
2/20/2020

1

CS 3750: Word Models
PRESENTED BY: MUHENG YAN

UNIVERSITY OF PITTSBURGH

FEB.20, 2020

Is Document Models Enough?

•Recap: previously we have LDA and LSI to learn
document representations

•What if we have very short documents, or even
sentences? (e.g. Tweets)

• Can we investigate relationships between
words/sentences with previous models?

• We need to model words individually for a better
granularity

2/20/2020

2

Distributional Semantics: from a
Linguistic Aspect
Word Embedding, Distributed Representations, Semantic Vector Space... What
are they?

A more formal term from linguistic: Distributional Semantic Model

"… quantifying and categorizing semantic similarities between linguistic items
based on their distributional properties in large samples of language data." --
Wikipedia

--> Represent elements of language (word here) as distributions of other
elements (i.e. documents, paragraphs, sentences, and words)

E.g. word 1 = doc 1 + doc 5 + doc 10 / word 1 = 0.5*word 12 + 0.7*word 24

Document Level Representation
Words as distributions of documents:

Latent Semantic Analysis/Indexing (LSA/LSI)
1.Build a co-occurrence matrix of word vs. doc (n by d)

2.Decompose the Word-Document matrix via SVD

3.Take the highest singular values to get the lower-ranked approximation of
the w-d matrix, as the word representations

Picture Credit: https://en.wikipedia.org/wiki/Latent_semantic_analysis

2/20/2020

3

Word Level Representation
I. Counting and Matrix Factorization

II. Latent Representation
I.Neural Network for Language Models

II.CBOW

III.Skip-gram

IV.Other Models

III.Graph-based Models
I.Node2Vec

Counting and Matrix Factorization
• Counting methods start with constructing a matrix of co-
occurrences between words and words (can be expanded to other
levels, e.g. at document level it becomes LSA)

• Due to the high-dimensionality and sparcity, usually used with a
dim-reduction algorithm (PCA, SVD, etc.)

• The rows of the matrix approximates the distribution of co-
occurring words for every word we are trying to model

Example Models including: LSA, Explicit Semantic Analysis (ESA), Global vectors for word
representation (GloVe)

2/20/2020

4

Explicit Semantic Analysis
• Similar words most likely appear with the same

distribution of topics

• ESA represents topics by Wikipedia concepts (Pages).
ESA use Wikipedia concepts as dimensions to
construct the space in which words will be projected

• For each dimension (concept), words in this concept
article are counted

• Inverted index is then constructed to convert each
word into a vector of concepts

• The vector constructed for each word represents the
frequency of its occurrences within each (concept).

Picture and Content Credit: Ahmed Magooda

Global vectors for word representation
(GloVe)

1. Word-word co-occurrence with sliding
window (|V| by |V|) (and normalize as
probability)

2. Construct the cost as:

𝑱 =෍

𝒊,𝒋

|𝑽|

𝒇 𝑿𝒊,𝒋 𝒗𝑖
𝑇𝒗𝑗 + 𝒃𝑖 + 𝒃𝑗 − log 𝑿𝑖,𝑗

𝟐

3. Use gradient descent to solve the
optimization

“I learn machine learning in CS-3750”

Window=2 I learn machine learning

I 0 1 1 0

Learn 1 0 1 1

machine 1 1 0 2

2/20/2020

5

GloVe Cont.
How the cost is derived?

Probability of word i and k appear together: 𝑃𝑖,𝑘 =
𝑋𝑖𝑘

𝑋𝑖

Using word k as a probe, the “ratio” of two word pairs: 𝑟𝑎𝑡𝑖𝑜𝑖,𝑗,𝑘 =
𝑃𝑖𝑘

𝑃𝑗𝑘

To model the ratio with embedding v: 𝐽 = σ 𝑟𝑎𝑡𝑖𝑜𝑖𝑗𝑘 − 𝑔 𝑣𝑖 , 𝑣𝑗 , 𝑣𝑘
2

-> O(N^3)

Simplify the computation by design 𝑔 ∙ = 𝑒 𝑣𝑖−𝑣𝑗
𝑇
𝑣𝑘

Thus we are trying to make
𝑃𝑖𝑘

𝑃𝑗𝑘
=

𝑒^(𝑣𝑖
𝑇𝑣𝑘)

𝑒^(𝑣𝑗
𝑇𝑣𝑘)

Thus we have 𝐽 = σ log𝑃𝑖𝑗 − 𝑣𝑖
𝑇𝑣𝑗

2

To expand the object log𝑃𝑖𝑗 = 𝑣𝑖
𝑇𝑣𝑗, we have log 𝑋𝑖𝑗 − log 𝑋𝑖 = 𝑣𝑖

𝑇𝑣𝑗, then
log 𝑋𝑖𝑗 = 𝑣𝑖

𝑇𝑣𝑗 + 𝑏𝑖 + 𝑏𝑗. By doing this, we solve the problem that 𝑃𝑖𝑗 ≠ 𝑃𝑗𝑖but 𝑣𝑗
𝑇𝑣𝑖

Then we come up with the final cost function 𝐽 = σ𝒊,𝒋
|𝑽|
𝒇 𝑿𝒊,𝒋 𝒗𝑖

𝑇𝒗𝑗 + 𝒃𝑖 + 𝒃𝑗 − log 𝑿𝑖,𝑗
𝟐

, where 𝑓(∙) is a weight
function

Value of ratio J and k related J and k not related

I and k related 1 Inf

I and k not related 0 1

Latent Representation
Modeling the distribution of context* for a certain words
through a series of latent variables, by maximizing the
likelihood P(word | context)*

Usually fulfilled by neural networks

The learned latent variables are used as the
representations of words after optimization

* context refers to the other words from the distribution of which we model the target word
* in some models it could be P(context | word), e.g. Skip-gram

2/20/2020

6

Neural Network for Language Model
Learning Objective (predicting next word 𝒘𝒋):

Find the parameter set 𝜃 to minimize

𝐿 𝜃 = −
1

𝑇
σ𝑗 log(𝑃(𝑤𝑗|𝑤𝑗−1, … , 𝑤𝑗−𝑛+1)) + 𝑅(𝜃)

Where 𝑃 ∙ =
𝑒𝑦𝑤𝑖

σ𝑖≠𝑗 𝑒
𝑦𝑤𝑗

, Y = b + 𝑾𝑜𝑢𝑡tanh(d + 𝑾𝑖𝑛X),

And X is the lookup results of the n-length sequence:

X = [𝐶 𝑤𝑗−1 , … , 𝑐(𝑤𝑗−𝑛+1)]

* (𝑾𝑜𝑢𝑡, b) is the parameter set of output layer, (𝑾𝑖𝑛, d) is the
parameter set of hidden layer

In this mode we learn the parameters in C (|V| * |N|), 𝑾𝑖𝑛 (n * |V|
* hidden_size), and 𝑾𝑜𝑢𝑡 (hidden_size * |V|)

Content Credit: Ahmed Magooda

RNN for Language Model
Learning Objective: similar to NN for LM

Alter from NN:
◦ The hidden layer is now the linear combination of the input

current word t and the hidden of previous word t-1:

𝑠 𝑡 = 𝑓(𝑼𝑤 𝑡 +𝑾𝑠 𝑡 − 1)

Where 𝑓(∙) is the activation function

Content Credit: Ahmed Magooda

2/20/2020

7

Continuous Bag-of-Words Model

Picture Credit: Francois Chaubard, Rohit Mundra, Richard Socher, from https://cs224d.stanford.edu/lecture_notes/notes1.pdf

Learning Objective: maximizing the likelihood of 𝑃(𝑤𝑜𝑟𝑑|𝑐𝑜𝑛𝑡𝑒𝑥𝑡) for
every word in a corpus

Similar to NN for LM, the inputs are one-hot vectors and the matrix 𝑾
here is like the look-up matrix.

Differences compared to the NN for LM:
◦ Bi-directional: not predicting the “next”, instead predicting the center word

inside a window, where words from both directions are input

◦ Significantly reduced complexity: only learns 2 * |V| * |N| parameters

CBOW Cont.
Steps breakdown:

1. Generate the one-hot vectors for the context:
(𝒙𝑐−𝑚, … , 𝒙𝑐−1, 𝒙𝑐+1, … , 𝒙𝑐+𝑚 𝜖 𝑹 𝑉), and lookup for the word
vectors 𝒗𝑖 = 𝑾𝒙𝑖

2. Average the vectors over contexts: 𝒉𝑐 =
𝒗𝑐−𝑚+…+𝒗𝑐+𝑚

2𝑚

3. Generate the posterior 𝒛𝑐 = 𝑾′𝒉𝑐, and turn it in to
probabilities ෝ𝒚𝑐 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝒛𝑐)

4. Calculate the loss as cross-entropy:σ𝑖=1
|𝑉|

𝑦𝑖log(ො𝑦𝑖)
 𝑃(𝑤𝑐|𝑤𝑐−𝑚, …𝑤𝑐+𝑚)

Notations:
m: half window size
c: center word index

𝑤𝑖: word i from vocabulary V
𝒙𝑖: one-hot input of word i

𝑾𝜖 𝑹 𝑉 × 𝑛: the context lookup matrix

𝑾′𝜖 𝑹𝑛 × 𝑉 : the center lookup matrix

https://cs224d.stanford.edu/lecture_notes/notes1.pdf

2/20/2020

8

CBOW Cont.
Loss fuction:

𝐹𝑜𝑟 𝑎𝑙𝑙 𝑤𝑐 ∈ 𝑉 ,𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝐽 ∙ = 𝑙𝑜𝑔𝑃 𝑤𝑐 𝑤𝑐−𝑚, …𝑤𝑐+𝑚

⇒ −
1

|𝑉|
෍𝑙𝑜𝑔𝑃 𝑾𝑐 𝒉𝑐

= −
1

𝑉
෍𝑙𝑜𝑔

𝑒𝒘𝑐
′𝑇 𝒉𝑐

σ
𝑗=1
𝑉

𝑒𝒘𝑗
′𝑻𝒉𝑐

= −
1

𝑉
෍−𝒘𝑐

′𝑇𝒉𝑐 + log(෍

𝑗=1

𝑉

𝑒𝒘𝑗
′𝑻𝒉𝑐)

Optimization: use SGD to update all relevant vectors 𝒘𝑐
′ 𝑎𝑛𝑑 𝒘

Skip-gram Model

Picture Credit: Francois Chaubard, Rohit Mundra, Richard Socher, from https://cs224d.stanford.edu/lecture_notes/notes1.pdf

Learning Objective: maximizing the likelihood of 𝑃(𝑐𝑜𝑛𝑡𝑒𝑥𝑡|𝑤𝑜𝑟𝑑) for
every word in a corpus

Steps Breakdown:

1. Generate one-hot vector for the center word 𝒙 𝜖 𝑹 𝑉 , and calculate the
embedded vector 𝒉𝑐 = 𝑾𝒙 𝜖 𝑹𝑛

2. Calculate the posterior 𝒛𝑐 = 𝑾′𝒉𝑐
3. For each word j in the context of the center word, calculate the

probabilities ෝ𝒚𝑐 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝒛𝑐)

4. We want the probabilities ො𝑦𝑐𝑗 in ෝ𝒚𝑐 match the true probabilities of the
contexts which are 𝑦𝑐−𝑚, … , 𝑦𝑐+𝑚

Cost function constructed similarly to the CBOW model

https://cs224d.stanford.edu/lecture_notes/notes1.pdf

2/20/2020

9

Skip-gram Cont.
Cost Function:

𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑐𝑒𝑛𝑡𝑒𝑟 𝑤𝑜𝑟𝑑 𝑤𝑐 𝑖𝑛 𝑉 ,𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒:
𝐽 ∙ = −𝑙𝑜𝑔𝑃 𝑤𝑐−𝑚, …𝑤𝑐+𝑚 𝑤𝑐

= −𝑙𝑜𝑔ෑ
𝑗=0,𝑗≠𝑚

2𝑚

𝑃 𝑤𝑐−𝑚+𝑗 𝑤𝑐

= −𝑙𝑜𝑔ෑ𝑃 𝒘𝑐−𝑚+𝑗
′ 𝒉𝑐

= − logෑ
𝑒𝒘𝑐

′𝑇 𝒉𝑐

σ
𝑗=1
𝑉

𝑒𝒘𝑗
′𝑻𝒉𝑐

Skip-gram with Negative Sampling
An alternative way of learning skip-gram:

From the previous learning method, we have looped heavily on negative samples when
summing over |V|

Alternatively, we can reform the learning objective in order to enabling “negative sampling”,
where we only take a few negative samples in each epoch

Alternative Objective: maximize the likelihood of P(D=1|w, c) if the word pair (w, c) is from the
data, and minimize the likelihood of P(D=0|w, c) if (w, c) is not from the data

2/20/2020

10

Skip-gram with Negative Sampling
We model the probability as:

𝑃 𝐷 = 1 𝑤, 𝑐, 𝜃 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝒉𝑐
𝑇 𝒉𝑤 =

𝟏

𝟏+𝒆−𝒉𝑐
𝑇 𝒉𝑤

And the optimization of the loss would be:
𝜃 = argmax

𝜃
ς 𝑤,𝑐 ∈𝐷𝑎𝑡𝑎𝑃 𝐷 = 1 𝑤, 𝑐, 𝜃 ς 𝑤,𝑐 ∉𝐷𝑎𝑡𝑎𝑃 𝐷 = 0 𝑤, 𝑐, 𝜃

= argmax
𝜃

ς 𝑤,𝑐 ∈𝐷𝑎𝑡𝑎𝑃 𝐷 = 1 𝑤, 𝑐, 𝜃 ς 𝑤,𝑐 ∉𝐷𝑎𝑡𝑎(1 − 𝑃 𝐷 = 1 𝑤, 𝑐, 𝜃)

= argmax
𝜃

σ log
1

𝟏+𝒆−𝒉𝑐
𝑇 𝒉𝑤

σ log(1 −
1

𝟏+𝒆−𝒉𝑐
𝑇 𝒉𝑤

)

= argmax
𝜃

σ log
1

𝟏+𝒆−𝒉𝑐
𝑇 𝒉𝑤

σ log
1

𝟏+𝒆𝒉𝑐
𝑇 𝒉𝑤

Hierarchical Softmax and FastText
Hierarchical Softmax:

An alternative way to solve the dimensionality problem when
softmaxing through y:

1. Build a Binary Tree of words in V, each non-leaf nodes are
associated with a pseudo-output to learn.

2. Define the loss for word c as the path to the word from root

3. The probability of 𝑃(𝑤𝑐|𝑐𝑜𝑛𝑡𝑒𝑥𝑡) now becomes

ς𝑗=1
𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑝𝑎𝑡ℎ

𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑛 𝑤, 𝑗 + 1 𝑖𝑠 𝑡ℎ𝑒 𝑐ℎ𝑖𝑙𝑑𝑒𝑟𝑛 ∙ 𝒉 𝑤,𝑗
𝑇 𝒉𝑐)

FastText: Sub-word n-grams + Hierarchical Softmax
“apple” and “apples” are referring to the same semantic, yet word model ignores such sub-word features.

FastText model introduces sub-word n-gram inputs, while having a similar architecture as skip-gram models. This
expands the dimension of 𝒚 to a even larger number. Thus it adopts the Hierarchical Softmax to speed up the
computation

2/20/2020

11

Graph-based Models
WordNet:
A large lexical database of words. Words are
grouped into set of synonyms (synsets), each
expressing a distinct concept

Provides Word senses, Part of Speech, semantic
relationships between words

From which we can construct a real “net” of words
where words are nodes and word relationships
defined by synsets as edges

Content Credit: Ahmed Magooda

Node2Vec
A model to learn representations
of nodes:
Applied to any graphs including word nets

Turns graph topology into sequences with the random walk algorithm:

Start from a random node v, the probability of travel to another node is:

𝑃 𝑥 𝑣 = ൝
𝜋𝑣𝑥

𝑍
𝑖𝑓 𝑣, 𝑥 ∈ 𝐸

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

The transition probability is defined as:

𝜋𝑣𝑥 =

1

𝑝
𝑖𝑓 𝑥 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑛𝑜𝑑𝑒 𝑡

1 𝑖𝑓 𝑥 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝑜𝑓 𝑡
1

𝑞
𝑖𝑓 𝑥 𝑖𝑠 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝑜𝑓 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝑜𝑓 𝑡

p and q controls the strategy of breath-first search or depth-first search

With the sequence generated, we can embed nodes as we did in language models

2/20/2020

12

Evaluation of Word Representations
• Intrinsic Evaluation:
•How good are the representations?

•Extrinsic Evaluation:
•How effective are the learned representations in other
downstream tasks?

Content Credit: Ahmed Magooda

Intrinsic Evaluations
Word Similarity Task

◦ Calculate the similarity of word pairs from the learned vectors through a various distance metrics (e.g.
euclidean, cosine, etc.)

◦ Compare the calculated word similarities with human-annotated similarities

◦ Example test set: word-sim 353 (http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/)

Analogy Task:
◦ Proposed by Mikolov et.al (2013)

◦ For a specific word relation, given a, b, y; find x so
that "a is to b as x is to y"
◦ "man is to king as woman is to queen"

"Analogy task" Content Credit: Ahmed Magooda

http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/

2/20/2020

13

Extrinsic Evaluations
Learned word representations can be taken as inputs
to encode texts in downstream NLP tasks, including:
◦Sentiment Analysis, POS tagging, QA, Machine
Translation...

◦GLUE benchmark: a collection of dataset including 9
sentence language understanding tasks
(https://gluebenchmark.com/)

Summary
What we have covered:

- "words as distributions"

- evaluations of the word representations

Document-level Word-level

Count & Decomposition - LSA - GloVe

Latent Vector
Representation

- NN for LM
- CBOW, Skip-gram, FastText

- Node2Vec

https://gluebenchmark.com/

2/20/2020

14

Software at Fingertips
LSA : manual through sklearn or Gensim

CBOW, Skip-gram: Gensim

Neural-networks: Torch, Tensorflow

Pre-trained word representations:
◦Word2vec: (https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit)

◦Glove: (https://nlp.stanford.edu/projects/glove/)

◦Fasttext: (https://fasttext.cc/)

References
Word2Vec:

• Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space.

• Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed representations of words and phrases and their compositionality.

• Mikolov, T., Yih, W. T., & Zweig, G. (2013, June). Linguistic Regularities in Continuous Space Word Representations.

• Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2017). Enriching word vectors with subword information. Transactions of the Association for Computational Linguistics, 5, 135-146.

Counting:

• Pennington, J., Socher, R., & Manning, C. D. (2014, October). Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing
(EMNLP) (pp. 1532-1543).

• Gabrilovich, E., & Markovitch, S. (2007, January). Computing semantic relatedness using wikipedia-based explicit semantic analysis.

• Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., & Harshman, R. (1990). Indexing by latent semantic analysis.

NN for LM:

• Mikolov, T., Kopecky, J., Burget, L., & Glembek, O. (2009, April). Neural network based language models for highly inflective languages.

• Mikolov, T., Karafiát, M., Burget, L., Černocký, J., & Khudanpur, S. (2010). Recurrent neural network based language model.

Graph-based:

• Princeton University "About WordNet." WordNet. Princeton University. 2010. http://wordnet.princeton.edu

• Grover, A., & Leskovec, J. (2016, August). node2vec: Scalable feature learning for networks. In Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data
mining (pp. 855-864).

https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit
https://nlp.stanford.edu/projects/glove/
https://fasttext.cc/
http://wordnet.princeton.edu/

