CS 3750 Machine Learning
Lecture 4

Graphical models and inference 111

Milos Hauskrecht

milos@pitt.edu
5329 Sennott Square, x4-8845

http://www.cs.pitt.edu/~milos/courses/cs3750-Spring2020/

CS 3750 Advanced Machine Learning

Clique trees

BBNs and MRF can be converted to clique tress:
« Optimal clique trees can support efficient inferences

MRF (graph) Clique tree

o
0 0o s gOOe

Note: a clique tree = a tree decomposition of an MRF =
= junction tree

CS 3750 Advanced Machine Learning

mailto:milos@cs.pitt.edu

Algorithms for clique trees

Properties
» A tree with nodes corresponding to sets of variables
« Satisfies: a running intersection property

» Forevery v eG : the nodes in T that contain v form a
connected subtree.

Inference algorithms for the clique trees exist:
+ inference complexity is determined by the width of the tree

CS 3750 Advanced Machine Learning

VE on the Clique tree

» Variable Elimination on the clique tree
— works on factors

» Makes factor a data structure
— Sends and receives messages

» Graph representing a set of factors, each node i is associated
with a subset (cluster, clique) C;.

CS 3750 Advanced Machine Learning

Clique trees

» Example clique tree

CS 3750 Advanced Machine Learning

Clique tree properties

- Sepset S, =C,NC,
— separation set (sepset) : Variables X on one side of a
sepset are separated from the variables Y on the other side
in the factor graph given variables in S
* Running intersection property
— if C;and C; both contain variable X, then all cliques on
the unique path between them also contain X

CS 3750 Advanced Machine Learning

Clique trees

¢ Running intersection:
E.g. Cliques involving G form
a connected subtree.

CS 3750 Advanced Machine Learning

Clique trees

« Sepsets: S; =C; NC;
» Variables X on one side of a sepset are
separated from the variables Y on the

other side given variables in S

-

Sepsets

CS 3750 Advanced Machine Learning

Clique trees

Initial potentials
Assign factors to cliques and multiply them.

7°(C,D) 7°(G,1,D)

7°(G,J,S,L)

7°(H,G,J)
p(C,D,G,I,S,J,L,K,H)
=7°(C,D)~°(G,1,D)z°(G, S, 1)z°(G,J,S,L)z°(S,K)z°(H,G, J)

CS 3750 Advanced Machine Learning

Message Passing VE

* Query for P(J) .
— Eliminate C: Message sent
from [C,D]
to [G,I,D]

7,(D)=) 7[C,D]

Message received
at [G,I,D] --
[G,I,D] updates:

7,[G,1,D] =1,(D)xzY[G,1,D]

CS 3750 Advanced Machine Learning

Message Passing VE

* Query for P(J)
_ Eliminate D: 7,(G,1)=).7,[G,1,D]
D

Message sent
m from [6,1.D]
D G,1I to [G,S,I]

Message received
at [G,S,I] --
[G,S,I] updates:

1[G, S, 1]1=1,(G, 1) x 73[G, S, 1]

@6

CS 3750 Advanced Machine Learning

Message Passing VE

* Query for P(J)
— Eliminate I: 7(G.8)=).7,[G,S,1]
|
Message sent

from [G,S,I]
to [G,],S,L]

Message received
at [G,],S,L] --
[G,3,S,L] updates:

,[G,J,5,L]=1,(G,S)x,[G,J,S,L]

[G,],5,L] is not ready!

@®

CS 3750 Advanced Machine Learning

* Query for P(J)

And ...

Message Passing VE

— Eliminate H: 7,(G,J)=) 7;[H,G,J]
H

CXG)

Message sent
from [H,G,]]
to [G,],S,L]

7,[G,J,8,L]=1,(G,S)x7,(G,J)x7,[G,J,S, L]

CS 3750 Advanced Machine Learning

Message Passing VE

* Query for P(J)

_ Eliminate K: 7%(8)=>.7"[S,K]
K

.T“
D G,1I

4

All messages
received at [G,],S,L]
[G,3,S,L] updates:

! G,S
é

*G,J

Message sent
from [S,K]
to [G,],S,L]

7,[G,J,8,L]=1,(G,S)x7,(G,J)x7,(S)x 7,[G,J,S, L]

And calculate P(J) from it by summing out G,S,L

CS 3750 Advanced Machine Learning

Message Passing VE

[G,J,S,L] cligue potential
... 1s used to finish the inference

! G,S

CS 3750 Advanced Machine Learning

Message passing VE

Often, many marginals are desired

— Inefficient to re-run each inference from scratch
— One distinct message per edge & direction
Methods :

— Compute (unnormalized) marginals for any vertex
(clique) of the tree

— Results in a calibrated clique tree Z T = Z 7T
C;—S; C; —S;

Recap: three kinds of factor objects
— Initial potentials, final potentials and messages

CS 3750 Advanced Machine Learning

Two-pass message passing VE

» Chose the root clique, e.g. [S,K]
« Propagate messages to the root

> >
b GI |,Gs
9
s
G,J 1

CS 3750 Advanced Machine Learning

Two-pass message passing VE

« Send messages back from the root

< <
m
GS1?T
é
S
GJl!

CS 3750 Advanced Machine Learning

Message Passing: BP

Belief propagation
A different algorithm but equivalent to variable
elimination in terms of the results

— Asynchronous implementation

CS 3750 Advanced Machine Learning

Message Passing: BP

Each node: multiply all the messages and divide by the one
that is coming from node we are sending the message to

— Clearly the same as VE

PRI
R - > I

i—]
5jﬁi 5j~>i C;—S;; keN(i)\]j

— Initialize the messages on the edges to 1

CS 3750 Advanced Machine Learning

10

Message Passing: BP

Mz =1
7y (A, B) 73(B,C) —— #(C,D)
Store the last message 0,43 = [Z”z(B C)J
on the edge and divide

each passing message
by the last stored.

7,(C,D) = 2(C, D) 2222 — 70(C, D) Y. 7 (B,C)

2,3

Mp3 =0y 5= [Z”?(B C)j New message

CS 3750 Advanced Machine Learning

Message Passing: BP
23 Z(ZHS(B,C)]

me—fel{me e ap.

72 (A,B) 73(B,C) — 7,(C,D)

C,D)=x%(C,D %(B,C)=r2(C,D
Store the last message 72(C.D) =75)ZB:HZ()= (C.D)ts

on the edge and divide

each passing message C.D
by the last stored. 950 = 2”3()

23 ”g(B,C)X 0 « 0 “ 0
7,(B,C)= 7[2(8 C)ﬂzs(c) ﬂz,s(C) ;”S(C:D) ﬂ2,3(C)—”2(BvC) ZDJES(C,D)

U3 =0y = (Zns(c D)) > 73(C,D)>.7;(B,C) New message

CS 3750 Advanced Machine Learning

11

Message Passing: BP

tys =Y 7m3(C,D)Y 73(B,C)

aRaltimbEntt)

72 (A,B) 7,(B,C) — 7,(C,D)

C,D)=x(C,D (B,C
Store the last message 75(C.D) =75);%()

on the edge and divide

each passing message S, .= C.D
by the last stored. 2 ZD:%’(D)

7,(B,C)=7,(B,C)x Y 7;(C,D) The same as before
; Y 72(C,D)x Y 73(B,C) e
7,(B,C)=~,(B,C) /12,3_(>C) =r,(B,C)x Zﬂg(C, D)xZﬂg(B,C) =r,(B,C)

D B

CS 3750 Advanced Machine Learning

Loopy belief propagation

« The asynchronous BP algorithm works on clique trees

« What if we run the belief propagation algorithm on a non-tree
structure?

« Sometimes converges

« If it converges it leads to an approximate solution
+ Advantage: tractable for large graphs

CS 3750 Advanced Machine Learning

12

Loopy belief propagation

« If the BP algorithm converges, it converges to the optimum of
the Bethe free energy

See papers:

* Yedidia J.S., Freeman W.T. and Weiss Y. Generalized Belief
Propagation, 2000

* Yedidia J.S., Freeman W.T. and Weiss Y. Understanding
Belief Propagation and Its Generalizations, 2001

CS 3750 Advanced Machine Learning

Factor graph representation

A graphical representation that lets us express a factorization of a
function over a set of variables

A factor graph is bipartite graph where:

*One layer is formed by variables

» Another layer is formed by factors or functions on subsets of
variables

Example: a function over variables X;, X, , ... Xs

O(Xy, Xy, .. X5) = Fa(Xy) fa(X,) fe(X1.X5 1 X3) To(X3 1X,) Te(X3 ,Xs)

R)

LN

fa fs fe fo fe

CS 3750 Advanced Machine Learning

13

Factor Graphs

Z1 T2 €3

fa .fb fc fd
p(x) = fa(w1,22) fo (21, 22) fe(@2, 23) fa(x3)

p(x) = H fs(xs)

Slides by C. Bishop

Inferences on factor graphs

«Efficient inference algorithms for factor graphs built
for trees [Frey, 1998; Kschischnang et al., 2001] :

* Sum-product algorithm

* Max product algorithm

CS 3750 Advanced Machine Learning

14

The Sum-Product Algorithm (1)

Objective:
i. to obtain an efficient, exact inference
algorithm for finding marginals;

ii. insituations where several marginals are

required, to allow computations to be shared
efficiently.

Key idea: Distributive Law

ab+ac=a(b+c)

Slides by C. Bishop

The Sum-Product Algorithm (2)

Fe(z, X:)

pr) = D p(x)

x\z

px) = [Fu@X,)

s€ne(x)

Slides by C. Bishop

15

The Sum-Product Algorithm (4)

TMm

\'u’mM —fs (CEA’VI)

T,

G'VYL (m'nl1 'XS’""L)

FS(I, XS) = fs(.l‘.l‘1. i .I‘\[)Gl (ZL’1.‘YS]) i .GM (l?_z\[, .XSM)

Slides by C. Bishop

The Sum-Product Algorithm (5)

TmMm

\/‘l"mMﬂfs (‘TM)

T
Grn (:L‘,m, Xsm)
g, —x(x) = Z...Zfs(.zr..l‘l......1.1\1) H [Z Givilin, X)
T T mene(f)\z LXm
— Zng(ll]‘l’\[) H Hogi—sifs (Bim)
1 T mene(f:)\x

Slides by C. Bishop

16

The Sum-Product Algorithm (6)

M

\y’mM“’fs (xM)

Tm

Gm(mm, X.sm)

Pz — s (l'm) = Z Gm («T‘m ’ <¥sm) — Z H E (-rm))(ml)

Xam Xsm lene(zm)\ fs

= H Lf—z, (Tm)

lene(zm)\ fs

Slides by C. Bishop

The Sum-Product Algorithm (7)

Initialization

.u:rﬂf(x) = ,u'fﬂx(m) = f(fL)

mc_’ § ! _.C:r

Slides by C. Bishop

17

The Sum-Product Algorithm (8)

To compute local marginals:
* Pick an arbitrary node as root

* Compute and propagate messages from the leaf
nodes to the root, storing received messages at
every node.

* Compute and propagate messages from the root to
the leaf nodes, storing received messages at every
node.

* Compute the product of received messages at each
node for which the marginal is required, and
normalize if necessary.

Slides by C. Bishop

18

