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Challenges for modeling complex multivariate 

distributions

How to model/parameterize complex multivariate distributions

with a large number of variables?

One solution:

• Decompose the distribution. Reduce the number of parameters, 

using some form of independence.

Two models:

• Bayesian belief networks (BBNs)

• Markov Random Fields (MRFs)

• Learning of these models relies on the decomposition. 
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Bayesian belief network

Burglary Earthquake

JohnCalls MaryCalls

Alarm

P(B) P(E)

P(A|B,E)

P(J|A) P(M|A)

Directed acyclic graph

• Nodes = random variables

• Links = direct (causal) dependencies

Missing links encode different marginal and conditional 

independences
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Bayesian belief network

Burglary Earthquake

JohnCalls MaryCalls

Alarm

B   E T       F

T   T 0.95   0.05
T   F     0.94   0.06
F   T     0.29   0.71
F   F     0.001 0.999

P(B)

0.001 0.999

P(E)

0.002  0.998

A   T      F

T    0.90  0.1
F    0.05  0.95

A      T      F

T    0.7    0.3
F    0.01   0.99

P(A|B,E)

P(J|A) P(M|A)

T        F T         F
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Full joint distribution in BBNs

The full joint distribution is defined as a product of local 

conditional distributions: 
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Example:

)|()|(),|()()( TAFMPTATJPTETBTAPTEPTBP 

Then its probability is:

Assume the following assignment

of values to random variables

FMTJTATETB  ,,,,

Inference in Bayesian networks

• Full joint uses the decomposition

• Calculation of marginals:

– Requires summation over variables we want to take out 

• How to compute sums and products more efficiently? 
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Variable elimination

Assume order: M, E, B, A to calculate 
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Variable elimination

Assume order: M, E, B, A to calculate

Conditional probabilities defining the  joint =  factors 

Variable elimination inference can be cast in terms of operations 

defined over factors
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Factors

• Factor:  is a function that maps value assignments for a 
subset of random variables to  (reals)

• The scope of the factor: 

– a set of variables defining the factor

• Example:

– Assume discrete random variables x (with values a1,a2, a3) 
and y (with values b1 and b2)

– Factor: 

– Scope of the factor:

a1 b1 0.5

a1 b2 0.2

a2 b1 0.1

a2 b2 0.3

a3 b1 0.2

a3 b2 0.4

),( yx

},{ yx
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Factor Product

b1 c1 0.1

b1 c2 0.6

b2 c1 0.3

b2 c2 0.4

a1 b1 0.5

a1 b2 0.2

a2 b1 0.1

a2 b2 0.3

a3 b1 0.2

a3 b2 0.4

a1 b1 c1 0.5*0.1

a1 b1 c2 0.5*0.6

a1 b2 c1 0.2*0.3

a1 b2 c2 0.2*0.4

a2 b1 c1 0.1*0.1

a2 b1 c2 0.1*0.6

a2 b2 c1 0.3*0.3

a2 b2 c2 0.3*0.4

a3 b1 c1 0.2*0.1

a3 b1 c2 0.2*0.6

a3 b2 c1 0.4*0.3

a3 b2 c2 0.4*0.4

Variables: A,B,C

),( CB ),( BA

),,( CBA),(),(),,( BACBCBA  
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Factor Marginalization

a1 b1 c1 0.2

a1 b1 c2 0.35

a1 b2 c1 0.4

a1 b2 c2 0.15

a2 b1 c1 0.5

a2 b1 c2 0.1

a2 b2 c1 0.3

a2 b2 c2 0.2

a3 b1 c1 0.25

a3 b1 c2 0.45

a3 b2 c1 0.15

a3 b2 c2 0.25

a1 c1 0.2+0.4=0.6

a1 c2 0.35+0.15=0.5

a2 c1 0.8

a2 c2 0.3

a3 c1 0.4

a3 c2 0.7

Variables: A,B,C ),,(),( CBACA
B

 
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Factor division

A=1 B=1 0.5

A=1 B=2 0.4

A=2 B=1 0.8

A=2 B=2 0.2

A=3 B=1 0.6

A=3 B=2 0.5

A=1 0.4

A=2 0.4

A=3 0.5

A=1 B=1 0.5/0.4=1.25

A=1 B=2 0.4/0.4=1.0

A=2 B=1 0.8/0.4=2.0

A=2 B=2 0.2/0.4=2.0

A=3 B=1 0.6/0.5=1.2

A=3 B=2 0.5/0.5=1.0

Inverse of a factor product
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Markov random fields

An undirected network (also called independence graph)

• Probabilistic models with symmetric dependences

• G = (S, E)

– S set of  random variables  

– Undirected edges E that define dependences between pairs 

of variables

Example:

variables A,B ..H

B
C

D
E

F

H
A G
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Markov random fields

The full joint of the MRF is defined

Example:

Full joint: 

B
C

D
E

F

H
A G

),(),(),(),(),,(),,(~),...,( 654321 HFHGFCGAEDBCBAHBAP 

)( cc x - A potential function (defined over a clique of the graph)





)(

)()(
xclc

ccP xx 

)( cc x - A potential function (defined over variables in cliques/factors)
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Markov random fields: independence 

relations

• Pairwise Markov property

– Two nodes in the network that are not directly connected 

can be made independent given all other nodes

• Local Markov property

– A set of nodes (variables) can be made independent from 

the rest of nodes variables given its immediate neighbors

• Global Markov property

– A vertex set A is independent of the vertex set B (A and B 

are disjoint) given set C if all chains in between elements in 

A and B intersect C 
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MRF variable elimination inference

Example:

B
C

D E

F

H
A G

),...,()(
,..,,

HBAPBP
HDCA




HDCA

HFHGFCGAEDBCBA
Z ,..,,

654321 ),(),(),(),(),,(),,(
1



B
C

D E

F

H
A G

  









HGFDCA E

HFHGFCGAEDBCBA
Z ,,,,,

654321 ),(),(),(),(),,(),,(
1



Eliminate E

),(1 DB
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  









HGFCA D

HFHGFCGADBCBA
,,,,

654311 ),(),(),(),(),(),,( 

MRF variable elimination inference

Example (cont):

),...,()(
,..,,

HBAPBP
HDCA

 B
C

D E

F

H
A G


HGFDCA

HFHGFCGADBCBA
Z ,,,,,

654311 ),(),(),(),(),(),,(
1



Eliminate D

)(2 B

B
C

D E

F

H
A G

Z

1

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  









GFCA H

HFHGFCGABCBA
,,,

654321 ),(),(),(),()(),,( 

MRF variable elimination inference

Example (cont):

),...,()(
,..,,

HBAPBP
HDCA

 B
C

D E

F

H
A G


HGFCA

HFHGFCGABCBA
,,,,

654321 ),(),(),(),()(),,( 

Eliminate H

),,(3 HGF

B
C

D E

F

H
A G

),(4 GF

Z

1


Z

1

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  









GCA F

GFFCGABCBA
,,

44321 ),(),(),()(),,( 

MRF variable elimination inference

Example (cont):

),...,()(
,..,,

HBAPBP
HDCA

 B
C

D E

F

H
A G

),(),(),()(),,( 4

,,,

4321 GFFCGABCBA
GFCA



Eliminate F

),,(5 GFC

),(6 CG

B
C

D E

F

H
A G

Z

1


Z

1

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  









CA F

GCGABCBA
,

6321 ),(),()(),,( 

MRF variable elimination inference

Example (cont):

),...,()(
,..,,

HBAPBP
HDCA

 B
C

D E

F

H
A G


GCA

GCGABCBA
,,

6321 ),(),()(),,( 

Eliminate G

),,(7 GCA

),(8 CA

B
C

D E

F

H
A G

Z

1


Z

1

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  









A C

CACBAB ),(),,()( 812 

MRF variable elimination inference

Example (cont):

),...,()(
,..,,

HBAPBP
HDCA

 B
C

D E

F

H
A G


CA

CABCBA
,

821 ),()(),,( 

Eliminate C

),,(9 CBA

),(10 BA

B
C

D E

F

H
A G

Z

1


Z

1

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MRF variable elimination inference

Example (cont):

),...,()(
,..,,

HBAPBP
HDCA

 B
C

D E

F

H
A G









A

A

BAB

BAB

),()(

),()(

102

102





Eliminate A

)(11 B

B
C

D E

F

H
A G


A

BAB ),()( 102 

)()( 112 BB 
B

C

D E

F

H
A G

Z

1


Z

1


Z

1


Z

1

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Are BBNs and MRFs different?

Both models represent independences that hold among 

variables or sets of variables?   

• Are the two the same in terms of independences they 

can represent?

• Or, are they different?  

CS 3750 Advanced Machine Learning

Are BBNs and MRFs different?

Both models represent independences that hold among variables 

or sets of variables?   

• Are the two the same in terms of independences they can 

represent?

• Or, are they different?

Answer: MRFs are different from BBNs

• There are independences that can be represented by one model 

but not the other

Directed

Models

(BBNs)

Undirected

Models

(MRFs)
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Are BBNs and MRFs different?

MRFs are different from BBNs

• There are independences that can be represented by one model 

but not the other

Analysis:

A

C

B

A

C

B

directed undirected

A is independent of C 

given B
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Are BBNs and MRFs different?

MRFs are different from BBNs

• There are independences that can be represented by one model 

but not the other

Analysis:

A

CB

directed undirected

B is independent of C 

given A

A

CB
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Are BBNs and MRFs different?

MRFs are different from BBNs

• There are independences that can be represented by one model 

but not the other

Analysis:

A

C

B

directed undirected

A and B are marginally

independent

A

C

B

A and B are independent

given C

=

Fix to undirected

(moralization)

A

C

B

A, B, C are all dependent

No false independence 
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Are BBNs and MRFs different?

MRFs are different from BBNs

• There are independences that can be represented by one model 

but not the other

Analysis: undirected

B and  C  are independent given A,D

A

CB

A and  D  are independent given B,C 

D

No directed graph

can represent 

the same set of 

independences
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Converting BBNs to MRFs

Moral-graph H[G]: of a Bayesian network over X is an 

undirected graph over X that contains an edge between x and 

y if:

 There exists a directed edge between them in G.

 They are both parents of the same node in G.

C

D I

G S

L

JH

C

D I

G S

L

JH
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Moral Graphs: define MRFs

Why moralization? 

),,(),,(),(),(),,(),()(

),|(),|()|()|(),|()|()(

),,,,,,,(

7654321 JGHSLJGLISDIGCDC

JGHPSLJPGLPISPDIGPCDPCP

HJLSIGDCP







),|( DIGP ),,(3 DIGC

D I

G S

L

JH

C

D I

G S

L

JH
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Inference

Variable elimination: Depends on the order of 

variables to eliminate

Question: can we optimize the structures ahead of 

times so that we can make inferences efficiently and 

without worrying about the specific variable order?

• Structures that support efficient inferences:

Chains, and trees A B C D

E

A B C

Slides by C. Bishop

Inferences
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Inferences

Slides by C. Bishop

Inferences

Slides by C. Bishop
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Inferences

Slides by C. Bishop

Inferences

Slides by C. Bishop
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Inference

Many BBNs or MRFs are not tree structured

• Can we optimize the structures ahead of times so 

that we can make inferences efficiently and 

without worrying about the specific variable 

order? 

• Idea: Convert to trees that support efficient 

inference

• Next: two approaches to convert MRFs (or BBNs) 

to tree structures

CS 3750 Advanced Machine Learning

Induced graph

A graph induced by a specific variable elimination 

order that covers all variables:  

• a graph G extended by links that represent 

intermediate factors

• Induced graph defines a tree decomposition of a 

graph G (or a clique tree)

– .

A A

B C C

B D

E

FG
F

C
G G

H

B
C

D
E

F

H
A G

Tree decompositionInduced graph
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Tree decomposition

• A node in tree T is formed by a set of vertices 

corresponding to maximum cliques in G

• For all edges {v,w}G: there is a set containing both v

and w in T

• For every v G : the nodes in T that contain v form a 

connected subtree.

A A

B C C

B D

E

FG
F

C
G G

H

B
C

D
E

F

H
A G

Tree decomposition (T)Induced graph (G)

CS 3750 Advanced Machine Learning

Tree decomposition of the graph

A tree decomposition of a 

graph G (clique tree):

• A node in tree T is formed by 

a set of vertices corresponding 

to maximum cliques in G

• For all edges {v,w}G: there 

is a set containing both v and 

w in T.

• For every v G : the nodes in 

T that contain v form a 

connected subtree.

B
C

D E

F

A A

B C C

B D

E

H

FG
F

C
G G

A G

H
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Tree decomposition of the graph

B
C

D E

F

A A

B C C

B D

E

H

FG
F

C
G G

A G

H

Cliques in 

the graph

A tree decomposition of a 

graph G (clique tree):

• A node in tree T is formed by 

a set of vertices corresponding 

to maximum cliques in G

• For all edges {v,w}G: there 

is a set containing both v and 

w in T.

• For every v G : the nodes in 

T that contain v form a 

connected subtree.
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Tree decomposition of the graph

B
C

D E

F

A A

B C C

B D

E

H

FG
F

C
G G

A G

H

A tree decomposition of a 

graph G (clique tree):

• A node in tree T is formed by 

a set of vertices corresponding 

to maximum cliques in G

• For all edges {v,w}G: there 

is a set containing both v and 

w in T.

• For every v G : the nodes in 

T that contain v form a 

connected subtree.
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Tree decomposition of the graph

B
C

D E

F

A A

B C C

B D

E

H

G
F

C
G

A G

H

A tree decomposition of a 

graph G (clique tree):

• A node in tree T is formed by 

a set of vertices corresponding 

to maximum cliques in G

• For all edges {v,w}G: there 

is a set containing both v and 

w in T.

• For every v G : the nodes in 

T that contain v form a 

connected subtree.
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Tree decomposition of the graph

Another decomposition of 

a graph G:

• A node in tree T is formed by 

a set of vertices corresponding 

to maximum cliques in G

• For all edges {v,w}G: there 

is a set containing both v and 

w in T.

• For every v G : the nodes in 

T that contain v form a 

connected subtree.

B
C

D E

F

A

B C

B D

E

H

G

A G

H FF
C

G G
H
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Treewidth of the graph

B
C

D E

F

A A

B C C

B D

E

H

FG
F

C
G G

A G

H

• Width of the tree 

decomposition:

• Treewidth of a graph 

G: tw(G)= minimum 

width over all tree 

decompositions of G.

1||max  iIi X
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Treewidth of the graph

B
C

D E

F

A A

B C C

B D

E

H

FG
F

C
G G

A G

H

• Treewidth of a graph G: 

tw(G)= minimum width over 

all tree decompositions of G

• Why is it important?

• Many calculations can take 

advantage of the structure and 

be performed more efficiently

• treewidth gives the best case 

complexity
A C

B

D E
F

G

H

vs
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Converting BBNs to MRFs

Moral-graph H[G]: of a Bayesian network over X is an 

undirected graph over X that contains an edge between x and 

y if:

 There exists a directed edge between them in G.

 They are both parents of the same node in G.

C

D I

G S

L

JH

C

D I

G S

L

JH
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Moral Graphs: define MRFs

Why moralization? 

),,(),,(),(),(),,(),()(

),|(),|()|()|(),|()|()(

),,,,,,,(

7654321 JGHSLJGLISDIGCDC

JGHPSLJPGLPISPDIGPCDPCP

HJLSIGDCP







),|( DIGP ),,(3 DIGC

D I

G S

L

JH

C

D I

G S

L

JH
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Chordal graphs

Chordal Graph: an undirected graph G

• all cycles of four or more vertices have a chord (another 

edge breaking the cycle)

• minimum cycle for every vertex in a cycle is 3 (contains 3 

verticies)  

C

D I

G S

L

J

H

C

D I

G S

L

J

H

Chordal. Not Chordal
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Chordal Graphs

Properties:

– There exists an elimination ordering that adds no edges.

– The minimal induced tree-width of the graph is equal to the 

size of the largest clique - 1

C

D I

G S

L

J
H

C

D I

G S

L

J
H

C

D I

G S

L

J
H

C

D I

G S

L

J
H
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Triangulation

The process of converting a graph G into a chordal graph is 

called Triangulation

A new graph obtained via triangulation is:

1) Guaranteed to be chordal.

2) Not guaranteed to be (tree-width) optimal.

• There exist exact algorithms for finding the minimal 

chordal graphs, and heuristic methods with a guaranteed 

upper bound
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Chordal Graphs

• Given a minimum triangulation for a graph G, we can carry 

out the variable-elimination algorithm in the minimum 

possible time.  

• Complexity of the optimal triangulation:

– Finding the minimal triangulation is NP-Hard.

• The inference limit:

– Inference time is exponential in terms of the largest 

clique (factor) in G.
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Conversion of an MRF (BBN) to a clique 
tree

MRF conversions to clique trees: 

Option 1: 

• Via triangulation to form a chordal graph

• Cliques in the chordal graph define the clique tree

Option 2:

• From the induced graph built by running the  variable 

elimination (VE) procedure

• Cliques are defined by factors generated during the VE 

procedure 

BBN conversion:

• Convert the BBN to an MRF – a moral graph

• Apply MRF conversion
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Conclusions on inference complexity

We cannot escape exponential costs of the tree-width of the 

graph  

• Recall: Tree-width = the width of the optimal tree 

decomposition (or the optimal clique tree)  

Good news: 

• For many graphs the tree-width is much smaller than the total 

number of variables !!!

Still a problem: Finding the optimal clique tree is hard (NP hard)

– But, paying the cost up front may be worth it

– Triangulate once, query many times. 

– Real cost savings if not a bounded one   


