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Clique trees
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BBNs and MRF can be converted to clique tress:

• Optimal clique trees can support efficient inferences

Note: a clique tree = a tree decomposition of an MRF = 

= junction tree
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Algorithms for clique trees

Properties

• A tree with nodes corresponding to sets of variables

• Satisfies: a running intersection property

• For every v G : the nodes in T that contain v form a 

connected subtree.

Inference algorithms for the clique trees exist:

• inference complexity is determined by the width of the tree 
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VE on the Clique tree

• Variable Elimination on the clique tree 

– works on factors

• Makes factor a data structure

– Sends and receives messages

• Graph representing a set of factors, each node i is associated 

with a subset (cluster, clique) Ci.
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Clique trees

• Example clique tree
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Clique tree properties

• Sepset 

– separation set (sepset) : Variables X on one side of a 

sepset are separated from the variables Y on the other side 

in the factor graph given variables in S

• Running intersection property

– if Ci and Cj both contain variable X, then all cliques on 

the unique path between them also contain X 

jiij CCS 
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Clique trees

• Running intersection: 

E.g. Cliques involving G form

a connected subtree.
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Clique trees

• Sepsets: 

• Variables X on one side of a sepset are 

separated  from the variables Y on the 

other side given variables in S
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Clique trees
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Initial potentials     : 
Assign factors to cliques and multiply them. 
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Message Passing VE

• Query for P(J)

– Eliminate C:
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Message Passing VE

• Query for P(J)

– Eliminate D: 
D
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Message Passing VE

• Query for P(J)

– Eliminate I:
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Message Passing VE

• Query for P(J)

– Eliminate H:
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Message Passing VE

• Query for P(J)

– Eliminate K:
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And calculate P(J) from it by summing out G,S,L
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Message Passing VE

• [G,J,S,L] clique potential 

• … is used to finish the inference
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Message passing VE

• Often, many marginals are desired

– Inefficient to re-run each inference from scratch

– One distinct message per edge & direction 

• Methods :

– Compute (unnormalized) marginals for any vertex 

(clique) of the tree

– Results in a calibrated clique tree

• Recap: three kinds of factor objects

– Initial potentials, final potentials and messages
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Two-pass message passing VE

• Chose the root clique, e.g.  [S,K]

• Propagate messages to the root
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Two-pass message passing VE

• Send messages back from the root
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Message Passing: BP

• Belief propagation

– A different algorithm but equivalent to variable 

elimination in terms of the results

– Asynchronous implementation
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Message Passing: BP

• Each node: multiply all the messages and divide by the one 

that is coming from node we are sending the message to

– Clearly the same as VE

– Initialize the messages on the edges to 1
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Message Passing: BP

A,B C,DB,CB C









 

B

CB ),(0

232 

),(),(),(),( 0

2

0

3

3,2

320

33 CBDCDCDC
B

  





),(0

1 BA ),(0

2 CB ),(0

3 DC

Store the last message
on the edge and divide
each passing message 
by the last stored.

13,2 









 

B

CB ),(0

2323,2  New message

CS 3750 Advanced Machine Learning

Message Passing: BP
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Message Passing: BP
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The same as before
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Loopy belief propagation

• The asynchronous BP algorithm works on clique trees

• What if we run the belief propagation algorithm on a non-tree 

structure?

• Sometimes converges

• If it converges it leads to an approximate solution

• Advantage: tractable for large graphs
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Loopy belief propagation

• If the BP algorithm converges, it converges to the optimum of 

the Bethe free energy 

See papers: 

• Yedidia J.S., Freeman W.T. and Weiss Y. Generalized Belief 

Propagation, 2000 

• Yedidia J.S., Freeman W.T. and Weiss Y. Understanding 

Belief Propagation and Its Generalizations, 2001 
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Factor graph representation

A graphical representation that lets us express a factorization of a 

function over a set of variables 

A factor graph is bipartite graph where:

•One layer is formed by variables

• Another layer is formed by factors or functions on subsets of 

variables

Example: a function over variables x1, x2 , … x5

g(x1, x2 , …x5 ) = fA(x1) fB(x2) fC(x1,x2 ,x3) fD(x3 ,x4) fE(x3 ,x5)

x1 x2 x3 x4 x5

fA fB fc fD fE
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Inferences

Slides by C. Bishop
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Inferences on factor graphs

•Efficient inference algorithms for factor graphs built 

for trees [Frey, 1998; Kschischnang et al., 2001] :

• Sum-product algorithm

• Max product algorithm
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Inferences

Slides by C. Bishop
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Inferences

Slides by C. Bishop

Inferences

Slides by C. Bishop



17
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Inferences

Slides by C. Bishop


