ BE| T F
T T |095 0.05
T F | 0.94 0.06
F T |02 071
F F | 0.0010.999

P(J|A) \ P(M|A)
A T F A T F
T1|0.90 0.1 Tl07 03
F | 0.05 0.95 F | 0.01 0.99

J=T (set 1)
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BBN likelihood weighting example

Second sample

P(B) P(E)
T F T F
Burglary )| 0.001 0.999 - 0.002
E = F (set !!1)
- P(AIB,E)
/ BE| T F
T T 095 0.05
T F | 0.94 0.06
F T 029 071
F F | 0.001 0.999

PQAIA)

\ P(M|A)
Al T F Al T F
T|0.90 0.1
F | 0.05 0.95

m -
oo
o N

J=T (set !l
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BBN likelihood weighting example

Second sample

P(B) P(E)
T °F T F
Burglary )| 0.001 0.999 - 0.002
E=F(set!l)
F P(A|B,E)
/ BE| T F
T T |0.95 0.05
T F | 0.94 0.06
F T |0.29 0.71
F F | 0.0010.999 | <===

PQAIA)

\ P(MIA)
A T F A F

m -
©o
oy |-

T1| 0.90 0.1
F | 0.05 0.95

J=T (set 1)
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BBN likelihood weighting example

Second sample

Burglary

J =T (set I

P(B) P(E)
T F T F
0.001 0.999 - 0.002
E =F (set I!)
P(A|B,E)
/ B E| T
T T | 095 0.05
T F | 094 0.06
F T 029 071
F F | 0.0010.999
PUIA) \ P(M|A)
Al T F Al T F
T|0.90 0.1 107 o
F 0.95 F|0.01 O

F
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BBN likelihood weighting example

Second sample

P(B) P(E)
T F T F
Burglary )| 0.001 0.999 - 0.002
E=F(set!l)
F P(A|B,E)
/ B E| T
T T |0.95 0.05
FY Alarm T F | 0.94 0.06
F T |029 0.71
F F | 0.0010.999
P(JIA) \ P(M|A)
ANT_F Al T F
T | 0%0 0.1 T|07 03
F10.050.95 F| 0.01 0.99
J =T (set 1)) F
v . .
CS 3750 Advanced Machine Learning
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BBN likelihood weighting example

P(E
Second sample PE
P(B) T F |
T F 0.002
Burglary )| 0.001 0.999 .‘
F P(A|B,E)
/ BE| T F
T T |0.95 0.05
FY Alarm T F | 0.94 0.06
F T |02 071
F F | 0.0010.999
PUIA) \ P(M|A)
ANT_F Al T F
T | 0%0 0.1 T|07 03
F_,0.050.95 F|0.01 0.99
J=T (set 1)) F
S ————
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BBN likelihood weighting example

Second sample PE_
P(B) | T F |

T F 0.002
E = F (set !l

= P(A|B,E _

/ 5 ] 7 Sample:

TT|o. FF

F  Alarm UL LT F
FT|O.
F F |oO. T F

P(JIA) \ e
A T F A F
T| 0%0 0.1
F 0.95

—

-
oo
ou |

J=T (set 1) F
\_/
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BBN likelihood weighting example

P(E
Second sample PE
P(B) T F
T F 0.002
Burglary )|0.001 0.999 .‘

F
Evidence J=T,E=F F
in combination with B=F, A=F,M=F) g5
F eight = 0.05*0.998=0.049 08613

0.001 0.999

PUJIA) \ P(M|A)
ANT F A F
T| 0%0 0.1
F|.0.050.95

J =T (set 1)) F
v

-
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Likelihood weighting

+ Assume we have generated the following M samples:

* |f we calculate the estimate:
#sample _with(B=T)
#total _sample

a less likely sample from P(X) may be generated more
often.

* For example, sample
than in P(X)

» So the samples are not consistent with P(X).

PB=T|J=T,E=F)=

is generated more often

oW
P

19



Likelihood weighting

+ Assume we have generated the following M samples:

How to make the samples consistent?

Weight each sample by probability with which it agrees with
the conditioning evidence P(e).

<« Weight 0.0498 <+ Weight 0.898

w
«©

Likelihood weighting

« How to compute weights for the sample?
» Assume the query P(B=T | J=T, E=F)
« Likelihood weighting:
— With every sample keep a weight with which it should
count towards the estimate

M - -
> YBY =TIw®
PB=T|J=T,E=F)=-"2
> w®

i=1

WB:T
samples with B=T and J=T ,E=F

PB=T|J=T,E=F)=
WB=x

samples with any value of Band J=T ,E=F

20



Monte Carlo inference: MRFs

Challenge: How to generate M (unbiased) examples from the
target distribution P(X) defined by an MRF?

Trivial solution:

— calculate and store the probability of each configuration
— Pick randomly a configuration based on its probability
Problem: terribly inefficient for a large number of variables

+ Can we do better, similarly to BBN?
 In general, sampling P(X) or P(X |Evidence) can be hard?

Next: avoid sampling P(X) by sampling Q(X)

A1
&L

Importance Sampling

« An approach for estimating the expectation of a function f(x)
relative to some distribution P(X) (target distribution)

+ generally, we can estimate this expectation by generating
samples x[1], ..., x[M] from P, and then estimating

Ep[flzﬁmzzlux[m])

« However, we might prefer to generate samples from a different
distribution Q (proposal or sampling distribution) instead,
since it might be impossible or computationally very expensive
to generate samples directly from P(X).

* Q can be arbitrary, but it should dominate P, i.e.
Q(x)>0 whenever P(x)>0

CS 3750 Advanced Machine Learning
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Unnormalized Importance Sampling

Since we generate samples from Q instead of P,

we need to adjust our estimator to compensate for the incorrect
sampling distribution.

E oo [ F (X)] = Eg[f (x) )

Q(x)

]

So we can use standard estimator for expectations relative to Q.

Method: We generate a set of M samples D={x[1],...,x[M]}
from Q, and estimate:

- P(x[m])
E,(f)=
o(f)= Z_; (x[m ])Q( XIm])

CS 3750 Advanced Machine Learning

Importance sampling

« This is an unbiased estimator: its mean for any data set is

precisely the desired value

w(x) =P(x)/Q(x)  -aweighting function, or a correction
weight

We can estimate the distribution of the estimator around its

mean:asM — o0

Equol f OOWOOT = g [F (X1 N(0;0° / M)

where 6" = [Equ [(f OXOW(X))* 1= (Equ [ f (X)WCX)D)?

o =[Equo[(F COWX))? 1= (Epp [ (X)])*

CS 3750 Advanced Machine Learning
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Importance sampling

* When f(X)=1, the variance is simply the variance of the
weighting function P(X)/Q(X). Thus, the more different Q is
from P, the higher is the variance of the estimator.

* In general, the lowest variance is achieved when
Q(X) ocf T(X)|P(X)

» We should avoid cases where our sampling probability

Q(X)<<P(X)f(X) in any part of the space, as these cases can lead
to a very large or even infinite variance.

« Problem with un-normalized IS: P is assumed to be known

CS 3750 Advanced Machine Learning

Normalized Importance Sampling

* When Pis only known up to a normalizing constant «

« We have access to a function P’(X), such that P’ is not a
normalized distribution, but P’(X)=a P(X)

« In this context, we cannot define the weights relative to P, so we

define; ,
W(X):P(X)
Q(X)
P(X) P'(x)
Eooxy LT (X)]= ZP(X)f(X) ZQ(X)f(X) ) aZQ() ()Q()
1 [F(X)w(X)]
:—E f (X)W(X)]= °<X>
oo F (XIW(X)] By [W(X)]
Why? (X)]= ZQ( ZP

CS 3750 Advanced Machine Learning
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Importance sampling

« Using an empirical estimator for both the numerator and
denominator, we can estimate:

> mia f (XIMD)w(x[m])

E (f)=
() > i w(x[m])

+ Although the normalized estimator is biased, its variance is
typically lower than that of the unnormalized estimator. This
reduction in variance often outweighs the bias term.

» So normalized estimator is often used in place of the unnormalized
estimator, even in cases where P is known and we can sample from
it effectively.
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Importance sampling for estimating conditional
probabilities in BBNs

Assume a Bayesian Network
» We want to calculate P(x’|evidence)

« This is hard if we need to go opposite the links and account for the
effect of evidence on non-descendants

Objective: generate samples efficiently using a simpler proposal
distribution Q(x)

Solution: a mutilated belief network (Koller, Friedman 2009)
* ldea:
— Avoid propagation of evidence effects to nondescendants;
— Disconnect all variables in the evidence from their parents

24



Mutilated Belief network

+ Assume we want to calculate P(x | E=F, J=T) in the Alarm
network

» Use E=F and J=T to build a mutilated network

o o>
- =

Original network Mutilated network

Mutilated Belief network

« Assume the evidence is J=j* and E=e*
 Original network:
P(E=e*,A=a,M =m,J = j*,B=b*)=P(b)P(e*)P(a|b,e*)P(j*|a)P(m|a)
+ Mutilated network:
Q(E=e*,A=a,M =m,J = j*B=hb)=P(b)P(a|b,e*)P(m|a)
* Note that

_ PO _ premypix
w(x)—Q(X)—P(e )P(i*|a)

e e

network

25



Mutilated Belief network

» Assume the evidence is J=j* and E=e*
 Original network:
P(E=e*,A=a,M =m,J = j*,B=b*)=P(b)P(e*)P(a|b,e*)P(j*|a)P(m|a)
+ Mutilated network:
Q(E=e*,A=a,M =m,J = j*,B=b)=P(b)P(a|b,e*)P(m|a)
* Note that P(x)

w(x) = o P(e*)P(j*|a)

So importance sampling with a proposal distribution based
on mutilated network is equal to likelihood weighting

~a rd A rd

i st e <

network

Likelihood Weighting

* Question: When to stop? How many samples do we need to
see?

« Intuition: not every sample contributes equally to the
quality of the estimate. A sample with a high weight is more
compatible with the evidence e, and may provide us with
more information.

« Solution: We stop sampling when the total weight of the
generated samples reaches a pre-defined value.

+ Benefits: It allows early stopping in cases where we were
lucky in our random choice of samples.

[4;]
N
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