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Outline

= Introduction
= Time series
= Probabilistic graphical models

What is time series?

= A time series is a sequence of data instance listed in time order.
= In other words, data instances are totally ordered.
= Example: weather forecasting

—— S ——— i —— G —— i — R —
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= Notice: we care about the orderings rather than the exact time.
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Different kinds of time series

= Two properties:

= Time space: discrete or continuous  ?
= Task: classification or regression ?
Weather ':(b ':(b Y | Discrete & classification |

oo

Min/max temp 65° | 39° 47°|46° 85°|51° 81°|57° 72°|46° Discrete & regression

80°
Temperature . |
- TS o Continuous & regression
Prob of rain L ’\,\\/\-\/\A\
JBE\

50°
40° i .

Probabilistic graphical models (PGMs)

= A PGM uses a graph-based representation to represent the
conditional distributions over variables.

= Directed acyclic graphs (DAGS)

G050

Markov model is a sub-
family of PGMs on DAGs

= Undirected graph
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= Markov chains
= Intuition
= Inference
= Learning

Modeling time series
Assume a sequence of four weather observations: y;, y,, V3, Va4

® ® 0 0

= Possible dependences: y, depends on the previous weather(s)

Y1 )
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Modeling time series

In general observations: y,, y,, y3, V4 €an be

afotolom Nolololo

A lot of middle ground

Fully dependent: in between the two extremes Independent:
E.g.y, depends on all E.g. y, does not depend on
previous observations any previous observation

Modeling time series

= Are there intuitive and convenient dependency models?

QPP = o = QOO

Think of the last observation P(y,|y,y,y3) Totally drops time
What if we have T observations? information
Parameter #: exponential to # of observations
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Markov chains

= Markov assumption: Future predictions are independent of all
but the most recent observations

DR => > alelefolo

Fully dependent First order Markov chain Independent

Markov chains

= Markov assumption: Future predictions are independent of all
but the most recent observations

QREP = QPP *= 0OV

Fully dependent | Independent
Second order Markov chain
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A formal representation

= Using conditional probabilities to model y4, y,, ¥3, ya
= Fully dependent:
* P(y1y2y3¥4) = PP 2ly) P(y31y1y2) P(Valy1Y2¥3)
= Fully independent:
* P(y1Y2Y3Ya) = P(y)P(y2)P(y3)P (Vs)
= First-order Markov chain (recent 1 observation):
* P(y1Y2Y3¥4) = P(y1)P2ly1) P(3ly2) P (alys)
= Second-order Markov chain (recent 2 observations):
* P(y1y2y3¥a) = PP (2ly1) P(y3ly1¥2) P (Yaly2y3)

A more formal representation

= Generalizes to T observations

= First-order Markov chain (recent 1 observation):
* P(y1y2 - y1) = P(y1) H?:z Pelye-1)

= Second-order Markov chain (recent 2 observations):

* P1y2 - y7r) = PrOP(2ly1) H?:s P(yelye-1Ye-2)
= k-th order Markov chain (recent k observations):

* P(y1y2 -.y7) = PO)P2ly1) . Pkl Y1 - Vi—1) H?=k+1 Pelye—i - Yi-1)
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Stationarity

= Do all states yield to the identical conditional distribution?

* Py = jlyt-1 = 1) = P(Ye—1 = jlye—p = 0) forall t, i,

= Typically holds 2
11

= A transition table A to represent conditional distribution
“Ajj =P =jlyiy =D forallt =1.2,..,T
= d: dimention of y,

Ags

= A vector m to represent the initial distribution
m; =P(y; =i foralli=12,..,d

Inference on a Markov chain

= Probability of a given sequence
“P(y; =iy, e,y =lig) = Ty, H?:z Ay,

= Probability of a given state
= Forward iteration: P(y, = it) = X, P(Ve-1 = it-1)Aii,_,
= Can be calculated iteratively

= Both inferences are efficient

" Pk = igy o,y = i1) = Pk = i) Timirr Aii,_,
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Learning a Markov chain

= MLE of conditional probabilities can be estimated directly.

_ N _ POe=jye—1=t) _ Nij
=i)= 1= =

P(yt-1=0) X Nij
= N;j: # of observations that yields y, = j,y,_4 = i

= A = P(ye = jlye—

= Bayesian parameter estimation
= Prior: Dir (64,65, ...)
= Posterior: Dir(6; + Nj;, 60, + Nip, ...)

. AMAP _ Nij+9j_1 AEV N Nij+9j
H X;(Nij+6;-1) U Zi(Ni+6))

A toy example — weather forecast

= State 1: rainy  state 2: cloudy state 3: sunny

= Given “sun-sun-sun-rain-rain-sun-cloud-sun”, find Az
) A%LE - 21\113v3 - 1+i+2
j N3
= Prior: Dir(2,2,2)
= Posterior: Dir(2 + 1,2 + 1,2 + 2)
« AMAP _ N33+63-1 3 Agé/ _ N33+63 4

3.7 3i(Ny+6-1) 7

B Zj(N3j+9j) T 10
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A toy example — weather forecast

04 03 0.3
0.2 0.6 0.2],day1issunny
0.1 0.1 0.8

= Find the probability that day 2~8 will be
“sun-sun-rain-rain-sun-cloud-sun”

= Given A =

* P(y1y2 .. ¥8) = P(y1 = s)P(y, =sly; = s)
P(ys =sly, =s)P(ys =7rly; = s)P(ys = 7"|3’4 =)
P(ys = slys =r)P(y; = clys = s)P(yg = sly; = ¢)
=1-A33-Az3 Az A11 A3 Az - Az
=1-08-08:0.1-04-03-0.1-0.2=1.536x10"*

A toy example — weather forecast

04 03 0.3
0.2 0.6 0.2],day 1issunny
0.1 01 0.8

= Find the probability that day 3 will be sunny
* P(y, =5)=2;P(y;=1)P(y, =sly; =i)=0:-03+0:-02+1-0.8=0.8
= Similarly, P(y, =7) = %;P(y1 =D)P(y, =rly; =) =0:044+0:-02+1:01=0.1
Py, =c)=2;Pyy =0)P(y, =cly; =1)=0-03+0-06+1-0.1=0.1

“P(ys=5) =Y, P(y, = )P(ys =sly, =) =0.1-0.3+0.1-0.2 + 0.8 - 0.8 = 0.69

= Given A =

10
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Limitation of Markov chain

= Each state is represented by one variable

= What if each state consists of multiple variables?

Outline

= Dynamic belief networks
= Intuition
= Inference
= Learning

11
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Modeling multiple variables

= What if each state consists of multiple variables?

= e.¢g. monitoring a robot
= Location, GPS, Speed

LGS,

= Modeling all variables in each state jointly

= |s this a good solution?

Modeling multiple variables
LGS,

= Each variable only depends on some of the previous or current
observations

= Factorization

12
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Dynamic belief networks

= Also named as dynamic Bayesian networks

X; = {S;, L;}: transition states @ Q

Only dependent on previous

observations
P(X¢1X¢-1) = {P(StlSt-1), P(LelSe-1Le-1)3: @ Q Y, = {G,}: emission states / evidences

transition model Only dependent on current
@ @ observations

P(Y|Xy) = {P(G¢|Ly)}: emission model /
sensor model

Inference on a dynamic BN

= Filtering: giveny; ¢, find P(X¢|y; +)

= Exact inference
= using Bayesian rule and the structure of dynamic BN

) P(X¢lyy..e) Can be inferred iteratively
o P(X;yely1..e-1)
= P(ye|X¢y1.e-1)PXelys..e-1) Structure of dynamic BN

= P(Y¢|X ¢ i ) Z P(X¢|Xp— 1 Yo )P (X1 Y1 e—1)

Emission model Xt-1 Transition model

13
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Approximate inference on a dynamic BN

= |s exact inference useful?

* P(X¢lyy..e) = P(y:IXe) th_lP(thxt—l)P(Xt—l|Y1...t—1)
= Needs to enumerate x,_,, exponential to # of transition variables

= Use approximate inference instead

= Particle filtering

Particle filtering — a toy example

"X = {Se, Le}, Y = {G} @ Q
= S;, L; only contains 2 outcomes (L)— L)
= S; = {fast, slow} Ly = {left, right} @ @

= N = 10: # of samples in each iteration

= tth iteration = time state ¢t

14
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Particle filtering — a toy example

= Step 1: samples a; ...ay from prior P(X;_1|V1_t-1)
= When t = 1, samples from P(X,)

= Step 2: update a;<samples from P(X;|X;_; = a;) for all i
= a; randomly transits based on transition model

v 1 2 v 2 3
2 3 | 4 < 2 | 3
Location Location

Particle filtering — a toy example

= Step 3: giveny; and a;, define w; = P(y;|X; = a;)

= In step 1 of next iteration, we sample from a; ...ay where the
weight of a; is w;
= Should be the same as sampling from P(X;|y1_¢)

= |s this true?

_cé) 1 2 _g) 2 3 %) 2*0.3 | 3*0.6
(9] [¢°] [¢°]
3 ‘ 3 ‘ 3
3 4 2 3 2%05  3*0.1
Location Location Location

15
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Correctness of particle filtering

= Can be proved using induction

= Let N(X;—1|y: ¢—1) denotes population of x;_, giveny; ;4

- After step 1; Tt = p(x, Ly o)

= After step 2, we have population of x;:
* N(X¢ly1.t-1) = th-1 P(X¢|Xe—1) N(Xe-1y1..e-1)

Correctness of particle filtering

= After step 3, population of x; is weighted by P(y;|x;)

* P(yelx )N (Xelys . e-1)
= P(y:|x¢) z P(x¢lxe— 1) N(Xe—qlys.¢-1)

Xt—1

= NP(elx) ) P(Rel%e1) P(Realya o)

Xt—1
= NP(ye|xe)P(X¢lys.¢-1)
= NP(yeX¢ly1.t-1) % P(X¢lys..t)

16
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Learning a dynamic BN

= Given the structure of the dynamic BN...

= Learning transition models and emission models is same as in Markov
chain

= How to learn the structure?
= For P(X;|X;-1), take each Xgi) € X; as label and X;_, as features

= For P(Y|X;), take each Yt(i) € Y; as label and X, as features

= Converts to feature reduction

Limitation
= Current assumption: all states are observable, which is unrealistic

= The actual location L of the robot may never be observed

= What if some variables are hidden?

17
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Outline

= Hidden Markov models (HMMs)
= Intuition
= Inference
= Learning
= Applications & APIs

Hidden variables

= Some variables in the dynamic BN can be hidden

= Transistion variables can be hidden

= HMM: think of only one transition & one emission variable

18
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Hidden Markov models (HMMs)

Ca)—C)
= Qverview @ @

= Asequence of length T
= Evidence / emission variable: {y,} is categorical or continuous
= Hidden variable: {x,} is categorical

*P(y1 ..y1, X1 o X7) = P(x1) HZ:Z P(x¢|xe—1) HI:1 P(y¢lxt)

Transition table

= Let d as the dimention of x;

= Transition table A is a d*d matrix A=

" A = P(xe = jlxe—q = 1)
= Clearly, 9., A;; = 1 forall i

19
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Emission function

= When y; is categorical, let K as the dimension of y;

= Emission function B can be represented as a d*K matrix

Bll BlK
B=1: e :

Bg1 ++ Bax
" Bjj = Py = jlxe = 10)
= Clearly, Z;‘:lBij =1 foralli

Emission function
= When y; is continuous, p(y;|x;) is a PDF
= Emission function B is the set of parameters of d different PDFs
= When p(y;|x;) is Gaussian
*B = {Ml - Ug, 21 Zd}

20
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Inference on an HMM

= Given the HMM, what can we do?

= Given an observation sequence, find its probability
= Filtering: find the distribution of the last hidden variable

= Smoothing: find the distribution of the a hidden variable in the middle

= Given an observation sequence, find the most likely (ML)
hidden variable sequence

Probability of an observed sequence

*P(y1 ..yr) = Z?=1P(J’1 Y Xy = 1)

* Let

’s expand one step more:

- P()’é Y, Xy = 1) = Zj‘i:1 P(yy ..ypXr = L,xr_1 = J)

J

= ZP()H wY7—1,X7—1 = J) P(xr = ilxg_1 = j)P(yrlxr = 1)
=1

= Can be calculated iteratively

21
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Forward algorithm

“Leta, (D) = P(yy Yo, % = D)

= |teration:
d

a.(i) = z ai—1(j) Ajip()’t|xt = 1)

=1
= Base: a, (i) = P(yy,x; = 1) = mP(y,lx; = i)
= Output: Y%, ar(i)

Forward algorithm

. d . .
“a, (i) = Zj:l a;_1(J) AjiPelxe = )

*ar1(J) = P(y1 - Yeo1, Xe-1 = J)

= | integrating x;
“ar1(DAji = P(V1 oo Vo1, X1 = Jo X = 1)

= U integrating y;
- at—l(/)AjiP(ytlxt =1) =P(y1 . Ver Xpm1 = JuXe = 1)

= U sum x;_; out
"o (i) = 2?21 a1 (DA;iPYelxe = ) = P(yy . Y, Xe = 1)

)

22



2020F2H25H

Backward algorithm

= |terates reversely
" Let Be(D) = P(Yeyq - Yrlxe = 0)
= |teration:

d
B (i) = Zﬁtﬂ(i) AijP(J’t+1|xt+1 = 1)
j=1

= Base: Br(i) =1
= Output: ?:1 i P(yylx; = D)1 (D)

Filtering and smoothing

= Filtering: find P(x; = i|yy ... Y1)
*P(xp = ily; .. y7) X P(yq oy, xp = 1) = (1)
= Directly applies forward algorithm

= Smoothing: find P(x; = i|y; ...yr) wheret < T

*P(xy = ily; ..y7) X P_()’1 Y7 Xp = 1) | | '
=Py Y6, Xe = DPYeyq - Yrlxe = 1) = a (D) (0)

= Using both forward and backward algorithm

23
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Viterbi algorithm

= Find argmax P(x; ... X7|y1 - V1)

X1 XT
= argmax P(xq ...x7|y; ... yr) =argmax P(yy ...y, X1 ... XT)
X1..XT X1 XT

= Let 6, (i) = xm?z(_lp(h e Vs Xq e Xp—1, Xp = 1)

. Represents,the highest probability of a hidden variable sequence x; ... x, ending
with x; =i

= Iteration:  §,(i) = P(y¢|x = 0) max[(St_l(j)Aji]
J
= Aj; and P(y.|x, = i) are independent of y; ... y;_1, X1 ... X¢—
= Base: 51(1) = P()’p X1 = l) = TEiP(y1|x1 = l)

Correctness of Viterbi

= Can be proved using induction

= 8r1() = xfl.?f_z P(Y1 Y1, X1 o Xpm2, Xemq = J)

= 8:(1) = P(yelxe = 1) m]aX[5t—1(]')Aji]
= P(y¢lxe = 1) m]s?lx[xlr.f_l_f}f_z PY1 . Yi—1,X1 o X2, Xp1 = J) P(xe = i]xe_q = f)]
=P(yYe|xs = i) max P(Yq..Vi_1,X1 e Xp—2 Xp1, X = 1)
X1 Xt—1

= max P(Yl W Yer X1 e X2, Xe—1, X = l)
X1 Xt—1

24
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Learning an HMM

= Given y; ... yr, find the MLE of m, 4, B

= Some notations (for simplicity):
"X = {x1 ..} y={1..yr}
= X¢; . binary variable, 1 if x, = i and 0 otherwise
=y (xei) = P(x = ily)
- n(xt—l,jxti) = P(x¢—1 = j, % = 1]y)
= Using Baum-Welch algorithm (EM)

Q function

max IEX|y logP (y, x)
* Xx P(x|y)logP(y, x) = ZXP(X|Y)[10gP(x1) + Y toa Pxelxe—1) +Z —1 P(yelxe)]

ZP(xlly) logP (x,) +Z D PGreaxely) logPacle—) +22P(xt|y) logP(ye )

t= th 1Xt t=1 x¢
1 d T d
z ¥ (x1x) logmy, + z Z z (e, j%ex ) logAjx + z z ¥ (xer) logP (vl x; = k)
t=2 j=1k=1 t=1k=1

25
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d
Z ¥ (x1x) logmy, +
k=1

M-step

N~

d d T d
z z U(xt—1,jxtk) 1OgAjk + Z Z ¥ (xex) logP (yelx;
k=1

t=2 j=1k=1 t=1

Il
N

= We can maximize Q regarding m, A, B separately

= Can be achieved using Lagrange multipliers

= k)

Maximize Q regarding m
= Form = {m; ...m4}, we always have Y¢_, m, = 1
= We incorporate such constraint, and set the derivative as 0:

a d d ( )

X
a—[Zr(xlk)IOgﬂkﬂp an_]- ‘=y =0
Ty =t Ty

k=1

= In other words, y(x1x) + @m; = 0 holds for all k. Their sum is also 0

d d d
ZV(xlk) +§0an = Zy(xlk) +¢9=0
k=1 k=1 k=1

¥ (x1k)

= Take ¢ back to the derivative for each m;, we obtain ), = -5———
Xj=17(x1))

26
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Maximize Q regarding A, B

= Using similar technique, A and B can also be optimized

- A = Z’zl;zzn(xt—l,jxtk)
Jk Zf=12?=zn(xt—1,jxtl)

= When y, is categorical:

X vy

* P(yelxe = k) = {(=1 Hije” etk where piy = e v (cex)

= When y, is continuous: P(y;|x; = k)~N (i, Zi)

. Btz Yy 5 = 2= YO Ot ="
M = 3T v k Ty v Ceek)
E-step
= Compute y (xy) and n(x._q ;2 ) for all t,jk
= Remember:
=y (xer) = P(xe = kly)
= (1, jXek) = P(xe—1 = j, % = k|y) Similar to smoothing!

=y (xex) X P(xe = k,y) = a.(k)B:(k)
- n(xt—l,jxtk) X P(xe—1 =j, % =k, y) = at—1(/).3t(k)AjkP(3’t|xt = k)

27



2020F2H25H

Applications

= Speech recognition

= Natural language processing

i T T D T

Part Of Speech Tagging
= Bio-sequence analysis

APls

= Python: hmmlearn (compatible with scikit-learn)
= https://github.com/hmmlearn/hmmlearn (or pip install hmmlearn)
= Matlab (integrated)

= https://www.mathworks.com/help/stats/hidden-markov-models-
hmm.html

* C++: HTKS3
= http://htk.eng.cam.ac.uk/

28
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Thank You!

Markov models
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