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Matrix Decompositions
Anthony Sicilia

Motivation

• We very often have a data matrix Xnxd

• Matrix decompositions: write (sometimes approximate) the original 
data-matrix as a product of  more simple pieces with nice properties
• Analyze our data using more descriptive features

• Solve matrix equations that are otherwise inefficient or impossible

• Plan:
1. Start with Singular Value Decomposition (works on any matrix)

2. Many applications of  SVD

3. Non-Negative Matrix Factorization (approximate, non-unique)

4. Tensor Decomposition (if  time allows)
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Singular Value Decomposition

SVD of  a matrix A (a set of  n points in ℝd with rank 𝑟)

𝐀n ×d = 𝐔n × 𝑟𝚺𝑟 ×𝑟𝐕𝑟 ×d
T

• 𝐔 : Left Singular Vectors of 𝐀 (symmetric and orthonormal)
• 𝐕 : Right Singular Vectors of 𝐀 (symmetric and orthonormal)
• 𝚺: Rectangular diagonal matrix with positive real entries
• Note: sometimes we use 𝑟 = 𝑑 with 𝜎𝑖 = 0 if  𝑖 > 𝑟𝑎𝑛𝑘(𝐴)

𝐀 = u1 … u𝑟 … un

σ1
⋱

σ𝑟

v1
T … v𝑟

T … vd
T

𝐀 = 𝐔𝚺𝐕T = u1σ1v1
T + …+ ukσ𝑟v𝑟

T = ෍

i=1

𝑟

uiσivi
T

Credit: Sumedha Singla

Singular Value Decomposition (SVD)

• Some properties to note:

• Matrices U, V are symmetric and orthonormal. 

• Orthonormal: if  a matrix’s rows/columns are orthogonal unit vectors
• Note: geometrically represent rotations and inverse is exactly the matrix transpose

• 𝚺 (diagonal) contains the singular values 𝜎1 ≥ 𝜎2 ≥ … ≥ 𝜎𝑟
• The columns of  U span the column space of  A. To see this note,

A𝒙 = 𝜎1𝒖1𝒗1
𝑻𝒙 +⋯+ 𝜎𝑟𝒖𝑟𝒗𝑟

𝑻𝒙 = 𝜎1 𝒗1
𝑻𝒙 𝒖1 +⋯+ 𝜎1 𝒗𝑟

𝑻𝒙 𝒖𝑟

• Likewise, looking at AT, the columns of  V span the row space of  A

• V is a basis for the rows of  A and U is a basis for the columns of  A
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Construction ( proof  sketch ) of  SVD (A = 𝐔𝚺𝐕𝑻)

Our goal is to identify A = 𝐔𝚺𝐕𝑻 with the 𝑟 columns of  U and V 

orthonormal and 𝚺 diagonal. Symmetric matrices have a nice property 

that will allow us to find U and V so we write as below

𝐀𝑻𝐀 = 𝐕𝚺𝑻𝐔𝑻 (𝐔𝚺𝐕𝑻) = 𝐕𝚺𝑻𝚺𝐕𝑻 (∗)

Why is 𝐀𝑻𝐀 symmetric? Any real matrix multiplied with its transpose is 

always symmetric, since

(𝐀𝐀𝑻)𝑻= (𝐀𝑻)𝑻𝐀𝑻 = 𝐀𝐀𝑻

We can use the symmetry of  𝐀𝑻𝐀 because any symmetric has an 

eigenvalue decomposition:

𝐀𝑻𝐀 = 𝐐𝚲𝐐𝑻

where the columns of  Q are orthogonal eigenvectors of  𝐀𝑻𝐀 and 𝚲 is 

the diagonal matrix of  eigenvalues for 𝐀𝑻𝐀

𝐀𝑻𝐀𝒒𝑖 = 𝝀𝑖𝒒𝑖

Construction ( proof  sketch ) of  SVD (A = 𝐔𝚺𝐕𝑻)
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Revisiting ∗ , we can pick V = Q and 𝚺𝑻𝚺 = 𝚲 (i.e., each 𝜎𝑖
2 = 𝜆𝑖)

𝐐𝚲𝐐𝑻 = 𝐀𝑻𝐀 = 𝐕𝚺𝑻𝐔𝑻 (U𝚺𝐕𝑻) = 𝐕𝚺𝑻𝚺𝐕𝑻 (∗)

Now, each column 𝒗𝒊 will be orthonormal by default!

Next, we also require A𝒗𝑖 = 𝜎𝑖𝒖𝑖 which is accomplished if  we pick

𝒖𝑖 = 1/ 𝜎𝑖 ∙ A𝒗𝑖

Note: there will be 𝑟 non-zero 𝝀𝑖 since 𝐀𝑻𝐀 is symmetric, the rank of  𝐀𝑻𝐀 is 

the same as the rank of  𝐀, and any symmetric matrix has as many nonzero 

eigenvalues as its rank. This means the dimension of  V and U are correct!

Construction ( proof  sketch ) of  SVD (A = 𝐔𝚺𝐕𝑻)

Construction ( proof  sketch ) of  SVD

We need to verify that the 𝒖𝒊 are also orthonormal. We can verify this as 

below. If  𝑖 ≠ 𝑗

𝒖𝑖
𝑇𝒖𝑗 = 1/ 𝜎𝑖𝜎𝑗 ∙ (𝐀𝒗𝑖)

𝑇 (𝐀𝒗𝑗)

= 1/ 𝜎𝑖𝜎𝑗 ∙ 𝒗𝑖
𝑇(𝐀𝑇𝐀𝒗𝑗) 

= (𝜎𝑗 / 𝜎𝑖) ∙ 𝒗𝑖
𝑇 𝒗𝑗

= 0

( choice of  𝒖 )

( defn. of  transpose )

( 𝒗s is an eigenvector )

( 𝒗s are orthonormal )

If  𝑖 = 𝑗 in the above then the result is 1, so the 𝒖s are also unit and we 

have out result. U, V are orthonormal with 𝑟 columns and 𝚺 is diagonal!
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A Nice Guarantee about SVD 

• (Eckart-Young Theorem) If  a matrix B has rank 𝑘, then 

||𝐀 − 𝐀𝑘|| ≤ ||𝐀 − 𝐁||

where 𝐀𝑘 = 𝜎1𝒖1𝒗1
𝑻 +⋯+ 𝜎𝑘𝒖𝑘𝒗𝑘

𝑻

• || ∙ || can be L2 Norm, Frobenius Norm, or Trace Norm

• Useful if  we wish to reduce the dimensionality of  𝐀 with as little error 

as possible (e.g. approximation according to some norm)

• No other matrix is a better approximation under these constraints

Connections between SVD and PCA

• Can decompose covariance matrix of  0-mean 𝐀𝑛x𝑑 using SVD

𝐂𝐨𝐯 = 𝐀T𝐀/ n − 1 = 𝐕 𝚺 𝐔T 𝐔 𝚺 𝐕T/(n − 1) = 𝐕
𝚺2

(𝑛 − 1)
𝐕T

• 𝐂𝐨𝐯 is symmetric, so we can also decompose 

𝐂𝐨𝐯 = 𝐐 𝚲 𝑸𝑇
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Connections between SVD and PCA:

• Putting those two equations together shows us 

𝐐 𝚲 𝑸𝑇 = 𝐕
𝚺2

(𝑛−1)
𝐕T

• Right singular vectors 𝐕 are the eigenvectors of  the covariance matrix

• The eigenvalues are λi = Τσi
2 (n − 1)

• The principal components are 𝐀𝐕 = 𝐔 𝚺 𝐕T𝐕 = 𝐔 𝚺

• Remark: similar approach used in computation of  Eigenfaces:
• Eigenfaces are the eigenvectors of  the covariance matrix

Some Other Brief  Applications of  SVD

• Determining range, null space, and rank of A

• Matrix approximation (e.g. for compression)

• Inverse and Pseudo-inverse: 
• If  𝐀 = 𝐔 𝚺 𝐕T and 𝚺 is full rank, then 𝐀−1 = 𝐕 𝚺−1𝐔T.
• If  𝚺 is singular, then its pseudo-inverse is given by 𝐀† = 𝐕 𝚺†𝐔T , 

where 𝚺† is formed by replacing every nonzero entry by its reciprocal

• Least squares: 
• If  we need to solve 𝐀𝐱 = b in the least-squares sense, then 𝐱LS =

𝐕 𝚺†𝐔T b

• Denoising – small singular values typically correspond to noise.

Credit: Sumedha Singla
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SVD for Latent Semantic Indexing (NLP)

• Form a term-document matrix where:

• Rows: represents words

• Columns: represents documents

• Value: the count of  the words in the document

• Idea: apply SVD to identify latent representations of  the words 
and documents

SVD for Latent Semantic Indexing (NLP)

• Full example using SVD and 𝑘 = 𝑟 = 5

Credit: Sumedha Singla
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SVD for Latent Semantic Indexing (NLP)

• In practice, X is large, noisy, or sparse. We want a low-rank approximation in a 
latent space. We can pick 𝑘 = 2 latent concepts

term-to-concept 

matrix

concept strength matrix

concept-to-doc 

matrix

Credit: Sumedha Singla

SVD for Latent Semantic Indexing (NLP)
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latent representation 

of  cosmonaut
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SVD for Latent Semantic Indexing (NLP)

• SVD projects documents and words to a lower dimensional space

• Words and documents are mapped to shared “latent semantic space”
• E.g. King, Pharaoh, Emperor are semantically similar

• Rank-lowering combines words into same dimensions

• Co-occurring words should project on the same dimensions

• Non-co-occurring words should project onto different dimensions

• {(pot), (vase), (dog)} → {(𝟑. 𝟓𝟒 × pot + 𝟎. 𝟑𝟔 ×
vase), (dog)}

• Mitigates issues of  sparseness (related to synonymy) and noisiness
• Like our example of  cosmonaut and astronaut

Hyperlink-Induced Topic Search (HITS)

• (Kleinberg) ranks web-pages based on query

• Essential vocab:
• Authorities

• Hubs

• Goal: Identify good authorities and hubs for a topic

• Each page receives two scores
• Authority score 𝐴(𝑝): estimates value of  content on page

• Hub score 𝐻(𝑝): estimates value of  links on page

Credit: Sumedha Singla
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Hyperlink-Induced Topic Search (HITS)

• For a topic, authorities
are relevant nodes which 
are referred to by many 
hubs (high in-degree)

• For a topic, hubs are 
nodes which connect 
many related authorities 
for that topic (high out-
degree)

Credit: Sumedha Singla

Hyperlink-Induced Topic Search (HITS)

• Three Steps
1. Create a focused base-set of  the Web

• Start with a root set (from text-based query)

• Add immediate successors to root set 

• Add immediate predecessors to root set (limit 𝑑)

• The extended root set becomes our base set

2. Iteratively compute hub and authority scores
• A(p): sum of  H q for all q pointing to p
• H(q): sum of  A p for all p pointing to q
• Starts with all scores as 1, and iteratively repeat 

till convergence.

3. Filter out the top hubs and authorities

Credit: Sumedha Singla

successorspredecessors
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Hyperlink-Induced Topic Search (HITS)

• G (root set) is a directed graph with web 
pages as nodes and their links as edges

• G can be presented as an adjacency matrix A
• A(i,j)=1 only if  i-th page points to j-th page.

• Authority weights can be represented as a 
unit vector a
• ai : The authority weight of  the i-th page

• Hub weights can be represented as a unit 
vector h
• hi : The hub weight of  the i-th page

Credit: Sumedha Singla

Hyperlink-Induced Topic Search (HITS)

• Updating authority weights:  a = ATh

• Updating hub weights: h = Aa

• After k iterations:
a1 = ATh0
h1 = Aa1

→ h1 = AATh0
→ hk = (AAT)kh0

• Convergence

• ak: Converges to principal eigenvector of  ATA (singular vector)

• hk: Converges to principal eigenvector of  AAT (singular vector)

Credit: Sumedha Singla
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Using SVD to Reconstruct an Image

(Credit: Kostas Pelechrinis)

Using SVD to Reconstruct an Image

(Credit: Kostas Pelechrinis)
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Practical Concerns: How to pick 𝑘

(Credit: Kostas Pelechrinis)

• Note we can often pick 𝑘
based on the elbow 

method (heuristic).

• When does the rate of  

improvement decrease?

• Can also use a Scree Plot

• Plot of  eigenvalues

• For NMF, we will see a 

more principled procedure

Non-Negative Matrix Factorization

• For a non-negative matrix 𝐗 we seek factors 𝐗 ≈ 𝐖𝑛x𝑟𝐇𝑟x𝑛

min
𝑾,𝑯

𝐗 −𝐖𝐇 s.t. 𝐖𝑖𝑗 ≥ 0, ∀𝑖, 𝑗 and 𝐇𝑖𝑗 ≥ 0, ∀𝑖, 𝑗

• This decomposes rows and columns of  X into an 𝑟 dim. feature space 
Recall that SVD provided the best rank 𝑟 approximation! Why NMF?
• Operates on non-negative data/gives non-negative factors (intuitive for counts)

• Non-unique. Useful if  connected to a privacy application; e.g., for certain 
invertible B we have WH = WBB-1H with the factors still positive

• Norms used may be Frobenius or Matrix Divergence (identical to 
applying KL Divergence on the elements of  a matrix)
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NMF Example: Basketball

• Dataset: 184,209 shot locations from an NBA season

• Problem: Suppose we want to describe the shooting patterns of  NBA 
players. If  we discretize the court into 1ft x 1ft squares, there is still more 
than 2000 locations (high dimensional and probably sparse)

• Our data matrix rows are players, while columns represent locations
• Option 1: court zones (13 columns)

• Option 2: grid cells 1x1 (2,350 columns)

• Xij is the number of  shots player i took from location j

• W has dimension #players × 𝑟; rows are player reps. in terms latent patterns

• H has dimension 𝑟 × #locations gives latent shooting patterns

NMF Example: Basketball (Option 1)

0 21.3 8.6 3.2 4.6 1 8.7 9 4.7 4.6

9.6 19.6 2.5 0.8 0 5.4 3.6 0.79 0.64 2.5

20.2 7.6 8.1 2.44 10.7 0.4 7.7 2.4 1.6 5.2

0 0 1.1 2.12 34.2 0.5 11 19.5 0.7 1.3

0 4 14.2 16.2 4.5 0.8 2.4 15.1 3.5 3.7

(Credit: Kostas Pelechrinis)
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NMF Example: Basketball (Option 1)

• Using a decomposition instead of  simply counting frequencies allows disjoint areas 
to be paired together. E.g., see the latent concept of  the corner three (bottom left)

NMF Example: Basketball (Option 2)

• Miller, Bornn, Adams and Goldsberry (ICML 2014) used a grid over the 
court and an extension of  NMF 



2/18/2020

16

Implementing NMF: How to Solve For Factors

• Solving min
𝑾,𝑯

𝐗 −𝐖𝐇 is equivalent to solving min
𝑾,𝑯

𝐗 −𝐖𝐇 2

• In general, we will fix W and solve for ∇𝐇 𝐗 −𝐖𝐇 2 or vice-versa

• This simplifies things because min
𝑯

𝐗 −𝐖𝐇 2 is convex

• We will use ∇𝐇 𝐗 −𝐖𝐇 2 and ∇𝐖 𝐗 −𝐖𝐇 2 frequently, so we’ll compute them 

• First some useful facts:

A. X = tr(XTX)
B. tr A + B = tr A + tr B
C. tr ABC = tr CAB = tr BCA
D. ∇Xtr AX = AT

E. ∇Xtr X
TA = A

F. ∇Xtr X
TAX = A + AT X

G. ∇Xtr XAX
T = X AT + A

Analytic Solutions for Factors

Gradient computation for the Frobenius norm w.r.t H:

𝜵𝑯 𝑿−𝑾𝑯 𝟐 = 𝜵𝑯tr[(X−WH)𝑻(X−WH)] b/c A = tr(ATA)

= 𝜵𝑯tr[X
𝑻𝐗 − X𝑻𝐖𝐇 − H𝑻W𝑻𝐗 + H𝑻W𝑻𝐖H]

= 𝜵𝑯tr(X
𝑻𝐗) − 𝜵𝑯tr(X

𝑻𝐖𝐇) − 𝜵𝑯tr(H
𝑻W𝑻𝐗) + 𝜵𝑯tr(H

𝑻W𝑻𝐖H) b/c tr is linear 

= 𝟎 − W𝑻𝐗 −W𝑻 𝐗 + W𝑻𝐖+W𝑻𝑾 𝐇

b/c ∇Xtr AX = AT , ∇Xtr X
TA = A, and ∇Xtr X

TAX = A + AT X

= −𝟐 ∙ W𝑻 𝐗 + 𝟐 ∙ W𝑻𝐖𝐇. Setting to zero gives 𝐖𝑻𝐖𝐇 = 𝐖𝑻𝐗
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Alternating Least Squares For NMF

A simple approach to finding W, H is alternating least squares ( ALS )

1. Initialize W randomly

2. Estimate H from 𝐖𝑻𝐖𝐇 = 𝐖𝑻𝐗 by solving min
𝐇

𝐗 −𝐖𝐇 𝐅
𝟐

(recall, W is fixed so we can use standard solver for above)

3. Set all negative elements of  H to zero or a small positive value 

4. Estimate W from 𝐇𝐇𝑻𝐖 = 𝐇𝐓𝐗 by solving min
𝐖

𝐗𝑻 −𝐇𝑻𝐖𝑻
𝐅

𝟐

5. Set all negative elements of  W to zero or a small positive value

• There are simple and more complicated improvements (Cichoki, 09) 

Multiplicative Update Rules for NMF

• (Lee and Seung, 01) provide some guarantees on the below multiplicative 
update rules (i.e., they are non-decreasing under some assumptions)

• For Frobenius Norm (ops are element-wise), 

𝐇 ← 𝐇⊗ 𝐖𝑻𝐗 ⊘ (𝐖𝑻𝐖𝐇) , 

𝐖 ← 𝐖⊗ 𝐗𝐇𝑻 ⊘ (𝐖𝐇𝐇𝑻)

• For the KL Divergence,

𝐇𝑎𝑢 ← 𝐇𝑎𝑢
∑𝑖𝐖𝑖𝑎𝐗𝑖𝑢/ 𝐖𝐇 𝑖𝑢

∑𝑘𝐖𝑘𝑎
, 𝐖𝑎𝑢 ←𝐖𝑖𝑎

∑𝑢𝐇𝑎𝑢𝐗𝑖𝑢/ 𝐖𝐇 𝑖𝑢

∑𝑣𝐇𝑎𝑣



2/18/2020

18

Multiplicative Updates vs. Gradient Based

• We can understand these by their relation to traditional gradient descent

• This is demonstrated for the Frobenius Norm below

• The below additive rule is equivalent to conventional gradient descent if  
𝜂𝑎𝑢 is the same for all indices

𝐇𝑎𝑢 ← 𝐇𝑎𝑢 + 𝜂𝑎𝑢[ 𝐖
𝑻𝐗

𝑎𝑢
− 𝐖𝑻𝐖𝐇

𝑎𝑢
]

• We can pick 𝜂𝑎𝑢 to arrive at the multiplicative update

𝜂𝑎𝑢 = 𝐇𝑎𝑢/ 𝐖𝑻𝐖𝐇
𝑎𝑢

Cross Validation via Imputation for NMF

• Why implement ALS? If  we wish to cross-validate our NMF through imputation we 
can do so by implementing ALS and applying a mask (this isn’t available in Sklearn)

• Cross-validation through imputation in which we modify the traditional 

decomposition objective by a mask M giving min
𝑾,𝑯

𝐌⊗ (𝐗 −𝐖𝐇)

• Cannot holdout entire rows. Below shows a speckled holdout pattern (Wold, 1978 ) 

See http://alexhwilliams.info/itsneuronalblog/2018/02/26/crossval/ for a more detailed discussion

And the original paper by Wold: https://www.jstor.org/stable/pdf/1267639.pdf

http://alexhwilliams.info/itsneuronalblog/2018/02/26/crossval/
https://www.jstor.org/stable/pdf/1267639.pdf


2/18/2020

19

Decomposing a General Tensor

• In general, we may be interested in decomposing data indexable along ≥ 2 axes

• E.g. term, document, and time or term, document, and news organization

• For a brief  video overview: https://www.youtube.com/watch?v=L8uT6hgMt00

• For a good textual overview: https://www.cs.ucr.edu/~epapalex/papers/tist16-tensors.pdf

In general, we can write more 

higher mode decompositions 

as a linear combination of  

outer products of  vectors.

Recall for SVD: A = ∑𝜎𝑖𝒖𝒊𝒗𝒊
𝑻

Decomposing a General Tensor

• Decomposing a general tensor can be framed as a canonical polyadic 
(CP) decomposition (also called CANDECOMP and PARAFAC)

• CP Decomposition for a 3-mode tensor into 𝑟 = 1: 𝑅 components is

𝒳 ≈ ∑𝑟𝒂
𝑟 ∘ 𝒃𝑟 ∘ 𝒄𝑟 where (𝒂𝑟∘ 𝒃𝑟 ∘ 𝒄𝑟)𝑖,𝑗,𝑘 = 𝒂𝑖

𝑟 × 𝒃𝑗
𝑟 × 𝒄𝑘

𝑟

• If  𝒳 is 𝑛x𝑚x𝑘 then 𝒂∗ is 𝑛x1, 𝒃∗ is 𝑚x1, 𝒄∗ is 𝑘x1

• We say 𝒳 is approximated by a sum of  (tensor) rank-1 tensors

• Easily extends to 𝑁-mode case ( e.g. include 𝒅∗ )

• CP is unique under fairly mild conditions!

• Variants of  ALS are widely used (derived in aforementioned review)

https://www.youtube.com/watch?v=L8uT6hgMt00
https://www.cs.ucr.edu/~epapalex/papers/tist16-tensors.pdf
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Applications of  Tensor Decomposition

• https://www.sciencedirect.com/science/article/pii/S0165027015001016

Relevant Packages

• Scikit-Learn has implementations of  both NMF and SVD (truncated)
• https://scikit-learn.org/stable/

• Numpy/Scipy also have an implementation of  SVD (full)
• https://www.scipy.org

• Gensim has an implementation of  LSI model that supports updates
• https://radimrehurek.com/gensim/

• Tensorly has implementations of  some tensor decompositions
• http://tensorly.org/stable/index.html

https://www.sciencedirect.com/science/article/pii/S0165027015001016
https://scikit-learn.org/stable/
https://www.scipy.org/
https://radimrehurek.com/gensim/
http://tensorly.org/stable/index.html
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