<section-header><section-header><section-header><section-header><section-header><section-header><section-header><text>

Challenges for modeling complex multivariate distributions

How to model/parameterize complex multivariate distributions $P(\mathbf{X})$ with a large number of variables?

One solution:

• Decompose the distribution. Reduce the number of parameters, using some form of independence.

Two models:

- Bayesian belief networks (BBNs)
- Markov Random Fields (MRFs)
- Learning of these models relies on the decomposition.

CS 3750 Advanced Machine Learning

Variable elimination
Assume order: M, E, B, A to calculate
$$P(J = T)$$

 $= \sum_{b \in T, F} \sum_{a \in T, F} \sum_{a \in T, F} P(J = T | A = a)P(M = m | A = a)P(A = a | B = b, E = e)P(B = b)P(E = e)$
 $= \sum_{b \in T, F} \sum_{a \in T, F} P(J = T | A = a)P(A = a | B = b, E = e)P(B = b)P(E = e) \left[\sum_{m \in T, F} P(M = m | A = a)\right]$
 $= \sum_{b \in T, F} \sum_{a \in T, F} P(J = T | A = a)P(A = a | B = b, E = e)P(B = b)P(E = e) = 1$
 $= \sum_{a \in T, F} \sum_{b \in T, F} P(J = T | A = a)P(B = b) \left[\sum_{e \in T, F} P(A = a | B = b, E = e)P(E = e)\right]$
 $= \sum_{a \in T, F} \sum_{b \in T, F} P(J = T | A = a)P(B = b) \tau_1(A = a, B = b)$
 $= \sum_{a \in T, F} \sum_{b \in T, F} P(J = T | A = a) P(B = b) \tau_1(A = a, B = b)$
 $= \sum_{a \in T, F} P(J = T | A = a) \left[\sum_{e \in T, F} P(B = b) \tau_1(A = a, B = b)\right]$
 $= \sum_{a \in T, F} P(J = T | A = a) \left[\sum_{e \in T, F} P(B = b) \tau_1(A = a, B = b)\right]$

		bles: A, B, C) = ϕ	B,C $(B,C) \circ \phi$	(A, B)			$\phi(A)$	(B,C)	
$\phi(B,C)$			ç	$\phi(A,B)$			bl	cl	0.5*0.1
							b1 b2	c2 c1	0.5*0.6
b1	cl	0.1	al	bl	0.5	al al		c2	0.2*0.4
			al	b2	0.2	a2	b1	c1	0.1*0.1
b1	c2	0.6	a2	bl	0.1	a2	bl	c2	0.1*0.6
b2	c1	0.3	82	01	0.1	a2	b2	c1	0.3*0.3
62	cl	0.3	a2	b2	0.3	a2	b2	c2	0.3*0.4
b2	c2	0.4	a3	bl	0.2	a3	bl	cl	0.2*0.1
						a3	b1	c2	0.2*0.6
			a3	b2	0.4	a3	b2	c1	0.4*0.3
						a3	b2	c2	0.4*0.4

Conversion of an MRF (BBN) to a clique tree

MRF conversions to clique trees: Option 1:

- Via triangulation to form a chordal graph
- Cliques in the chordal graph define the clique tree

Option 2:

- From the induced graph built by running the variable elimination (VE) procedure
- Cliques are defined by factors generated during the VE procedure

BBN conversion:

- Convert the BBN to an MRF a moral graph
- Apply MRF conversion

CS 3750 Advanced Machine Learning

