CS 3750 Machine Learning

Lecture 3

Graphical models and inference II

Milos Hauskrecht
milos@pitt.edu
5329 Sennott Square, x4-8845
http://www.cs.pitt.edu/~milos/courses/cs3750-Spring2020/

Challenges for modeling complex multivariate distributions

How to model/parameterize complex multivariate distributions $P(\mathbf{X})$ with a large number of variables?

One solution:

- Decompose the distribution. Reduce the number of parameters, using some form of independence.

Two models:

- Bayesian belief networks (BBNs)
- Markov Random Fields (MRFs)
- Learning of these models relies on the decomposition.

Bayesian belief network

Directed acyclic graph

- Nodes = random variables
- Links = direct (causal) dependencies

Missing links encode different marginal and conditional independences

CS 3750 Advanced Machine Learning

Full joint distribution in BBNs

The full joint distribution is defined as a product of local conditional distributions:

$$
\mathbf{P}\left(X_{1}, X_{2}, . ., X_{n}\right)=\prod_{i=1, . . n} \mathbf{P}\left(X_{i} \mid p a\left(X_{i}\right)\right)
$$

Example:

Assume the following assignment of values to random variables $B=T, E=T, A=T, J=T, M=F$

Then its probability is:

$$
\begin{aligned}
& P(B=T, E=T, A=T, J=T, M=F)= \\
& \quad P(B=T) P(E=T) P(A=T \mid B=T, E=T) P(J=T \mid A=T) P(M=F \mid A=T)
\end{aligned}
$$

Inference in Bayesian networks

- Full joint uses the decomposition
- Calculation of marginals:
- Requires summation over variables we want to take out

$$
\begin{aligned}
& P(J=T)= \\
& =\sum_{b \in T, F} \sum_{e \in T, F} \sum_{a \in T, F} \sum_{m \in T, F} P(B=b, E=e, A=a, J=T, M=m)
\end{aligned}
$$

- How to compute sums and products more efficiently?

$$
\sum_{x} a f(x)=a \sum_{x} f(x)
$$

Variable elimination

Assume order: M, E, B, A to calculate $P(J=T)$

$$
\begin{aligned}
& =\sum_{b \in T, F} \sum_{e \in T, F} \sum_{a \in T, F} \sum_{m \in T, F} P(J=T \mid A=a) P(M=m \mid A=a) P(A=a \mid B=b, E=e) P(B=b) P(E=e) \\
& =\sum_{b \in T, F} \sum_{e \in T, F} \sum_{a \in T, F} P(J=T \mid A=a) P(A=a \mid B=b, E=e) P(B=b) P(E=e)\left[\sum_{m \in T, F} P(M=m \mid A=a)\right] \\
& =\sum_{b \in T, F} \sum_{e \in T, F} \sum_{a \in T, F} P(J=T \mid A=a) P(A=a \mid B=b, E=e) P(B=b) P(E=e) \\
& =\sum_{a \in T, F} \sum_{b \in T, F} P(J=T \mid A=a) P(B=b)\left[\sum_{e \in T, F} P(A=a \mid B=b, E=e) P(E=e)\right] \\
& =\sum_{a \in T, F} \sum_{b \in T, F} P(J=T \mid A=a) P(B=b) \tau_{1}(A=a, B=b) \\
& =\sum_{a \in T, F} P(J=T \mid A=a)\left[\sum_{e \in T, F} P(B=b) \tau_{1}(A=a, B=b)\right] \\
& =\sum_{a \in T, F} P(J=T \mid A=a) \quad \tau_{2}(A=a)=P(J=T)
\end{aligned}
$$

Variable elimination

Assume order: M, E, B, A to calculate $P(J=T)$
$=\sum_{b \in T, F} \sum_{e \in T, F} \sum_{a \in T, F} \sum_{m \in T, F} P(J=T \mid A=a) P(M=m \mid A=a) P(A=a \mid B=b, E=e) P(B=b) P(E=e)$
$=\sum_{B \in T, F} \sum_{E \in T, F} \sum_{A \in T, F} \sum_{M \in T, F} f_{1}(A) f_{2}(M, A) f_{3}(A, B, E) f_{4}(B) f_{4}(E)$

Conditional probabilities defining the joint $=$ factors

Variable elimination inference can be cast in terms of operations defined over factors

Factors

- Factor: is a function that maps value assignments for a subset of random variables to \mathfrak{R} (reals)
- The scope of the factor:
- a set of variables defining the factor
- Example:
- Assume discrete random variables x (with values a1,a2, a3) and y (with values b1 and b2)
- Factor:

$$
\phi(x, y) \longrightarrow
$$

- Scope of the factor:

$$
\{x, y\}
$$

a 1	b 1	0.5
a 1	b 2	0.2
a 2	b 1	0.1
a 2	b 2	0.3
a 3	b 1	0.2
a 3	b 2	0.4

Factor Product

Variables: A,B,C
$\phi(A, B, C)=\phi(B, C) \circ \phi(A, B)$
$\phi(B, C)$

a1	b1	0.5
a 1	b 2	0.2
a 2	b 1	0.1
a 2	b 2	0.3
a 3	b 1	0.2
a3	b 2	0.4

a1	b1	c1	$0.5^{*} 0.1$
a1	b1	c2	$0.5^{*} 0.6$
a1	b2	c1	$0.2^{*} 0.3$
a1	b2	c2	$0.2^{*} 0.4$
a2	b1	c1	$0.1^{*} 0.1$
a2	b1	c2	$0.1^{*} 0.6$
a2	b2	c1	$0.3^{*} 0.3$
a2	b2	c2	$0.3^{*} 0.4$
a3	b1	c1	$0.2^{*} 0.1$
a3	b1	c2	$0.2^{*} 0.6$
a3	b2	c1	$0.4^{*} 0.3$
a3	b2	c2	$0.4^{*} 0.4$

Factor Marginalization
Variables: A,B,C $\phi(A, C)=\sum_{B} \phi(A, B, C)$

a1	b1	c1	0.2			
a1	b1	c2	0.35			
a 1	b2	cl	0.4			
a 1	b2	c2	0.15			
				a1	c1	$0.2+0.4=0.6$
a2	b1	c1	0.5	a1	c2	$0.35+0.15=0.5$
a2	b1	c2	0.1	a2	c1	0.8
a2	b2	c1	0.3	a2	c2	0.3
a2	b2	c2	0.2	a3	c1	0.4
				a3	c2	0.7
a3	b1	cl	0.25			

Factor division

$\mathrm{A}=1$	$\mathrm{~B}=1$	$0.5 / 0.4=1.25$
$\mathrm{~A}=1$	$\mathrm{~B}=2$	$0.4 / 0.4=1.0$
$\mathrm{~A}=2$	$\mathrm{~B}=1$	$0.8 / 0.4=2.0$
$\mathrm{~A}=2$	$\mathrm{~B}=2$	$0.2 / 0.4=2.0$
$\mathrm{~A}=3$	$\mathrm{~B}=1$	$0.6 / 0.5=1.2$
$\mathrm{~A}=3$	$\mathrm{~B}=2$	$0.5 / 0.5=1.0$

Inverse of a factor product

Markov random fields

An undirected network (also called independence graph)

- Probabilistic models with symmetric dependences
- $\mathrm{G}=(\mathrm{S}, \mathrm{E})$
- S set of random variables
- Undirected edges E that define dependences between pairs of variables

Example:

variables A,B ..H

Markov random fields

The full joint of the MRF is defined

$$
P(\mathbf{x}) \propto \prod_{c \in c l(x)} \phi_{c}\left(\mathbf{x}_{c}\right)
$$

$\phi_{c}\left(x_{c}\right)$ - A potential function (defined over variables in cliques/factors)

Example:

$P(A, B, \ldots H) \sim \phi_{1}(A, B, C) \phi_{2}(B, D, E) \phi_{3}(A, G) \phi_{4}(C, F) \phi_{5}(G, H) \phi_{6}(F, H)$
$\phi_{c}\left(x_{c}\right)$ - A potential function (defined over a clique of the graph)

Markov random fields: independence relations

- Pairwise Markov property
- Two nodes in the network that are not directly connected can be made independent given all other nodes
- Local Markov property
- A set of nodes (variables) can be made independent from the rest of nodes variables given its immediate neighbors
- Global Markov property
- A vertex set A is independent of the vertex set B (A and B are disjoint) given set C if all chains in between elements in A and B intersect C

MRF variable elimination inference

Example:

$P(B)=\sum_{A, C, D, \ldots H} P(A, B, \ldots H)$

$=\frac{1}{Z} \sum_{A, C, D, . . H} \phi_{1}(A, B, C) \phi_{2}(B, D, E) \phi_{3}(A, G) \phi_{4}(C, F) \phi_{5}(G, H) \phi_{6}(F, H)$

Eliminate E
$=\frac{1}{Z} \underbrace{}_{A, C, D, F, G, H} \phi_{1}(A, B, C) \underbrace{\left[\sum_{E} \phi_{2}(B, D, E)\right.}_{\tau_{1}(B, D)}] \phi_{3}(A, G) \phi_{4}(C, F) \phi_{5}(G, H) \phi_{6}(F, H$

MRF variable elimination inference

Example (cont):

$$
\begin{aligned}
& P(B)=\sum_{A, C, D, \ldots H} P(A, B, \ldots H) \\
& =\frac{1}{Z} \sum_{A, C, D, F, G, H} \phi_{1}(A, B, C) \tau_{1}(B, D) \phi_{3}(A, G) \phi_{4}(C, F) \phi_{5}(G, H) \phi_{6}(F, H)
\end{aligned}
$$

Eliminate D

$$
=\frac{\mathbf{1}}{Z_{A, C, F, G, H}} \sum_{\tau_{2}(B)} \phi_{1}(A, B, C) \underbrace{\sum_{D} \tau_{1}(B, D)}] \phi_{3}(A, G) \phi_{4}(C, F) \phi_{5}(G, H) \phi_{6}(F, H)
$$

MRF variable elimination inference

Example (cont):

$$
P(B)=\sum_{A, C, D, \ldots H} P(A, B, \ldots H)
$$

$=\frac{1}{Z} \sum_{A, C, F, G, H} \phi_{1}(A, B, C) \tau_{2}(B) \phi_{3}(A, G) \phi_{4}(C, F) \phi_{5}(G, H) \phi_{6}(F, H)$
Eliminate H

$$
=\frac{\mathbf{1}}{Z} \sum_{A, C, F, G} \phi_{1}(A, B, C) \tau_{2}(B) \phi_{3}(A, G) \phi_{4}(C, F)[\underbrace{\sum_{H} \underbrace{\phi_{5}(G, H) \phi_{6}(F, H)}_{\tau_{3}(F, G, H)}}_{\tau_{4}(F, G)}]
$$

MRF variable elimination inference

Example (cont):

$$
P(B)=\sum_{A, C, D, \ldots H} P(A, B, \ldots H)
$$

$=\frac{\mathbf{1}}{Z} \sum_{\ldots, C, F, G} \phi_{1}(A, B, C) \tau_{2}(B) \phi_{3}(A, G) \phi_{4}(C, F) \tau_{4}(F, G)$
Eliminate \mathbf{F}

$$
=\frac{1}{Z} \sum_{A, C, G} \phi_{1}(A, B, C) \tau_{2}(B) \phi_{3}(A, G)[\underbrace{\sum_{F} \underbrace{\phi_{4}(C, F) \tau_{4}(F, G)}_{\tau_{5}(C, F, G)}}_{\tau_{6}(G, C)}]
$$

MRF variable elimination inference

Example (cont):

$$
\begin{aligned}
P(B) & =\sum_{A, C, D, \ldots H} P(A, B, \ldots H) \\
& =\frac{\mathbf{1}}{Z} \phi_{1}(A, B, C) \tau_{2}(B) \phi_{3}(A, G) \tau_{6}(C, G)
\end{aligned}
$$

$$
=\frac{\mathbf{1}}{Z} \sum_{A, C} \phi_{1}(A, B, C) \tau_{2}(B)[\underbrace{\sum_{F} \underbrace{\phi_{3}(A, G) \tau_{6}(C, G)}_{\tau_{7}(A, C, G)}}_{\tau_{8}(A, C)}]
$$

MRF variable elimination inference

Example (cont):

$$
\begin{aligned}
P(B) & =\sum_{A, C, D, \ldots H} P(A, B, \ldots H) \\
& =\frac{\mathbf{1}}{Z}: \sum_{A, C} \phi_{1}(A, B, C) \tau_{2}(B) \tau_{8}(A, C)
\end{aligned}
$$

Eliminate C

$$
=\frac{\mathbf{1}}{Z}: \sum_{A} \tau_{2}(B)[\underbrace{\sum_{\tau_{9}(A, B, C)} \underbrace{\phi_{1}(A, B, C) \tau_{8}(A, C)}}_{\tau_{10}(A, B)}]
$$

MRF variable elimination inference

Example (cont):

$$
\begin{aligned}
P(B)=\sum_{A, C, D, .} & P(A, B, \ldots H) \\
= & \frac{1}{Z}, \tau_{2}(B) \tau_{10}(A, B) \\
= & \frac{1}{Z} \tau_{2}(B) \sum_{A} \tau_{10}(A, B)
\end{aligned}
$$

Eliminate A
B

B

$$
\begin{aligned}
& =\frac{\mathbf{1}}{Z} \tau_{2}(B) \underbrace{\sum_{A} \tau_{10}(A, B)}_{\tau_{11}(B)} \\
& =\frac{\mathbf{1}}{\mathbf{Z}}: \tau_{2}(B) \tau_{11}(B)
\end{aligned}
$$

B

Are BBNs and MRFs different?

Both models represent independences that hold among variables or sets of variables?

- Are the two the same in terms of independences they can represent?
- Or, are they different?

Are BBNs and MRFs different?

Both models represent independences that hold among variables or sets of variables?

- Are the two the same in terms of independences they can represent?
- Or, are they different?

Answer: MRFs are different from BBNs

- There are independences that can be represented by one model but not the other

Are BBNs and MRFs different?

MRFs are different from BBNs

- There are independences that can be represented by one model but not the other
Analysis:
directed undirected

A is independent of C given B

Are BBNs and MRFs different?

MRFs are different from BBNs

- There are independences that can be represented by one model but not the other
Analysis:

undirected

> B is independent of C given A

Are BBNs and MRFs different?

MRFs are different from BBNs

- There are independences that can be represented by one model but not the other
Analysis:

A and B are marginally independent

A and B are independent given C

Fix to undirected (moralization)

Are BBNs and MRFs different?

MRFs are different from BBNs

- There are independences that can be represented by one model but not the other
Analysis: undirected

No directed graph can represent the same set of independences

B and C are independent given A, D
A and D are independent given B, C

Converting BBNs to MRFs

Moral-graph H[G]: of a Bayesian network over X is an undirected graph over X that contains an edge between x and y if:

- There exists a directed edge between them in G.
- They are both parents of the same node in G.

CS 3750 Advanced Machine Learning

Moral Graphs: define MRFs

Why moralization?

$$
\begin{aligned}
& P(C, D, G, I, S, L, J, H)= \\
& \quad=P(C) P(D \mid C) P(G \mid I, D) P(S \mid I) P(L \mid G) P(J \mid L, S) P(H \mid G, J) \\
& \quad=\phi_{1}(C) \phi_{2}(D, C) \phi_{3}(G, I, D) \phi_{4}(S, I) \phi_{5}(L, G) \phi_{6}(J, L, S) \phi_{7}(H, G, J)
\end{aligned}
$$

Inference

Variable elimination: Depends on the order of variables to eliminate

Question: can we optimize the structures ahead of times so that we can make inferences efficiently and without worrying about the specific variable order?

- Structures that support efficient inferences: Chains, and trees
A B C D

A
B

CS 3750 Advanced Machine Learning

Inference on a Chain

$$
\begin{gathered}
p(\mathbf{x})=\frac{1}{Z} \psi_{1,2}\left(x_{1}, x_{2}\right) \psi_{2,3}\left(x_{2}, x_{3}\right) \cdots \psi_{N-1, N}\left(x_{N-1}, x_{N}\right) \\
p\left(x_{n}\right)=\sum_{x_{1}} \cdots \sum_{x_{n-1}} \sum_{x_{n+1}} \cdots \sum_{x_{N}} p(\mathbf{x})
\end{gathered}
$$

Inference on a Chain

$$
\begin{aligned}
p\left(x_{n}\right)= & \frac{1}{Z} \underbrace{\left[\sum_{x_{n-1}} \psi_{n-1, n}\left(x_{n-1}, x_{n}\right) \cdots\left[\sum_{x_{n}} \psi_{1,2}\left(x_{1}, x_{2}\right)\right] \cdots\right]}_{x_{1}} \\
& \underbrace{\left[\psi_{n, n+1}\left(x_{n}, x_{n+1}\right) \cdots\left[\sum_{x_{N}} \psi_{N-1, N}\left(x_{N-1}, x_{N}\right)\right] \cdots\right]}_{\mu_{x_{\mu}\left(x_{n}\right)}^{\sum_{x_{n+1}}\left(x_{n}\right)}}
\end{aligned}
$$

Inference on a Chain

$$
\begin{gathered}
x_{1} \\
\mu_{\alpha}\left(x_{2}\right)=\sum_{x_{1}} \psi_{1,2}\left(x_{1}, x_{2}\right) \quad \mu_{\beta}\left(x_{N-1}\right)=\sum_{x_{N}} \psi_{N-1, N}\left(x_{N-1}, x_{N}\right) \\
Z=\sum_{x_{n}} \mu_{\alpha}\left(x_{n}\right) \mu_{\beta}\left(x_{n}\right)
\end{gathered}
$$

Inference on a Chain

To compute local marginals:

- Compute and store all forward messages, $\mu_{\alpha}\left(x_{n}\right)$.
- Compute and store all backward messages, $\mu_{\beta}\left(x_{n}\right)$.
- Compute Z at any node x_{m}
- Compute

$$
p\left(x_{n}\right)=\frac{1}{Z} \mu_{\alpha}\left(x_{n}\right) \mu_{\beta}\left(x_{n}\right)
$$

for all variables required.

Inference

Many BBNs or MRFs are not tree structured

- Can we optimize the structures ahead of times so that we can make inferences efficiently and without worrying about the specific variable order?
- Idea: Convert to trees that support efficient inference
- Next: two approaches to convert MRFs (or BBNs) to tree structures

Induced graph

A graph induced by a specific variable elimination order that covers all variables:

- a graph G extended by links that represent intermediate factors

- Induced graph defines a tree decomposition of a graph G (or a clique tree)

Tree decomposition

- A node in tree T is formed by a set of vertices corresponding to maximum cliques in G
- For all edges $\{v, w\} \in \mathrm{G}$: there is a set containing both v and w in T
- For every $v \in \mathrm{G}$: the nodes in T that contain v form a connected subtree.

Tree decomposition of the graph

A tree decomposition of a

 graph G (clique tree):- A node in tree T is formed by a set of vertices corresponding to maximum cliques in G

- For all edges $\{v, w\} \in \mathrm{G}$: there is a set containing both v and w in T.
- For every $v \in \mathrm{G}$: the nodes in T that contain v form a connected subtree.

Tree decomposition of the graph

A tree decomposition of a graph G (clique tree):

- A node in tree T is formed by a set of vertices corresponding to maximum cliques in G
- For all edges $\{v, w\} \in \mathrm{G}$: there is a set containing both v and w in T.
- For every $v \in \mathrm{G}$: the nodes in T that contain v form a connected subtree.

Tree decomposition of the graph

A tree decomposition of a graph G (clique tree):

- A node in tree T is formed by a set of vertices corresponding to maximum cliques in G

- For all edges $\{v, w\} \in \mathrm{G}$: there is a set containing both v and w in T.
- For every $v \in \mathrm{G}$: the nodes in T that contain v form a connected subtree.

Tree decomposition of the graph

A tree decomposition of a graph G (clique tree):

- A node in tree T is formed by a set of vertices corresponding to maximum cliques in G

- For all edges $\{v, w\} \in \mathrm{G}$: there is a set containing both v and w in T.
- For every $v \in \mathrm{G}$: the nodes in T that contain v form a connected subtree.

Tree decomposition of the graph

Another decomposition of a graph G:

- A node in tree T is formed by a set of vertices corresponding to maximum cliques in G

- For all edges $\{v, w\} \in \mathrm{G}$: there is a set containing both v and w in T.
- For every $v \in \mathrm{G}$: the nodes in T that contain v form a connected subtree.

Treewidth of the graph

- Width of the tree decomposition: $\max _{i \in I}\left|X_{i}\right|-1$
- Treewidth of a graph

D E
$G: \operatorname{tw}(G)=$ minimum width over all tree decompositions of G.

Treewidth of the graph

- Treewidth of a graph G : $\operatorname{tw}(G)=$ minimum width over all tree decompositions of G
- Why is it important?
- Many calculations can take
 advantage of the structure and be performed more efficiently
- treewidth gives the best case complexity

Converting BBNs to MRFs

Moral-graph H[G]: of a Bayesian network over X is an undirected graph over X that contains an edge between x and y if:

- There exists a directed edge between them in G.
- They are both parents of the same node in G.

CS 3750 Advanced Machine Learning

Moral Graphs: define MRFs

Why moralization?

$$
\begin{aligned}
& P(C, D, G, I, S, L, J, H)= \\
& \quad=P(C) P(D \mid C) P(G \mid I, D) P(S \mid I) P(L \mid G) P(J \mid L, S) P(H \mid G, J) \\
& \quad=\phi_{1}(C) \phi_{2}(D, C) \phi_{3}(G, I, D) \phi_{4}(S, I) \phi_{5}(L, G) \phi_{6}(J, L, S) \phi_{7}(H, G, J)
\end{aligned}
$$

Chordal graphs

Chordal Graph: an undirected graph G

- all cycles of four or more vertices have a chord (another edge breaking the cycle)
- minimum cycle for every vertex in a cycle is 3 (contains 3 verticies)

Chordal.

Not Chordal

Chordal Graphs

Properties:

- There exists an elimination ordering that adds no edges.
- The minimal induced tree-width of the graph is equal to the size of the largest clique - 1

Triangulation

The process of converting a graph G into a chordal graph is called Triangulation

A new graph obtained via triangulation is:

1) Guaranteed to be chordal.
2) Not guaranteed to be (tree-width) optimal.

- There exist exact algorithms for finding the minimal chordal graphs, and heuristic methods with a guaranteed upper bound

Chordal Graphs

- Given a minimum triangulation for a graph G, we can carry out the variable-elimination algorithm in the minimum possible time.
- Complexity of the optimal triangulation:
- Finding the minimal triangulation is NP-Hard.
- The inference limit:
- Inference time is exponential in terms of the largest clique (factor) in G.

Conversion of an MRF (BBN) to a clique tree

MRF conversions to clique trees:
Option 1:

- Via triangulation to form a chordal graph
- Cliques in the chordal graph define the clique tree

Option 2:

- From the induced graph built by running the variable elimination (VE) procedure
- Cliques are defined by factors generated during the VE procedure

BBN conversion:

- Convert the BBN to an MRF - a moral graph
- Apply MRF conversion

Conclusions on inference complexity

We cannot escape exponential costs of the tree-width of the graph

- Recall: Tree-width = the width of the optimal tree decomposition (or the optimal clique tree)
Good news:
- For many graphs the tree-width is much smaller than the total number of variables !!!
Still a problem: Finding the optimal clique tree is hard (NP hard)
- But, paying the cost up front may be worth it
- Triangulate once, query many times.
- Real cost savings if not a bounded one

