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Topic Models: Visual Representation

Topics Documents
Topic proportions and 

assignments

3

Topic Models: Importance

• For a given corpus, we learn two things:
1. Topic: from full vocabulary set, we learn important subsets

2. Topic proportion: we learn what each document is about

• This can be viewed as a form of dimensionality reduction
• From large vocabulary set, extract basis vectors (topics)

• Represent document in topic space (topic proportions)

• Dimensionality is reduced from 𝑤𝑖 ∈ ℤ𝑉
𝑁 to 𝜃 ∈ ℝ𝐾

• Topic proportion is useful for several applications including document 
classification, discovery of semantic structures, sentiment analysis, 
object localization in images, etc.
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Topic Models: Terminology

• Document Model
• Word: element in a vocabulary set
• Document: collection of words
• Corpus: collection of documents

• Topic Model
• Topic: collection of words (subset of vocabulary)
• Document is represented by (latent) mixture of topics

• 𝑝 𝑤 𝑑 = 𝑝 𝑤 𝑧 𝑝(𝑧|𝑑) (𝑧 : topic)

• Note: document is a collection of words (not a sequence)
• ‘Bag of words’ assumption
• In probability, we call this the exchangeability assumption

• 𝑝 𝑤1, … , 𝑤𝑁 = 𝑝(𝑤𝜎 1 , … , 𝑤𝜎 𝑁 ) (𝜎: permutation)

5

Topic Models: Terminology (cont’d)

• Represent each document as a vector space

• A word is an item from a vocabulary indexed by {1,… , 𝑉}. We 
represent words using unit‐basis vectors. The 𝑣𝑡ℎ word is represented 
by a 𝑉 vector 𝑤 such that 𝑤𝑣 = 1 and 𝑤𝑢 = 0 for 𝑣 ≠ 𝑢.

• A document is a sequence of 𝑛 words denoted by w = (𝑤1, 𝑤2, …𝑤𝑛)
where 𝑤𝑛 is the nth word in the sequence.

• A corpus is a collection of 𝑀 documents denoted by 
𝐷 = 𝑤1, 𝑤2, …𝑤𝑚 .
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Probabilistic Latent Semantic 
Analysis (pLSA)

7

Motivation

• Learning from text and natural language

• Learning meaning and usage of words without prior linguistic 
knowledge

• Modeling semantics
• Account for polysems and similar words

• Difference between what is said and what is meant

8
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Vector Space Model

• Want to represent documents and terms as vectors in a lower-
dimensional space

• N × M word-document co-occurrence matrix 𝜨

• limitations: high dimensionality, noisy, sparse

• solution: map to lower-dimensional latent semantic space using SVD

𝐷 = {𝑑1, . . . , 𝑑𝑁}

W = {𝑤1, . . . , 𝑤𝑀}

𝜨 = 𝑛 𝑑𝑖 , 𝑤𝑗
𝑖𝑗

9

Latent Semantic Analysis (LSA)

• Goal
• Map high dimensional vector space representation to lower dimensional 

representation in latent semantic space
• Reveal semantic relations between documents (count vectors)

• SVD
• N = UΣVT

• U: orthogonal matrix with left singular vectors (eigenvectors of NNT)
• V: orthogonal matrix with right singular vectors (eigenvectors of NTN)
• Σ: diagonal matrix with singular values of N

• Select k largest singular values from Σ to get approximation ෩𝑁 with minimal 
error
• Can compute similarity values between document vectors and term vectors

10
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LSA
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LSA Strengths

• Outperforms naïve vector space model 

• Unsupervised, simple

• Noise removal and robustness due to dimensionality reduction

• Can capture synonymy

• Language independent 

• Can easily perform queries, clustering, and comparisons

12
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LSA Limitations

• No probabilistic model of term occurrences

• Results are difficult to interpret

• Assumes that words and documents form a joint Gaussian model

• Arbitrary selection of the number of dimensions k

• Cannot account for polysemy

• No generative model

13

Probabilistic Latent Semantic Analysis (pLSA)

• Difference between topics and words?
• Words are observable

• Topics are not, they are latent

• Aspect Model
• Associates an unobserved latent class variable 𝑧 𝜖 ℤ = {𝑧1, . . . , 𝑧𝐾} with each 

observation

• Defines a joint probability model over documents and words

• Assumes w is independent of d conditioned on z

• Cardinality of z should be much less than than d and w

14
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pLSA Model Formulation

• Basic Generative Model
• Select document d with probability P(d)

• Select a latent class z with probability P(z|d)

• Generate a word w with probability P(w|z)

• Joint Probability Model

𝑃 𝑑,𝑤 = 𝑃 𝑑 𝑃 𝑤 𝑑 𝑃 𝑤|𝑑 = 

𝑧 𝜖 ℤ

𝑃 𝑤|𝑧 𝑃 𝑧 𝑑

15

pLSA Graphical Model Representation

16

𝑃 𝑑,𝑤 = 𝑃 𝑑 𝑃 𝑤 𝑑

𝑃 𝑤|𝑑 = 

𝑧 𝜖 ℤ

𝑃 𝑤|𝑧 𝑃 𝑧 𝑑
𝑃 𝑑, 𝑤 = 

𝑧 𝜖 ℤ

𝑃 𝑧 𝑃 𝑑 𝑧 𝑃(𝑤|𝑧)
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pLSA Joint Probability Model

𝑃 𝑑,𝑤 = 𝑃 𝑑 𝑃 𝑤 𝑑

𝑃 𝑤|𝑑 = 

𝑧 𝜖 ℤ

𝑃 𝑤|𝑧 𝑃 𝑧 𝑑

ℒ = 

𝑑𝜖𝐷



𝑤𝜖𝑊

𝑛 𝑑,𝑤 log𝑃(𝑑, 𝑤)

Maximize:

Corresponds to a minimization of KL divergence 
(cross-entropy) between the empirical distribution 
of words and the model distribution P(w|d)

17

Probabilistic Latent Semantic Space

• P(w|d) for all documents is 
approximated by a multinomial 
combination of all factors P(w|z)

• Weights P(z|d) uniquely define a 
point in the latent semantic 
space, represent how topics are 
mixed in a document

18
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Probabilistic Latent Semantic Space

• Topic represented by probability distribution over words

• Document represented by probability distribution over topics

19

𝑧𝑖 = (𝑤1, . . . , 𝑤𝑚) 𝑧1 = (0.3, 0.1, 0.2, 0.3, 0.1)

𝑑𝑗 = (𝑧1, . . . , 𝑧𝑛) 𝑑1 = (0.5, 0.3, 0.2)

Model Fitting via Expectation Maximization

• E-step

• M-step

𝑃 𝑧 𝑑,𝑤 =
𝑃 𝑧 𝑃 𝑑 𝑧 𝑃 𝑤 𝑧

σ
𝑧′ 𝑃 𝑧′ 𝑃 𝑑 𝑧′ 𝑃(𝑤|𝑧′)

𝑃(𝑤|𝑧) =
σ𝑑 𝑛 𝑑,𝑤 𝑃(𝑧|𝑑, 𝑤)

σ
𝑑,𝑤′ 𝑛 𝑑, 𝑤′ 𝑃(𝑧|𝑑, 𝑤′)

𝑃(𝑑|𝑧) =
σ𝑤 𝑛 𝑑,𝑤 𝑃(𝑧|𝑑, 𝑤)

σ
𝑑′,𝑤 𝑛 𝑑′, 𝑤 𝑃(𝑧|𝑑′, 𝑤)

𝑃 𝑧 =
1

𝑅


𝑑,𝑤

𝑛 𝑑,𝑤 𝑃 𝑧 𝑑, 𝑤 , 𝑅 ≡

𝑑,𝑤

𝑛(𝑑, 𝑤)

Compute posterior probabilities 
for latent variables z using 
current parameters

Update parameters using given 
posterior probabilities

20
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pLSA Strengths

• Models word-document co-occurrences as a mixture of conditionally 
independent multinomial distributions 

• A mixture model, not a clustering model

• Results have a clear probabilistic interpretation

• Allows for model combination

• Problem of polysemy is better addressed

21

pLSA Strengths

• Problem of polysemy is better addressed

22
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pLSA Limitations

• Potentially higher computational complexity

• EM algorithm gives local maximum

• Prone to overfitting
• Solution: Tempered EM

• Not a well defined generative model for new documents
• Solution: Latent Dirichlet Allocation

23

pLSA Model Fitting Revisited

• Tempered EM 
• Goals: maximize performance on unseen data, accelerate fitting process

• Define control parameter β that is continuously modified

• Modified E-step

𝑃𝛽 𝑧 𝑑,𝑤 =
𝑃 𝑧 𝑃 𝑑 𝑧 𝑃 𝑤 𝑧 𝛽

σ𝑧′ 𝑃 𝑧′ 𝑃 𝑑 𝑧′ 𝑃 𝑤 𝑧′ 𝛽

24
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Tempered EM Steps

1) Split data into training and validation sets

2) Set β to 1

3) Perform EM on training set until performance on validation set 
decreases

4) Decrease β by setting it to ηβ, where η <1, and go back to step 3

5) Stop when decreasing β gives no improvement

25

Example: Identifying Authoritative Documents

26
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HITS

• Hubs and Authorities
• Each webpage has an authority score x and a hub score y 

• Authority – value of content on the page to a community 
• likelihood of being cited

• Hub – value of links to other pages 
• likelihood of citing authorities

• A good hub points to many good authorities 

• A good authority is pointed to by many good hubs

• Principal components correspond to different communities
• Identify the principal eigenvector of co-citation matrix

27

HITS Drawbacks

• Uses only the largest 
eigenvectors, not necessary the 
only relevant communities

• Authoritative documents in 
smaller communities may be 
given no credit

• Solution: Probabilistic HITS

28
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pHITS
𝑃 𝑑, 𝑐 =

𝑧

𝑃 𝑧 𝑃 𝑐 𝑧 𝑃(𝑑|𝑧)

P(d|z) P(c|z)

Documents

Communities

Citations

29

Interpreting pHITS Results

• Explain d and c in terms of the latent variable “community”

• Authority score: P(c|z) 
• Probability of a document being cited from within community z

• Hub Score: P(d|z) 
• Probability that a document d contains a reference to community z. 

• Community Membership: P(z|c). 
• Classify documents

30
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Joint Model of pLSA and pHITS

• Joint probabilistic model of document content (pLSA) and 
connectivity (pHITS) 
• Able to answer questions on both structure and content

• Model can use evidence about link structure to make predictions about 
document content, and vice versa 

• Reference flow – connection between one topic and another

• Maximize log-likelihood function

ℒ = 

𝑗

𝛼

𝑖

𝑁𝑖𝑗
σ
𝑖′𝑁𝑖′𝑗

𝑙𝑜𝑔

𝑘

𝑃 𝑤𝑖 𝑧𝑘 𝑃 𝑧𝑘 𝑑𝑗 + (1 − 𝛼)

𝑙

𝐴𝑙𝑗
σ
𝑙′ 𝐴𝑙′𝑗

𝑙𝑜𝑔

𝑘

𝑃 𝑐𝑙 𝑧𝑘 𝑃 𝑧𝑘 𝑑𝑗

31

pLSA: Main Deficiencies

• Incomplete in that it provides no probabilistic model at the document level 
i.e. no proper priors are defined.

• Each document is represented as a list of numbers (the mixing proportions 
for topics), and there is no generative probabilistic model for these 
numbers, thus:

1. The number of parameters in the model grows linearly with the size of the 
corpus, leading to overfitting

2. It is unclear how to assign probability to a document outside of the training set

• Latent Dirichlet allocation (LDA) captures the exchangeability of both 
words and documents using a Dirichlet distribution, allowing a coherent 
generative process for test data

32
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Latent Dirichlet Allocation (LDA)

33

LDA: Dirichlet Distribution

34

• A ‘distribution of distributions’
• Multivariate distribution whose components all take values on 

(0,1) and which sum to one.
• Parameterized by the vector α, which has the same number of 

elements (k) as our multinomial parameter θ.
• Generalization of the beta distribution into multiple dimensions
• The alpha hyperparameter controls the mixture of topics for a 

given document
• The beta hyperparameter controls the distribution of words per 

topic

Note: Ideally we want our composites to be made up of only a few 
topics and our parts to belong to only some of the topics. With this 
in mind, alpha and beta are typically set below one.
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LDA: Dirichlet Distribution (cont’d) 

• A k-dimensional Dirichlet random variable 𝜃 can take values in the (k-
1)-simplex (a k-vector 𝜃 lies in the (k-1)-simplex if 𝜃𝑖 ≥
0,σ𝑖=1

𝑘 𝜃𝑖 = 1) and has the following probability density on this 
simplex:

𝑝 𝜃 𝛼 =
Γ(σ𝑖=1

𝑘 𝛼𝑖)

ς𝑖=1
𝑘 Γ(𝛼𝑖)

𝜃1
𝛼1−1…𝜃𝑘

𝛼𝑘−1,

where the parameter 𝛼 is a k-vector with components 𝛼𝑖 > 0 and   
where Γ(𝑥) is the Gamma function.

• The Dirichlet is a convenient distribution on the simplex:
• In the exponential family

• Has finite dimensional sufficient statistics

• Conjugate to the multinomial distribution 35

LDA: Generative Process
LDA assumes the following generative process for each document 𝑤 in a corpus 𝐷:

1. Choose 𝑁 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝜉 .

2. Choose 𝜃 ~ 𝐷𝑖𝑟 𝛼 .

3. For each of the 𝑁 words 𝑤𝑁:
a. Choose a topic 𝑧𝑛 ~𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙 𝜃 .

b. Choose a word 𝑤𝑛 from 𝑝(𝑤𝑛|𝑧𝑛, 𝛽), a multinomial probability conditioned on the topic 𝑧𝑛.

Example: Assume a group of articles that can be broken down by three topics described 
by the following words:

• Animals: dog, cat, chicken, nature, zoo

• Cooking: oven, food, restaurant, plates, taste

• Politics: Republican, Democrat, Congress, ineffective, divisive

To generate a new document that is 80% about animals and 20% about cooking:
• Choose the length of the article (say, 1000 words)

• Choose a topic based on the specified mixture (~800 words will coming from topic ‘animals’)

• Choose a word based on the word distribution for each topic 36
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LDA: Model (Plate Notation)

𝛼 is the parameter of the Dirichlet prior on the 
per-document topic distribution,

𝛽 is the parameter of the Dirichlet prior on the 
per-topic word distribution,

𝜃𝑀 is the topic distribution for document M,

𝑧𝑀𝑁 is the topic for the N-th word in document M, and

𝑤𝑀𝑁 is the word.

37

LDA: Model

38

Parameters of Dirichlet distribution
(K-vector)

dk dn

ki

dn d

𝜃𝑑𝑘

𝑧𝑑𝑛 = {1,… , 𝐾}

𝛽𝑘𝑖 = 𝑝(𝑤|𝑧)

1 … topic … K

1 … nth word … Nd

1 … word idx … V

1
⋮

doc
⋮

M

1
⋮

doc
⋮

M

1
⋮

topic
⋮

M
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LDA: Model (cont’d)

39

controls the mixture of topics

controls the distribution of words per topic 

LDA: Model (cont’d)

Given the parameters 𝛼 and 𝛽, the joint distribution of a topic mixture 𝜃, a set of 𝑁 topics 𝑧, and a set of 𝑁
words 𝑤 is given by:

𝑝 𝜃, 𝑧, 𝑤 𝛼, 𝛽 = 𝑝 𝜃 𝛼 ෑ

𝑛=1

𝑁

𝑝 𝑧𝑛 𝜃 𝑝 𝑤𝑛 𝑧𝑛, 𝛽 ,

where 𝑝 𝑧𝑛 𝜃 is 𝜃𝑖 for the unique 𝑖 such that 𝑧𝑛
𝑖 = 1. Integrating over 𝜃 and summing over 𝑧, we obtain 

the marginal distribution of a document:

𝑝 𝑤 𝛼, 𝛽 = න𝑝(𝜃|𝛼) ෑ

𝑛=1

𝑁



𝑧𝑛

𝑝 𝑧𝑛 𝜃 𝑝(𝑤𝑛|𝑧𝑛, 𝛽) 𝑑𝜃𝑑 .

Finally, taking the products of the marginal probabilities of single documents, we obtain the probability of a 
corpus:

𝑝 𝐷 𝛼, 𝛽 =ෑ

𝑑=1

𝑀

න𝑝(𝜃𝑑|𝛼) ෑ

𝑛=1

𝑁𝑑



𝑧𝑑𝑛

𝑝 𝑧𝑑𝑛 𝜃𝑑 𝑝(𝑤𝑑𝑛|𝑧𝑑𝑛, 𝛽) 𝑑𝜃𝑑 .

40
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LDA: Exchangeability

• A finite set of random variables {𝑥1, … , 𝑥𝑁} is said to be exchangeable if the 
joint distribution is invariant to permutation. If π is a permutation of the 
integers from 1 to N: 

𝑝 𝑥1, … , 𝑥𝑁 = 𝑝(𝑥𝜋1 , … , 𝑥𝜋𝑁)

• An infinite sequence of random numbers is infinitely exchangeable if every 
finite sequence is exchangeable

• We assume that words are generated by topics and that those topics are 
infinitely exchangeable within a document

• By De Finetti’s Theorem:

𝑝 𝑤, 𝑧 = න𝑝(𝜃) ෑ

𝑛=1

𝑁

𝑝 𝑧𝑛 𝜃 𝑝(𝑤𝑛|𝑧𝑛) 𝑑𝜃

41

LDA vs. other latent variable models

42

Unigram model: 𝑝 𝑤 = ς𝑛=1
𝑁 𝑝(𝑤𝑛)

Mixture of unigrams: 𝑝 𝑤 = σ𝑧 𝑝(𝑧)ς𝑛=1
𝑁 𝑝(𝑤𝑛|𝑧)

pLSI: 𝑝 𝑑,𝑤𝑛 = 𝑝(𝑑)σ𝑧 𝑝 𝑤𝑛 𝑧 𝑝(𝑧|𝑑)
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LDA: Geometric Interpretation

43

• Topic simplex for three topics embedded 
in the word simplex for three words

• Corners of the word simplex correspond to 
the three distributions where each word 
has probability one

• Corners of the topic simplex correspond to 
three different distributions over words

• Mixture of unigrams places each 
document at one of the corners of the 
topic simplex

• pLSI induces an empirical distribution on 
the topic simplex denoted by diamonds

• LDA places a smooth distribution on the 
topic simplex denoted by contour lines

LDA: Goal of Inference

LDA inputs:    Set of words per document for each document in a corpus

LDA outputs: Corpus-wide topic vocabulary distributions

Topic assignments per word

Topic proportions per document
44

?
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LDA: Inference

45

The key inferential problem we need to solve with 
LDA is that of computing the posterior distribution 
of the hidden variables given a document:

𝑝 𝜃, 𝑧 𝑤, 𝛼, 𝛽 =
𝑝(𝜃, 𝑧, 𝑤|𝛼, 𝛽)

𝑝(𝑤|𝛼, 𝛽)

This formula is intractable to compute in general 
(the integral cannot be solved in closed form), so 
to normalize the distribution we marginalize over 
the hidden variables:

𝑝 𝑤 𝛼, 𝛽 =
Γ(σ𝑖 𝛼𝑖)

ς𝑖 Γ(𝛼𝑖)
න ෑ

𝑖=1

𝑘

𝜃𝑖
𝛼𝑖−1 ෑ

𝑛=1

𝑁



𝑖=1

𝑘

ෑ

𝑗=1

𝑉

(𝜃𝑖𝛽𝑖𝑗)
𝑤𝑛
𝑗

𝑑𝜃

LDA: Variational Inference

• Basic idea: make use of Jensen’s inequality to obtain an adjustable lower 
bound on the log likelihood

• Consider a family of lower bounds indexed by a set of variational 
parameters chosen by an optimization procedure that attempts to find the 
tightest possible lower bound

• Problematic coupling between 𝜃 and 𝛽 arises due to edges between 𝜃, z 
and w. By dropping these edges and the w nodes, we obtain a family of 
distributions on the latent variables characterized by the following 
variational distribution:

𝑞 𝜃, 𝑧 𝛾, 𝜙 = 𝑞 𝜃 𝛾 ෑ

𝑛=1

𝑁

𝑞 𝑧𝑛 𝜙𝑛

where 𝛾 and (𝜙1, … , 𝜙𝑛) and the free variational parameters.

46
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LDA: Variational Inference (cont’d)
• With this specified family of probability distributions, we set up the following 

optimization problem to determine 𝜃 and 𝜙:
𝛾∗, 𝜙∗ = 𝑎𝑟𝑔𝑚𝑖𝑛 𝛾,𝜙 𝐷(𝑞(𝜃, 𝑧|𝛾, 𝜙) ∥ 𝑝 𝜃, 𝑧 𝑤, 𝛼, 𝛽 )

• The optimizing values of these parameters are found by minimizing the KL divergence 
between the variational distribution and the true posterior 𝑝 𝜃, 𝑧 𝑤, 𝛼, 𝛽

• By computing the derivatives of the KL divergence and setting them equal to zero, we 
obtain the following pair of update equations:

𝜙𝑛𝑖 ∝ 𝛽𝑖𝑤𝑛
exp 𝐸𝑞 log 𝜃𝑖 𝛾

𝛾𝑖 = 𝛼𝑖 +
𝑛=1

𝑁

𝜙𝑛𝑖

• The expectation in the multinomial update can be computed as follows:

𝐸𝑞 log 𝜃𝑖 𝛾 = Ψ 𝛾𝑖 −Ψ(ෑ
𝑗=1

𝑘

𝛾𝑗)

where Ψ is the first derivative of the logΓ function.
47

LDA: Variational Inference (cont’d)

48
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LDA: Parameter Estimation

• Given a corpus of documents 𝐷 = {𝑤1, 𝑤2… ,𝑤𝑀}, we wish to find 𝛼
and 𝛽 that maximize the marginal log likelihood of the data:

ℓ 𝛼, 𝛽 = 

𝑑=1

𝑀

𝑙𝑜𝑔𝑝(𝑤𝑑|𝛼, 𝛽)

• Variational EM yields the following iterative algorithm:
1. (E-step) For each document, find the optimizing values of the variational 

parameters 𝛾𝑑
∗ , 𝜙𝑑

∗ : 𝑑 ∈ 𝐷

2. (M-step) Maximize the resulting lower bound on the log likelihood with 
respect to the model parameters 𝛼 and 𝛽

These two steps are repeated until the lower bound on the log likelihood converges.

49

LDA: Smoothing

50

• Introduces Dirichlet smoothing on 𝛽 to 
avoid the zero frequency word 
problem

• Fully Bayesian approach:

𝑞 𝛽1:𝑘 , 𝑧1:𝑀, 𝜃1:𝑀 𝜆, 𝜙, 𝛾 =

𝑖=1

𝑘

𝐷𝑖𝑟(𝛽𝑖|𝜆𝑖)ෑ

𝑑=1

𝑀

𝑞𝑑(𝜃𝑑 , 𝑧𝑑|𝜙𝑑 , 𝛾𝑑)

where 𝑞𝑑(𝜃, 𝑧 |𝜙, 𝛾) is the variational distribution defined for LDA. We require an additional update for the 
new variational parameter 𝜆:

𝜆𝑖𝑗 = 𝜂 +

𝑑=1

𝑀



𝑛=1

𝑁𝑑

𝜙𝑑𝑛𝑖
∗ 𝑤𝑑𝑛

𝑗
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Topic Model Applications

• Information Retrieval

• Visualization

• Computer Vision
• Document = image, word = “visual word”

• Bioinformatics
• Genomic features, gene sequencing, diseases

• Modeling networks
• cities, social networks

51

pLSA / LDA Libraries 

• gensim (Python) 

• MALLET (Java)

• topicmodels (R)

• Stanford Topic Modeling Toolbox

https://radimrehurek.com/gensim/
http://mallet.cs.umass.edu/
https://cran.r-project.org/web/packages/topicmodels/index.html
https://nlp.stanford.edu/software/tmt/tmt-0.4/
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