Markov Models

Yanbing Xue

Outline

- Introduction
- Markov chains
- Dynamic belief networks
- Hidden Markov models (HMMs)

Outline

- Introduction
 - Time series
 - Probabilistic graphical models
- Markov chains
- Dynamic belief networks
- Hiddem Markov models (HMM)

What is time series?

- A time series is a sequence of data instance listed in time order.
 - In other words, data instances are totally ordered.
 - Example: weather forecasting

• Notice: we care about the orderings rather than the exact time.

Outline

- Introduction
- Markov chains
 - Intuition
 - Inference
 - Learning
- Dynamic belief networks
- Hidden Markov models (HMMs)

Modeling time series

Assume a sequence of four weather observations: y_1, y_2, y_3, y_4

• Possible dependences: y_4 depends on the previous weather(s)

Modeling time series

In general observations: y_1, y_2, y_3, y_4 can be

Fully dependent: E.g. y₄ depends on all previous observations A lot of middle ground in between the two extremes

Independent: E.g. y₄ does not depend on any previous observation

Modeling time series

• Are there intuitive and convenient dependency models?

Think of the last observation $P(y_4|y_1y_2y_3)$ What if we have T observations? Parameter #: exponential to # of observations

Totally drops time information

Markov chains

 Markov assumption: Future predictions are independent of all but the most recent observations

Fully dependent

First order Markov chain

Independent

Markov chains

 Markov assumption: Future predictions are independent of all but the most recent observations

Fully dependent

Second order Markov chain

Independent

A formal representation

- Using conditional probabilities to model y_1, y_2, y_3, y_4
- Fully dependent:
 - $P(y_1y_2y_3y_4) = P(y_1)P(y_2|y_1)P(y_3|y_1y_2)P(y_4|y_1y_2y_3)$
- Fully independent:
 - $P(y_1y_2y_3y_4) = P(y_1)P(y_2)P(y_3)P(y_4)$
- First-order Markov chain (recent 1 observation):
 - $P(y_1y_2y_3y_4) = P(y_1)P(y_2|y_1)P(y_3|y_2)P(y_4|y_3)$
- Second-order Markov chain (recent 2 observations):
 - $P(y_1y_2y_3y_4) = P(y_1)P(y_2|y_1)P(y_3|y_1y_2)P(y_4|y_2y_3)$

A more formal representation

- Generalizes to T observations
- First-order Markov chain (recent 1 observation):
 - $P(y_1y_2 ... y_T) = P(y_1) \prod_{t=2}^T P(y_t|y_{t-1})$
- Second-order Markov chain (recent 2 observations):
 - $P(y_1y_2 ... y_T) = P(y_1)P(y_2|y_1) \prod_{t=3}^{T} P(y_t|y_{t-1}y_{t-2})$
- k-th order Markov chain (recent k observations):
 - $P(y_1y_2 ... y_T) = P(y_1)P(y_2|y_1) ... P(y_k|y_1 ... y_{k-1}) \prod_{t=k+1}^{T} P(y_t|y_{t-k} ... y_{t-1})$

Stationarity

- Do all states yield to the identical conditional distribution?
- $P(y_t = j | y_{t-1} = i) = P(y_{t-1} = j | y_{t-2} = i)$ for all t, i, j
- Typically holds
- A transition table A to represent conditional distribution

•
$$A_{ij} = P(y_t = j | y_{t-1} = i)$$
 for all $t = 1, 2, ..., T$

- d: dimention of y_t
- A vector π to represent the initial distribution

•
$$\pi_i = P(y_1 = i)$$
 for all $i = 1, 2, ..., d$

Inference on a Markov chain

Probability of a given sequence

•
$$P(y_1 = i_1, ..., y_T = i_T) = \pi_{i_1} \prod_{t=2}^T A_{i_t i_{t-1}}$$

- Probability of a given state
 - Forward iteration: $P(y_t = i_t) = \sum_{i_{t-1}} P(y_{t-1} = i_{t-1}) A_{i_t i_{t-1}}$
 - Can be calculated iteratively
- Both inferences are efficient
- $P(y_k = i_k, ..., y_T = i_T) = P(y_k = i_k) \prod_{t=k+1}^T A_{i_t i_{t-1}}$

Learning a Markov chain

- MLE of conditional probabilities can be estimated directly.
- $A_{ij}^{MLE} = P(y_t = j | y_{t-1} = i) = \frac{P(y_t = j, y_{t-1} = i)}{P(y_{t-1} = i)} = \frac{N_{ij}}{\sum_i N_{ij}}$
 - N_{ij} : # of observations that yields $y_t = j$, $y_{t-1} = i$
- Bayesian parameter estimation
 - Prior: $Dir(\theta_1, \theta_2, ...)$
 - Posterior: $Dir(\theta_1 + N_{i1}, \theta_2 + N_{i2}, ...)$
 - $A_{ij}^{MAP} = \frac{N_{ij} + \theta_j 1}{\sum_j (N_{ij} + \theta_j 1)} \qquad A_{ij}^{EV} = \frac{N_{ij} + \theta_j}{\sum_j (N_{ij} + \theta_j)}$

A toy example - weather forecast

- State 1: rainy state 2: cloudy state 3: sunny
- Given "sun-sun-rain-rain-sun-cloud-sun", find A_{33}
- $A_{33}^{MLE} = \frac{N_{33}}{\sum_{j} N_{3j}} = \frac{2}{1+1+2}$
 - Prior: *Dir*(2,2,2)
 - Posterior: Dir(2 + 1, 2 + 1, 2 + 2)
- $A_{33}^{MAP} = \frac{N_{33} + \theta_3 1}{\sum_j (N_{3j} + \theta_j 1)} = \frac{3}{7} \qquad A_{33}^{EV} = \frac{N_{33} + \theta_3}{\sum_j (N_{3j} + \theta_j)} = \frac{4}{10}$

A toy example - weather forecast

- Given $A = \begin{bmatrix} 0.4 & 0.3 & 0.3 \\ 0.2 & 0.6 & 0.2 \\ 0.1 & 0.1 & 0.8 \end{bmatrix}$, day 1 is sunny
- Find the probability that day 2~8 will be "sun-sun-rain-rain-sun-cloud-sun"

A toy example - weather forecast

• Given $A = \begin{bmatrix} 0.4 & 0.3 & 0.3 \\ 0.2 & 0.6 & 0.2 \\ 0.1 & 0.1 & 0.8 \end{bmatrix}$, day 1 is sunny

sun

0.2

- Find the probability that day 3 will be sunny
- $P(y_2 = s) = \sum_i P(y_1 = i) P(y_2 = s | y_1 = i) = 0 \cdot 0.3 + 0 \cdot 0.2 + 1 \cdot 0.8 = 0.8$
 - Similarly, $P(y_2 = r) = \sum_i P(y_1 = i) P(y_2 = r | y_1 = i) = 0 \cdot 0.4 + 0 \cdot 0.2 + 1 \cdot 0.1 = 0.1$
 - $P(y_2 = c) = \sum_i P(y_1 = i) P(y_2 = c | y_1 = i) = 0 \cdot 0.3 + 0 \cdot 0.6 + 1 \cdot 0.1 = 0.1$
 - $P(y_3 = s) = \sum_i P(y_2 = i) P(y_3 = s | y_2 = i) = 0.1 \cdot 0.3 + 0.1 \cdot 0.2 + 0.8 \cdot 0.8 = 0.69$

Limitation of Markov chain

- Each state is represented by one variable
- What if each state consists of multiple variables?

Outline

- Introduction
- Markov chains
- Dynamic belief networks
 - Intuition
 - Inference
 - Learning
- Hidden Markov models (HMMs)

Modeling multiple variables

- What if each state consists of multiple variables?
- e.g. monitoring a robot
 - · Location, GPS, Speed

- Modeling all variables in each state jointly
- Is this a good solution?

Modeling multiple variables

- Each variable only depends on some of the previous or current observations
- Factorization

Dynamic belief networks

Also named as dynamic Bayesian networks

 $\mathbf{X}_t = \{S_t, L_t\} \text{: transition states}$ Only dependent on previous observations $P(\mathbf{X}_t | \mathbf{X}_{t-1}) = \{P(S_t | S_{t-1}), P(L_t | S_{t-1} L_{t-1})\} \text{:}$ transition model $G_{t-1} = \{P(S_t | S_{t-1}), P(S_t | S_{t-1}), P(S_t | S_{t-1})\} \text{:}$

 $Y_t = \{G_t\}$: emission states / evidences Only dependent on current observations

 $P(\mathbf{Y}_t|\mathbf{X}_t) = \{P(G_t|L_t)\}$: emission model / sensor model

Inference on a dynamic BN

- Filtering: given $\mathbf{y}_{1...t}$, find $P(\mathbf{X}_t | \mathbf{y}_{1...t})$
- Exact inference
 - using Bayesian rule and the structure of dynamic BN

$$P(\mathbf{X}_{t}|\mathbf{y}_{1...t})$$
 Can be inferred iteratively
$$P(\mathbf{X}_{t}\mathbf{y}_{t}|\mathbf{y}_{1...t-1})$$

$$= P(\mathbf{y}_{t}|\mathbf{X}_{t}\mathbf{y}_{1...t-1})P(\mathbf{X}_{t}|\mathbf{y}_{1...t-1})$$
 Structure of dynamic BN
$$= P(\mathbf{y}_{t}|\mathbf{X}_{t}\mathbf{y}_{1...t-1}) \sum_{\mathbf{X}_{t-1}} P(\mathbf{X}_{t}|\mathbf{x}_{t-1}\mathbf{y}_{1...t-1})P(\mathbf{x}_{t-1}|\mathbf{y}_{1...t-1})$$
 Emission model Transition model

Approximate inference on a dynamic BN

- Is exact inference useful?
- $P(\mathbf{X}_t|\mathbf{y}_{1...t}) = P(\mathbf{y}_t|\mathbf{X}_t) \sum_{\mathbf{X}_{t-1}} P(\mathbf{X}_t|\mathbf{X}_{t-1}) P(\mathbf{X}_{t-1}|\mathbf{y}_{1...t-1})$
 - Needs to enumerate \mathbf{x}_{t-1} , exponential to # of transition variables
- Use approximate inference instead
- Particle filtering

Particle filtering – a toy example

- $\mathbf{X}_t = \{S_t, L_t\}, \mathbf{Y}_t = \{G_t\}$
- S_t , L_t only contains 2 outcomes

•
$$S_t = \{\text{fast, slow}\}$$

$$L_t = \{ \text{left, right} \}$$

- $P(X_1) = P(S_1L_1)$ a 2*2 table
- N = 10: # of samples in each iteration
- *t*th iteration = time state *t*

Particle filtering – a toy example

- Step 1: samples $\mathbf{a}_1 \dots \mathbf{a}_N$ from prior $P(\mathbf{X}_{t-1}|\mathbf{y}_{1\dots t-1})$
 - When t = 1, samples from $P(\mathbf{X}_1)$
- Step 2: update $\mathbf{a}_i \leftarrow$ samples from $P(\mathbf{X}_t | \mathbf{X}_{t-1} = \mathbf{a}_i)$ for all i
 - \mathbf{a}_i randomly transits based on transition model

Particle filtering – a toy example

- Step 3: given \mathbf{y}_t and \mathbf{a}_i , define $w_i = P(\mathbf{y}_t | \mathbf{X}_t = \mathbf{a}_i)$
- In step 1 of next iteration, we sample from $\mathbf{a}_1 \dots \mathbf{a}_N$ where the weight of \mathbf{a}_i is w_i
 - Should be the same as sampling from $P(\mathbf{X}_t|\mathbf{y}_{1...t})$
 - Is this true?

Correctness of particle filtering

- Can be proved using induction
- Let $N(\mathbf{x}_{t-1}|\mathbf{y}_{1...t-1})$ denotes population of \mathbf{x}_{t-1} given $\mathbf{y}_{1...t-1}$
- After step 1: $\frac{N(\mathbf{x}_{t-1}|\mathbf{y}_{1...t-1})}{N} = P(\mathbf{x}_{t-1}|\mathbf{y}_{1...t-1})$
- After step 2, we have population of \mathbf{x}_t :
 - $N(\mathbf{x}_t|\mathbf{y}_{1...t-1}) = \sum_{\mathbf{x}_{t-1}} P(\mathbf{x}_t|\mathbf{x}_{t-1}) N(\mathbf{x}_{t-1}|\mathbf{y}_{1...t-1})$

Correctness of particle filtering

- After step 3, population of \mathbf{x}_t is weighted by $P(\mathbf{y}_t|\mathbf{x}_t)$
- $P(\mathbf{y}_{t}|\mathbf{x}_{t})N(\mathbf{x}_{t}|\mathbf{y}_{1...t-1}) = P(\mathbf{y}_{t}|\mathbf{x}_{t})\sum_{\mathbf{x}_{t-1}} P(\mathbf{x}_{t}|\mathbf{x}_{t-1})N(\mathbf{x}_{t-1}|\mathbf{y}_{1...t-1}) = NP(\mathbf{y}_{t}|\mathbf{x}_{t})\sum_{\mathbf{x}_{t-1}} P(\mathbf{x}_{t}|\mathbf{x}_{t-1})P(\mathbf{x}_{t-1}|\mathbf{y}_{1...t-1}) = NP(\mathbf{y}_{t}|\mathbf{x}_{t})P(\mathbf{x}_{t}|\mathbf{y}_{1...t-1}) \propto P(\mathbf{x}_{t}|\mathbf{y}_{1...t}) = NP(\mathbf{y}_{t}\mathbf{x}_{t}|\mathbf{y}_{1...t-1}) \propto P(\mathbf{x}_{t}|\mathbf{y}_{1...t})$

Learning a dynamic BN

- Given the structure of the dynamic BN...
 - Learning transition models and emission models is same as in Markov chain
- How to learn the structure?
 - For $P(\mathbf{X}_t | \mathbf{X}_{t-1})$, take each $\mathbf{X}_t^{(i)} \in \mathbf{X}_t$ as label and \mathbf{X}_{t-1} as features
 - For $P(\mathbf{Y}_t | \mathbf{X}_t)$, take each $\mathbf{Y}_t^{(i)} \in \mathbf{Y}_t$ as label and \mathbf{X}_t as features
- Converts to feature reduction

Limitation

• Current assumption: all states are observable, which is unrealistic

- The actual location L of the robot may never be observed
- What if some variables are hidden?

Outline

- Introduction
- Markov chains
- Dynamic belief networks
- Hidden Markov models (HMMs)
 - Intuition
 - Inference
 - Learning
 - Applications & APIs

Hidden variables

• Some variables in the dynamic BN can be hidden

- Transistion variables can be hidden
- HMM: think of only one transition & one emission variable

Hidden Markov models (HMMs)

- Overview
 - A sequence of length T
 - Evidence / emission variable: $\{y_t\}$ is categorical or continuous
 - Hidden variable: $\{x_t\}$ is categorical
- $P(y_1 ... y_T, x_1 ... x_T) = P(x_1) \prod_{t=2}^T P(x_t | x_{t-1}) \prod_{t=1}^T P(y_t | x_t)$

Transition table

- Let d as the dimention of x_t
- Transition table A is a d*d matrix

$$\bullet A_{ij} = P(x_t = j | x_{t-1} = i)$$

• Clearly,
$$\sum_{j=1}^{d} A_{ij} = 1$$
 for all i

$$A = \begin{bmatrix} A_{11} & \cdots & A_{1d} \\ \vdots & \ddots & \vdots \\ A_{d1} & \cdots & A_{dd} \end{bmatrix}$$

Emission function

- When y_t is categorical, let K as the dimension of y_t
- Emission function B can be represented as a d*K matrix

$$B = \begin{bmatrix} B_{11} & \cdots & B_{1K} \\ \vdots & \ddots & \vdots \\ B_{d1} & \cdots & B_{dK} \end{bmatrix}$$

- $B_{ij} = P(y_t = j | x_t = i)$
- Clearly, $\sum_{j=1}^{K} B_{ij} = 1$ for all i

Emission function

- When y_t is continuous, $p(y_t|x_t)$ is a PDF
 - Emission function B is the set of parameters of d different PDFs
- When $p(y_t|x_t)$ is Gaussian
- $B = \{\mu_1 ... \mu_d, \Sigma_1 ... \Sigma_d\}$

Inference on an HMM

- Given the HMM, what can we do?
- Given an observation sequence, find its probability
 - Filtering: find the distribution of the *last* hidden variable
 - Smoothing: find the distribution of the a hidden variable in the middle
- Given an observation sequence, find the most likely (ML) hidden variable sequence

Probability of an observed sequence

•
$$P(y_1 ... y_T) = \sum_{i=1}^{d} P(y_1 ... y_T, x_T = i)$$

• Let's expand one step more:

$$P(y_1 ... y_T, x_T = i) = \sum_{j=1}^d P(y_1 ... y_T, x_T = i, x_{T-1} = j)$$

$$= \sum_{j=1}^d P(y_1 ... y_{T-1}, x_{T-1} = j) P(x_T = i | x_{T-1} = j) P(y_T | x_T = i)$$

• Can be calculated iteratively

Forward algorithm

- Let $\alpha_t(i) = P(y_1 ... y_t, x_t = i)$
- Iteration:

$$\alpha_t(i) = \sum_{j=1}^d \alpha_{t-1}(j) A_{ji} P(y_t | x_t = i)$$

- Base: $\alpha_1(i) = P(y_1, x_1 = i) = \pi_i P(y_1 | x_1 = i)$
- Output: $\sum_{i=1}^{d} \alpha_T(i)$

Forward algorithm

- $\alpha_t(i) = \sum_{i=1}^d \alpha_{t-1}(j) A_{ii} P(y_t | x_t = i)$
 - $\alpha_{t-1}(j) = P(y_1 \dots y_{t-1}, x_{t-1} = j)$
 - \downarrow integrating x_t
 - $\alpha_{t-1}(j)A_{ii} = P(y_1 ... y_{t-1}, x_{t-1} = j, x_t = i)$
 - \downarrow integrating y_t
 - $\alpha_{t-1}(j)A_{ii}P(y_t|x_t=i) = P(y_1...y_t, x_{t-1}=j, x_t=i)$
 - \Downarrow sum x_{t-1} out
 - $\alpha_t(i) = \sum_{j=1}^{d} \alpha_{t-1}(j) A_{ji} P(y_t | x_t = i) = P(y_1 \dots y_t, x_t = i)$

T

Backward algorithm

- Iterates reversely
- Let $\beta_t(i) = P(y_{t+1} ... y_T | x_t = i)$
- Iteration:

$$\beta_t(i) = \sum_{j=1}^d \beta_{t+1}(j) A_{ij} P(y_{t+1} | x_{t+1} = i)$$

- Base: $\beta_T(i) = 1$
- Output: $\sum_{i=1}^{d} \pi_i P(y_1 | x_1 = i) \beta_1(i)$

Filtering and smoothing

- Filtering: find $P(x_T = i | y_1 ... y_T)$
- $P(x_T = i | y_1 ... y_T) \propto P(y_1 ... y_T, x_T = i) = \alpha_t(i)$
 - Directly applies forward algorithm
- Smoothing: find $P(x_t = i | y_1 \dots y_T)$ where t < T
- $P(x_t = i | y_1 ... y_T) \propto P(y_1 ... y_T, x_t = i)$ = $P(y_1 ... y_t, x_t = i) P(y_{t+1} ... y_T | x_t = i) = \alpha_t(i) \beta_t(i)$
 - Using both forward and backward algorithm

Viterbi algorithm

- Find $\underset{x_1...x_T}{\operatorname{argmax}} P(x_1 ... x_T | y_1 ... y_T)$
- $\underset{x_1...x_T}{\operatorname{argmax}} P(x_1 ... x_T | y_1 ... y_T) = \underset{x_1...x_T}{\operatorname{argmax}} P(y_1 ... y_T, x_1 ... x_T)$
- Let $\delta_t(i) = \max_{x_1...x_{t-1}} P(y_1 ... y_t, x_1 ... x_{t-1}, x_t = i)$
 - Represents the highest probability of a hidden variable sequence $x_1 \dots x_t$ ending with $x_t = i$
- Iteration: $\delta_t(i) = P(y_t | x_t = i) \max_j [\delta_{t-1}(j) A_{ji}]$
 - A_{ji} and $P(y_t|x_t=i)$ are independent of $y_1 \dots y_{t-1}, x_1 \dots x_{t-2}$
- Base: $\delta_1(i) = P(y_1, x_1 = i) = \pi_i P(y_1 | x_1 = i)$

Correctness of Viterbi

- Can be proved using induction
- $\delta_{t-1}(j) = \max_{x_1 \dots x_{t-2}} P(y_1 \dots y_{t-1}, x_1 \dots x_{t-2}, x_{t-1} = j)$

$$\begin{split} \bullet \ \delta_t(i) &= P(y_t|x_t=i) \max_j \left[\delta_{t-1}(j) A_{ji} \right] \\ &= P(y_t|x_t=i) \max_j \left[\max_{x_1 \dots x_{t-2}} P(y_1 \dots y_{t-1}, x_1 \dots x_{t-2}, x_{t-1}=j) \right] P(x_t=i|x_{t-1}=j) \\ &= P(y_t|x_t=i) \max_{x_1 \dots x_{t-1}} P(y_1 \dots y_{t-1}, x_1 \dots x_{t-2}, x_{t-1}, x_t=i) \\ &= \max_{x_1 \dots x_{t-1}} P(y_1 \dots y_t, x_1 \dots x_{t-2}, x_{t-1}, x_t=i) \end{split}$$

Learning an HMM

- Given $y_1 \dots y_T$, find the MLE of π , A, B
- Some notations (for simplicity):
 - $\mathbf{x} = \{x_1 \dots x_t\}$ $\mathbf{y} = \{y_1 \dots y_T\}$
 - x_{ti} : binary variable, 1 if $x_t = i$ and 0 otherwise
 - $P(x_{ti}) = P(x_t = i|\mathbf{y})$
 - $\eta(x_{t-1,j}x_{ti}) = P(x_{t-1} = j, x_t = i|\mathbf{y})$
- Using Baum-Welch algorithm (EM)

Q function

$$\max_{\mathbf{x},A,B} \mathbb{E}_{\mathbf{x}|\mathbf{y}} \log P(\mathbf{y},\mathbf{x})$$

$$\sum_{\mathbf{x}} P(\mathbf{x}|\mathbf{y}) \log P(\mathbf{y}, \mathbf{x}) = \sum_{\mathbf{x}} P(\mathbf{x}|\mathbf{y}) [\log P(x_1) + \sum_{t=2}^{T} P(x_t|x_{t-1}) + \sum_{t=1}^{T} P(y_t|x_t)]$$

$$= \sum_{x_1} P(x_1|\mathbf{y}) \log P(x_1) + \sum_{t=2}^{T} \sum_{x_{t-1}x_t} P(x_{t-1}x_t|\mathbf{y}) \log P(x_t|x_{t-1}) + \sum_{t=1}^{T} \sum_{x_t} P(x_t|\mathbf{y}) \log P(y_t|x_t)$$

$$= \sum_{k=1}^{d} \gamma(x_{1k}) \log \pi_k + \sum_{t=2}^{T} \sum_{j=1}^{d} \sum_{k=1}^{d} \eta(x_{t-1,j}x_{tk}) \log A_{jk} + \sum_{t=1}^{T} \sum_{k=1}^{d} \gamma(x_{tk}) \log P(y_t|x_t = k)$$

M-step

- $\sum_{k=1}^{d} \gamma(x_{1k}) \log \pi_{k} + \sum_{k=2}^{T} \sum_{i=1}^{d} \sum_{k=1}^{d} \eta(x_{t-1,j}x_{tk}) \log A_{jk} + \sum_{k=1}^{T} \sum_{k=1}^{d} \gamma(x_{tk}) \log P(y_{t}|x_{t} = k)$
- We can maximize Q regarding π , A, B separately
- Can be achieved using Lagrange multipliers

Maximize Q regarding π

- For $\mathbf{\pi} = \{\pi_1 \dots \pi_d\}$, we always have $\sum_{k=1}^d \pi_k = 1$
- We incorporate such constraint, and set the derivative as 0:

$$\frac{\partial}{\partial \pi_k} \left[\sum_{k=1}^d \gamma(x_{1k}) \log \pi_k + \varphi \left(\sum_{k=1}^d \pi_k - 1 \right) \right] = \frac{\gamma(x_{1k})}{\pi_k} + \varphi = 0$$

• In other words,
$$\gamma(x_{1k}) + \varphi \pi_k = 0$$
 holds for all k. Their sum is also 0

$$\sum_{k=1}^d \gamma(x_{1k}) + \varphi \sum_{k=1}^d \pi_k = \sum_{k=1}^d \gamma(x_{1k}) + \varphi = 0$$

• Take φ back to the derivative for each π_k , we obtain $\pi_k = \frac{\gamma(x_{1k})}{\sum_{i=1}^d \gamma(x_{1i})}$

Maximize Q regarding A, B

- Using similar technique, A and B can also be optimized
- $A_{jk} = \frac{\sum_{t=2}^{T} \eta(x_{t-1,j} x_{tk})}{\sum_{l=1}^{d} \sum_{t=2}^{T} \eta(x_{t-1,j} x_{tl})}$
- When y_t is <u>categorical</u>:
- $P(y_t|x_t = k) = \prod_{i=1}^K \mu_{ik}^{y_{ti}x_{tk}}$ where $\mu_{ik} = \frac{\sum_{t=1}^T \gamma(x_{tk})y_{ti}}{\sum_{t=1}^T \gamma(x_{tk})}$
- When y_t is <u>continuous</u>: $P(y_t|x_t = k) \sim \mathcal{N}(\mu_k, \Sigma_k)$
- $\bullet \ \mu_k = \frac{\sum_{t=1}^T \gamma(x_{tk}) y_t}{\sum_{t=1}^T \gamma(x_{tk})} \qquad \qquad \Sigma_k = \frac{\sum_{t=1}^T \gamma(x_{tk}) (y_t \mu_k) (y_t \mu_k)^T}{\sum_{t=1}^T \gamma(x_{tk})}$

E-step

- Compute $\gamma(x_{tk})$ and $\eta(x_{t-1,j}x_{tk})$ for all t,j,k
- Remember:
 - $\gamma(x_{tk}) = P(x_t = k|\mathbf{y})$
 - $\eta(x_{t-1,j}x_{tk}) = P(x_{t-1} = j, x_t = k|\mathbf{y})$

Similar to smoothing!

- $\gamma(x_{tk}) \propto P(x_t = k, \mathbf{y}) = \alpha_t(k) \beta_t(k)$
- $\eta(x_{t-1,j}x_{tk}) \propto P(x_{t-1} = j, x_t = k, \mathbf{y}) = \alpha_{t-1}(j)\beta_t(k)A_{jk}P(y_t|x_t = k)$

Applications

- Speech recognition
- Natural language processing

Part Of Speech Tagging

Bio-sequence analysis

APIs

- Python: hmmlearn (compatible with scikit-learn)
 - https://github.com/hmmlearn/hmmlearn (or pip install hmmlearn)
- Matlab (integrated)
 - https://www.mathworks.com/help/stats/hidden-markov-modelshmm.html
- C++: HTK3
 - http://htk.eng.cam.ac.uk/

