CS 3750 Machine Learning

Lecture 4

Graphical models and inference III

Milos Hauskrecht
milos@pitt.edu
5329 Sennott Square, x4-8845
http://www.cs.pitt.edu/~milos/courses/cs3750-Spring2020/

Clique trees

BBNs and MRF can be converted to clique tress:

- Optimal clique trees can support efficient inferences

Clique tree

Note: a clique tree $=$ a tree decomposition of an $\mathrm{MRF}=$ $=$ junction tree

Algorithms for clique trees

Properties

- A tree with nodes corresponding to sets of variables
- Satisfies: a running intersection property
- For every $v \in \mathrm{G}$: the nodes in T that contain v form a connected subtree.

Inference algorithms for the clique trees exist:

- inference complexity is determined by the width of the tree

VE on the Clique tree

- Variable Elimination on the clique tree
- works on factors
- Makes factor a data structure
- Sends and receives messages
- Graph representing a set of factors, each node i is associated with a subset (cluster, clique) C_{i}.

Clique trees

- Example clique tree

CS 3750 Advanced Machine Learning

Clique tree properties

- Sepset

$$
S_{i j}=C_{i} \cap C_{j}
$$

- separation set (sepset) : Variables \mathbf{X} on one side of a sepset are separated from the variables \mathbf{Y} on the other side in the factor graph given variables in \mathbf{S}
- Running intersection property
- if C_{i} and C_{j} both contain variable X , then all cliques on the unique path between them also contain X

Clique trees

- Running intersection:
E.g. Cliques involving G form a connected subtree.

Clique trees

- Sepsets: $S_{i j}=C_{i} \cap C_{j}$
- Variables \mathbf{X} on one side of a sepset are separated from the variables \mathbf{Y} on the other side given variables in \mathbf{S}

Clique trees

Initial potentials :

Assign factors to cliques and multiply them.

$p(C, D, G, I, S, J, L, K, H)$
$=\pi^{0}(C, D) \pi^{0}(G, I, D) \pi^{0}(G, S, I) \pi^{0}(G, J, S, L) \pi^{0}(S, K) \pi^{0}(H, G, J)$

Message Passing VE

- Query for P(J)
- Eliminate C:

Message Passing VE

- Query for P(J)
- Eliminate D: $\tau_{2}(G, I)=\sum_{D} \pi_{2}[G, I, D]$

Message received at [G,S,I] -[G,S,I] updates:

$\pi_{3}[G, S, I]=\tau_{2}(G, I) \times \pi_{3}^{0}[G, S, I]$

Message Passing VE

- Query for P(J)
- Eliminate I: $\tau_{3}(G, S)=\sum_{I} \pi_{3}[G, S, I]$

\rightarrow
Message sent from [G,S,I] to $[\mathbf{G}, \mathrm{J}, \mathrm{S}, \mathrm{L}]$

Message received at [G,J,S,L] --
 [G,J,S,L] updates:

$$
\pi_{4}[G, J, S, L]=\tau_{3}(G, S) \times \pi_{4}^{0}[G, J, S, L]
$$

[G,J,S,L] is not ready!

Message Passing VE

- Query for P(J)
- Eliminate H: $\tau_{4}(G, J)=\sum_{H} \pi_{5}[H, G, J]$

H,G,J
$\pi_{4}[G, J, S, L]=\tau_{3}(G, S) \times \tau_{4}(G, J) \times \pi_{4}^{0}[G, J, S, L]$
And ...

Message Passing VE

- Query for P(J)
- Eliminate K: $\quad \tau_{6}(S)=\sum_{K} \pi^{0}[S, K]$

Message sent from [S,K] to $[\mathbf{G}, \mathbf{J}, \mathrm{S}, \mathrm{L}]$
$\pi_{4}[G, J, S, L]=\tau_{3}(G, S) \times \tau_{4}(G, J) \times \tau_{6}(S) \times \pi_{4}^{0}[G, J, S, L]$
And calculate $\mathbf{P (J)}$ from it by summing out G,S,L

Message Passing VE

- [G,J,S,L] clique potential
- ... is used to finish the inference

CS 3750 Advanced Machine Learning

Message passing VE

- Often, many marginals are desired
- Inefficient to re-run each inference from scratch
- One distinct message per edge \& direction
- Methods :
- Compute (unnormalized) marginals for any vertex (clique) of the tree
- Results in a calibrated clique tree $\sum_{C_{i}-S_{i j}} \pi_{i}=\sum_{C_{j}-S_{i j}} \pi_{j}$
- Recap: three kinds of factor objects
- Initial potentials, final potentials and messages

Two-pass message passing VE

- Chose the root clique, e.g. [S,K]
- Propagate messages to the root

CS 3750 Advanced Machine Learning

Two-pass message passing VE

- Send messages back from the root

Message Passing: BP

- Belief propagation
- A different algorithm but equivalent to variable elimination in terms of the results
- Asynchronous implementation

Message Passing: BP

- Each node: multiply all the messages and divide by the one that is coming from node we are sending the message to - Clearly the same as VE

$$
\delta_{i \rightarrow j}=\frac{\sum_{C_{i}-S_{i j}} \pi_{i}}{\delta_{j \rightarrow i}}=\frac{\sum_{C_{i}-S_{i j}} \prod_{k \in N(i)} \delta_{k \rightarrow i}}{\delta_{j \rightarrow i}}=\sum_{C_{i}-S_{i j}} \prod_{k \in N(i) \backslash j} \delta_{k \rightarrow i}
$$

- Initialize the messages on the edges to 1

Message Passing: BP

Store the last message on the edge and divide
$\delta_{2 \rightarrow 3}=\left(\sum_{B} \pi_{2}^{0}(B, C)\right)$ each passing message by the last stored.

$$
\begin{aligned}
& \pi_{3}(C, D)=\pi_{3}^{0}(C, D) \frac{\delta_{2->3}}{\mu_{2,3}}=\pi_{3}^{0}(C, D) \sum_{B} \pi_{2}^{0}(B, C) \\
& \mu_{2,3}=\delta_{2 \rightarrow 3}=\left(\sum_{B} \pi_{2}^{0}(B, C)\right) \quad \text { New message }
\end{aligned}
$$

Message Passing: BP

Store the last message on the edge and divide each passing message by the last stored.

$$
\begin{aligned}
& \pi_{3}(C, D)=\pi_{3}^{0}(C, D) \sum_{B} \pi_{2}^{0}(B, C)=\pi_{3}^{0}(C, D) \mu_{2,3} \\
& \delta_{3 \rightarrow 2}=\left(\sum_{D} \pi_{3}(C, D)\right)
\end{aligned}
$$

$\pi_{2}(B, C)=\pi_{2}^{0}(B, C) \frac{\delta_{3-2}}{\mu_{2,3}(C)}=\frac{\pi_{2}^{0}(B, C)}{\mu_{2,3}(C)} \times \sum_{D} \pi_{3}^{0}(C, D) \times \mu_{2,3}(C)=\pi_{2}^{0}(B, C) \times \sum_{D} \pi_{3}^{0}(C, D)$ $\mu_{2,3}=\delta_{3 \gg 2}=\left(\sum_{D} \pi_{3}(C, D)\right)=\sum_{D} \pi_{3}^{0}(C, D) \sum_{B} \pi_{2}^{0}(B, C) \quad$ New message

Message Passing: BP

$$
\begin{aligned}
& \pi_{2}(B, C)=\pi_{2}^{0}(B, C) \times \sum_{D} \pi_{3}^{0}(C, D) \\
& \pi_{2}(B, C)=\pi_{2}(B, C) \frac{\delta_{3-2}}{\mu_{2,3}(C)}=\pi_{2}(B, C) \times \frac{\sum_{D}^{D} \pi_{3}^{0}(C, D) \times \sum_{B} \pi_{2}^{0}(B, C)}{\sum_{D} \pi_{3}^{0}(C, D) \times \sum_{B} \pi_{2}^{0}(B, C)}=\pi_{2}(B, C)
\end{aligned}
$$

Loopy belief propagation

- The asynchronous BP algorithm works on clique trees
- What if we run the belief propagation algorithm on a non-tree structure?

- Sometimes converges
- If it converges it leads to an approximate solution
- Advantage: tractable for large graphs

Loopy belief propagation

- If the BP algorithm converges, it converges to the optimum of the Bethe free energy
See papers:
- Yedidia J.S., Freeman W.T. and Weiss Y. Generalized Belief Propagation, 2000
- Yedidia J.S., Freeman W.T. and Weiss Y. Understanding Belief Propagation and Its Generalizations, 2001

Factor graph representation

A graphical representation that lets us express a factorization of a function over a set of variables
A factor graph is bipartite graph where:

- One layer is formed by variables
- Another layer is formed by factors or functions on subsets of variables
Example: a function over variables $x_{1}, x_{2}, \ldots x_{5}$

$$
g\left(x_{1}, x_{2}, \ldots x_{5}\right)=f_{A}\left(x_{1}\right) f_{B}\left(x_{2}\right) f_{C}\left(x_{1}, x_{2}, x_{3}\right) f_{D}\left(x_{3}, x_{4}\right) f_{E}\left(x_{3}, x_{5}\right)
$$

Factor Graphs

$$
p(\mathbf{x})=f_{a}\left(x_{1}, x_{2}\right) f_{b}\left(x_{1}, x_{2}\right) f_{c}\left(x_{2}, x_{3}\right) f_{d}\left(x_{3}\right)
$$

$$
p(\mathbf{x})=\prod_{s} f_{s}\left(\mathbf{x}_{s}\right)
$$

Inferences on factor graphs

-Efficient inference algorithms for factor graphs built for trees [Frey, 1998; Kschischnang et al., 2001] :

- Sum-product algorithm
- Max product algorithm

The Sum-Product Algorithm (1)

Objective:
i. to obtain an efficient, exact inference algorithm for finding marginals;
ii. in situations where several marginals are required, to allow computations to be shared efficiently.

Key idea: Distributive Law

$$
a b+a c=a(b+c)
$$

The Sum-Product Algorithm (2)

$$
\begin{aligned}
& p(x)=\sum_{\mathbf{x} \backslash x} p(\mathbf{x}) \\
& p(\mathbf{x})=\prod_{s \in \operatorname{ne}(x)} F_{s}\left(x, X_{s}\right)
\end{aligned}
$$

The Sum-Product Algorithm (4)

$$
F_{s}\left(x, X_{s}\right)=f_{s}\left(x, x_{1}, \ldots, x_{M}\right) G_{1}\left(x_{1}, X_{s 1}\right) \ldots G_{M}\left(x_{M}, X_{s M}\right)
$$

The Sum-Product Algorithm (5)

The Sum-Product Algorithm (6)

$$
\begin{aligned}
\mu_{x_{m} \rightarrow f_{s}}\left(x_{m}\right) \equiv \sum_{X_{s m}} G_{m}\left(x_{m}, X_{s m}\right) & =\sum_{X_{s m}} \prod_{l \in \operatorname{ne}\left(x_{m}\right) \backslash f_{s}} F_{l}\left(x_{m}, X_{m l}\right) \\
& =\prod_{l \in \operatorname{ne}\left(x_{m}\right) \backslash f_{s}} \mu_{f_{l} \rightarrow x_{m}}\left(x_{m}\right)
\end{aligned}
$$

The Sum-Product Algorithm (7)

Initialization

The Sum-Product Algorithm (8)

To compute local marginals:

- Pick an arbitrary node as root
- Compute and propagate messages from the leaf nodes to the root, storing received messages at every node.
- Compute and propagate messages from the root to the leaf nodes, storing received messages at every node.
- Compute the product of received messages at each node for which the marginal is required, and normalize if necessary.

