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Matrix Decompositions

Anthony Sicilia

Motivation

* We very often have a data matrix X4

* Matrix decompositions: write (sometimes approximate) the original
data-matrix as a product of more simple pieces with nice properties
* Analyze our data using more descriptive features
* Solve matrix equations that are otherwise inefficient or impossible

* Plan:
1. Start with Singular Value Decomposition (works on any matrix)
2. Many applications of SVD
3. Non-Negative Matrix Factorization (approximate, non-unique)
4. Tensor Decomposition (if time allows)
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Singular Value Decomposition

SVD of a matrix A (a set of n points in RY with rank )
Anxd = UnxrZy errTxd
* U: Left Singular Vectors of A (symmetric and orthonormal)
* V: Right Singular Vectors of A (symmetric and orthonormal)
* X: Rectangular diagonal matrix with positive real entries
* Note: sometimes we use r = d with o; = 0 if { > rank(A)

A= |uy .. ]I 7 S 4

oy .
A=UzVT = u0,v] + ..+ ugo, vl = ZuiciviT
i=1

Credit: Sumedha Singla

Singular Value Decomposition (SVD)

* Some properties to note:
* Matrices U, V are symmetric and orthonormal.

* Orthonormal: if a matrix’s rows/columns are orthogonal unit vectors
* Note: geometrically represent rotations and inverse is exactly the matrix transpose

* X (diagonal) contains the singular values 0y = 0, = ... = 0,

* The columns of U span the column space of A. To see this note,
Ax = oyu vl x + - + oou, vl x = oy (Vix)uy + - + oy (vIx)u,

* Likewise, looking at AT, the columns of V span the row space of A

* V is a basis for the rows of A and U is a basis for the columns of A
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Construction ( proof sketch ) of SVD (a=uzv")

Our goal is to identify A = UEVT with the 7 columns of U and V
orthonormal and ¥ diagonal. Symmetric matrices have a nice property
that will allow us to find U and V so we write as below

ATA = (veTuT)(uzvT) = veTzv? (*)

Why is ATA symmetric? Any real matrix multiplied with its transpose is
always symmetric, since

(AAT)T= (AT)TAT — AAT

Construction ( proof sketch ) of SVD (a=uzvT)

We can use the symmetry of ATA because any symmetric has an
eigenvalue decomposition:

ATA = QAQT

where the columns of Q are orthogonal eigenvectors of ATA and A is
the diagonal matrix of eigenvalues for ATA

ATAq; = Aiq;
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Construction ( proof sketch ) of SVD (a=uzv")

Revisiting (*), we can pick V.= Q and ETE = A (i.e., each 67 = 1))
QAQT = ATA = (vzTuT)(uzvT) = vTzvT (%)
Now, each column v; will be orthonormal by default!
Next, we also require AvV; = o0;U; which is accomplished if we pick
u; =1/ 0; - Av;

Note: there will be 7 non-zero 4; since ATA is symmetric, the rank of ATA is
the same as the rank of A, and any symmetric matrix has as many nonzero
eigenvalues as its rank. This means the dimension of V and U are correct!

Construction ( proof sketch ) of SVD

We need to verify that the U; are also orthonormal. We can verify this as
below. If i # j

u?uj = 1/(0-1'0-]') . (A‘Di)T (A‘Dj) ( choice of u)
= 1/(0-1'0-]') . viT(ATAvj) (defn. of transpose)
= (O'j / i) - viT v (Vs 1s an eigenvector )
=0

( s are orthonormal )

If i = j in the above then the result is 1, so the Us are also unit and we
have out result. U, V are orthonormal with 7 columns and X is diagonal!
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A Nice Guarantee about SVD

* (Eckart-Young Theorem) If a matrix B has rank k, then
[IA —Axll = ||A =B

whete Ap = oyuy V] + - + o U, VY
* || - || can be L2 Norm, Frobenius Norm, or Trace Norm

* Useful if we wish to reduce the dimensionality of A with as little error
as possible (e.g. approximation according to some norm)

* No other matrix is a better approximation under these constraints

Connections between SVD and PCA

* Can decompose covariance matrix of 0-mean A, x4 using SVD

2

e

Cov=ATA/(n—1)=VIUTUZVT/n-1) =V

* Cov is symmetric, so we can also decompose

Cov=0QAQT
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Connections between SVD and PCA:

* Putting those two equations together shows us

T _y_ 2 YT
QAQT =V -V

* Right singular vectors V are the eigenvectors of the covariance matrix
* The eigenvalues are \; = 02/(n — 1)
* The principal components are AV =UZ VIV =UX

* Remark: similar approach used in computation of Eigenfaces:

* Eigenfaces are the eigenvectors of the covariance matrix

Some Other Brief Applications of SVD

* Determining range, null space, and rank of A
* Matrix approximation (e.g. for compression)

* Inverse and Pseudo-inverse:
« IfA=UZXVTand X is full rank, then A= = VE~1UT,
e IfXis si_Pgular, then its pseudo-inverse is given by At =vzTyT ,
where X1 is formed by replacing every nonzero entry by its reciprocal

* Least squares:
e If we need to solve AX = b in the least-squares sense, then X;g =

vziuTh
* Denoising — small singular values typically correspond to noise.

Credit: Sumedha Singla
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SVD for Latent Semantic Indexing (NLP)

* Form a term-document matrix where:
* Rows: represents words
* Columns: represents documents
* Value: the count of the words in the document

* Idea: apply SVD to identify latent representations of the words
and documents

( dl d2 d3 d4 d5 dé
cosmonaut 1 0 1 0 0 0

__ | astronaut 0 1 0 0 0 0
X = moon 1 1. 0 0 0 0
car 1 0 0 1 1 0

\fruck 0 0 0 1 0 1

SVD for Latent Semantic Indexing (NLP)

* Full example using SVD and k =7 =5

dl d2 d3 d4 d5 deé diml dim2 dim3 dim4 dim5
cosmonaut 1 0 1 0 0 0 cosmonanut —0.44 —0.30 0.57 0.58 0.25
astronaut 0 1 0 0 0 0 U _ astrenaut  —0.13 —0.33 —-0.59 0.00 0.73
X = moon —0.48 —-0.51 —-0.37 000 —0.61
moon 1 1 0 0 0 0 car —0.70 0.35 0.15 —0.58 0.16
car 10 0 1 10 truck  —0.26 0.65 —041 058 —0.09
truck 0o 0 0 1 0 1
d1 a2 d3 d4 s~ dé
216 0 0 0 0 dim1 -0.75 —-0.28 -020 -045 —-033 —-0.12
0 159 0 0 0 T_ dim2 -0.29 —-0.53 —-0.19 0.63 022 041
E =l 0 0 128 0 0 V dim3 028 -0.75 045 -020 012 -033
0 0 .00 0 dim4 0 0 0.58 0 —0.58 0.58
0 0 0 0 039 dim5 —-0.53 029 -063 0.19 0.41 -0.22

Credit: Sumedha Singla
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SVD for Latent Semantic Indexing (NLP)

* In practice, X is large, noisy, or sparse. We want a low-rank approximation in a
latent space. We can pick k = 2 latent concepts

dl d2 d3 di d5 d6 dml dim2 dim3 dm4 dimS5
cosmonaut 1 0 1 0 0 0 cosmonant —0.44 —030 0 0 0 term-to-concept
astronaut 0 1 0 0 0 0 U _| astronaut = 013 — l].:f.‘! 0 0 0 matrix
X = L1 0 0 o o moon  —048 —051 0 0 0
moon car  —070 035 0 00
car 1 0o 0 1 1 0 truck  —026 065 0 0 0
fruck 0o 0 0 1 0 1

dl d2 d3 d4 a5 d6

2';6 1_';9 :: :: :: dml —075 05 020 044 033 —0d|
Yo s o vT- dm2 029 —053 —019 065 022 041 | O
dm3 0 0 0 0o 0o 0
3 : : : : dm4 0 0 0 0 0 0
dm5 0 0 0 0 o 0

concept strength matrix

Credit: Sumedha Singla

SVD for Latent Semantic Indexing (NLP)

Original space Reduced latent semantic space

cosmonaut 1 , diml -044
> Q' =| .
0= astronaut 0 dm?2 =030
moon 0 )
car 0 latent representation
of cosmonaut
truck 0

dl d2 d3 d4 d5 deé dl dl d3 d4 45 d6

cosmonaut 1 0 1 0 0 0 diml —0.75 —-028 —0.20 —-044 —033 —012
astronant 0 1 0 0 0 0 T _|dm2 —029 —053 —019 065 022 041
X=| ,on 1100 0 0 I v 3‘:‘1: 3 3 g 3 g g
car 1 0o 0 1 10 1 dim5 0 0 0 0 0 0
truck 0 0 0 1 0 1 |
|
c0s(Q,d2)=0 S B cos(Q',d2)=0.88

Credit: Sumedha Singla
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SVD for Latent Semantic Indexing (NLP)

SVD projects documents and words to a lower dimensional space

Words and documents are mapped to shared “latent semantic space”
* E.g King, Pharaoh, Emperor are semantically similar

Rank-lowering combines words into same dimensions

* Co-occurring words should project on the same dimensions

* Non-co-occurring words should project onto different dimensions

* {(pot), (vase), (dog)} — {(3.54 X pot + 0.36 X
vase), (dog)}

Mitigates issues of sparseness (related to synonymy) and noisiness

* Like our example of cosmonaut and astronaut

Hyperlink-Induced Topic Search (HITS)

(Kleinberg) ranks web-pages based on query o--o

Essential vocab:

* Authorities

* Hubs Y 1
Goal: Identify good authorities and hubs for a topic b 4
Each page receives two scores

* Authority score A(p): estimates value of content on page

* Hub score H(p): estimates value of links on page

Credit: Sumedha Singla
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Hyperlink-Induced Topic Search (HITS)

* For a topic, authorities
are relevant nodes which
are referred to by many —

hubs (high in-degree)

Ferrari |/
The official website of Ferrari

Fiat
Official site for this Italian compan:

Ford
Popular car manufacturer

Car Rankings

* Tor a topic, hubs are
. CAR MANUFACTURER WEBSITES
nodes Wthh Connect OmciBI_v'v,e")s“esfo\:131}.:.‘:\?.2?‘::;:’5 manufacturers
many related authorities
tor that topic (high out-
degree)

Honda UK
UK Japanese car manufacturer

Chrysler
American car, jeep and sports car manufacturer
good Hubs

good Authorities

Query: Top automobile makers

Credit: Sumedha Singla

Hyperlink-Induced Topic Search (HITS)

° Three Steps perCCC;SOfS SUCCC:1SOKS
1. Create a focused base-set of the Web ) /
* Start with a root set (from text-based query) : oy G0
*  Add immediate successots to root set @ \Oqs
* Add immediate predecessors to root set (limit d)
* The extended root set becomes our base set T
2. Iteratively compute hub and authority scores / ’ \
*  A(p): sum of H(q) for all q pointing to p / \ Base s
o] \

Starts with all scores as 1, and iteratively repeat
till convergence.

3. Filter out the top hubs and authorities

*  H(q): sum of A(p) for all p pointing to q ( S\QZOtT
. ‘.‘.\ ‘.\ J ) J
\ ,’J' //

Credit: Sumedha Singla

)
7

10
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Hyperlink-Induced Topic Search (HITS)

* G (root set) is a directed graph with web y
pages as nodes and their links as edges Gﬁ)

* G can be presented as an adjacency matrix A ™ 2 X
* A(,j)=1 only if i-th page points to j-th page. /n "

* Authority weights can be represented as a g
unit vector a o
* 4 : The authority weight of the i-th page ok o3t

nl 0 1 1 1 0

* Hub weights can be represented as a unit q|m 0 0 0 10
vector h n3 0 0 0 0 1

) ) m 0 0 0 0 0

* hj: The hub weight of the i-th page S0 0 0 1 0

Credit: Sumedha Singla

Hyperlink-Induced Topic Search (HITS)

Updating authority weights: a = ATh
Updating hub weights: h = Aa
After k iterations:

a1 = AThO
h1 = Aal
i h1 = AAThO

- hyc = (AAD),hy
* Convergence

* ay: Converges to principal eigenvector of ATA (singular vector)
e hy: Converges to principal eigenvector of AAT (singular vector)

Credit: Sumedha Singla
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Using SVD to Reconstruct an Image

(Credit: Kostas Pelechrinis)

Using SVD to Reconstruct an Image
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(Credit: Kostas Pelechrinis)
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Practical Concerns: How to pick k

* Note we can often pick k ? 3 10"
based on the elbow .
method (heuristic). g
* When does the rate of E ?
improvement decrease? $15
* Can also use a Scree Plot § |
* Plot of eigenvalues gos
* For NME we will see a 3
more principled procedure E e o m a0 = e

Number of Singular Values used

(Credit: Kostas Pelechrinis)

Non-Negative Matrix Factorization

* For a non-negative matrix X we seek factors X = Wy, H, v
I’Mr}’lll;lllx—WH” s.t. Wij > O,Vi,j and Hij = O,Vi,j

* This decomposes rows and columns of X into an r dim. feature space
Recall that SVD provided the best rank 7 approximation! Why NMF?
* Operates on non-negative data/gives non-negative factors (intuitive for counts)

* Non-unique. Useful if connected to a privacy application; e.g;, for certain
invertible B we have WH = WBB'H with the factors still positive

* Norms used may be Frobenius or Matrix Divergence (identical to
applying KL Divergence on the elements of a matrix)

13
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NMF Example: Basketball

* Dataset: 184,209 shot locations from an NBA season

* Problem: Suppose we want to describe the shooting patterns of NBA
players. If we discretize the court into 1ft x 1ft squares, there is still more
than 2000 locations (high dimensional and probably sparse)

* Our data matrix rows are players, while columns represent locations
* Option 1: court zones (13 columns)
* Option 2: grid cells 1x1 (2,350 columns)

* X;; is the number of shots player i took from location j

NMF Example: Basketball (Option 1)

* W has dimension #players X r; rows are player reps. in terms latent patterns

* H has dimension r X #locations gives latent shooting patterns

D
\
1
A

- 6. » = ‘ o 1
,\&,‘ 0 21.3 8.6 3.2 4.6 1 8.7 9 4.7 4.6
‘&. 9.6 19.6 2.5 0.8 0 5.4 3.6 0.79 0.64 2.5

20.2 7.6 8.1 2.44 10.7 0.4 7.7 2.4 1.6 5.2
‘& 0 0 1.1 2.12 34.2 0.5 11 19.5 0.7 1.3
‘&i 0 4 14.2 16.2 4.5 0.8 2.4 15.1 3.5 3.7

(Credit: Kostas Pelechrinis)

14



2/18/2020

NMF Example: Basketball (Option 1)

* Using a decomposition instead of simply counting frequencies allows disjoint areas
to be paired together. E.g,, see the latent concept of the corner three (bottom left)

NMF Example: Basketball (Option 2)

* Miller, Bornn, Adams and Goldsberry ICML 2014) used a grid over the

court and an extension of NMF

= = = =

LeBron James 0.21 0.16 0.12 0.09 0.04 0.07 0.00 0.07 0.08 0.17
Brook Lopez 0.06 0.27 0.43 0.09 0.01 0.03 0.08 0.03 0.00 0.01
Tyson Chandler 0.26 0.65 0.03 0.00 0.01 0.02 0.01 0.01 0.02 0.01
Marc Gasol 0.19 0.02 0.17 0.01 0.33 0.25 0.00 0.01 0.00 0.03
Tony Parker 0.12 0.22 0.17 0.07 0.21 0.07 0.08 0.06 0.00 0.00
Kyrie Irving 0.13 0.10 0.09 0.13 0.16 0.02 0.13 0.00 0.10 0.14
Stephen Curry 0.08 0.03 0.07 0.01 0.10 0.08 0.22 0.05 0.10 0.24
James Harden 0.34 0.00 0.11 0.00 0.03 0.02 0.13 0.00 0.11 0.26
Steve Novak 0.00 0.01 0.00 0.02 0.00 0.00 0.01 0.27 0.35 0.34

15
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Implementing NMF: How to Solve For Factors

* Solving min||X — WH]| is equivalent to solving min||X — WH||2
wW.H W.,H

* In general, we will fix W and solve for Vy||X — WH||2 or vice-versa

* This simplifies things because mhi,nHX - WH||2 is convex

* We will use Vy||X — WH||2 and Vy || X — WH||2 frequently, so we’ll compute them

* First some useful facts: E thr(XTA) =A

A X =tr(XTX) F. Vxtr(XTAX) = (A + AT)X
B. tr(A + B) = tr(A) + tr(B) G Vxtr(XAXT) = X(AT + A)
C. tr(ABC) = tr(CAB) = tr(BCA)

D. Vxtr(AX) = AT

Analytic Solutions for Factors

Gradient computation for the Frobenius norm w.r.t H:

VullX — WH||? = Vytr[(X—WH)T (X—WH)] b/cllAll = +/tr(ATA)
= Vuytr[XTX —X"WH — HTWTX + HTWTWH]

= Vutr(X"X) — Vytr(XTWH) — Vutr(HTWTX) + V4tr(HTWTWH) b/c tr is linear
=0—- WIX-WI'X+ (W'W+W'W)H
b/c Vxtr(AX) = AT, Vyxtr(XTA) = A, and Vxtr(XTAX) = (A + AT)X

=—2-WT X+ 2 - WI'WH. Setting to zero gives WTWH = WTX

16
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Alternating Least Squares For NMF

A simple approach to finding W, H is alternating least squares ( ALS )

1. Initialize W randomly

2. Estimate H from WTWH = WX by solving mHin||X — WH]||2
(recall, W is fixed so we can use standard solver for above)

3. Setall negative elements of H to zero or a small positive value

2
4. Estimate W from HHTW = H"X by solving min||X" — HTWT[_
5. Set all negative elements of W to zero or a small positive value

* There are simple and more complicated improvements (Cichoki, 09)

Multiplicative Update Rules for NMF

* (Lee and Seung, 01) provide some guarantees on the below multiplicative
update rules (i.e., they are non-decreasing under some assumptions)

* For Frobenius Norm (ops are element-wise),
H-H® (W'X) @ (WT'WH),

W« WQ® (XHT) @ (WHHT)
* For the KL Divergence,

Ziwiaxiu/(WH)iu ZuHauXiu/(WH) iu
Hau < Hau Y Wka ’ Wau < Wia Y Hay

17
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Multiplicative Updates vs. Gradient Based

* We can understand these by their relation to traditional gradient descent
* This is demonstrated for the Frobenius Norm below

* The below additive rule is equivalent to conventional gradient descent if
Naw 1S the same for all indices

Hau < Hau + nau[(wa)au - (WTWH)au]

* We can pick 74, to arrive at the multiplicative update

Nau = Hau/(wTWH)au

Cross Validation via Imputation for NMF

* Why implement ALS? If we wish to cross-validate our NMF through imputation we
can do so by implementing ALS and applying a mask (this isn’t available in Sklearn)

* Cross-validation through imputation in which we modify the traditional
decomposition objective by a mask M giving rur}11r11||M & (X —WH)||

* Cannot holdout entire rows. Below shows a speckled holdout pattern (Wold, 1978 )

Matrix Faclorization Model Data Matrix

8] v’

See http://alexhwilliams.info/itsneuronalblog/2018/02/26/crossval/ for a more detailed discussion
And the original paper by Wold: https://www.jstor.org/stable/pdf/1267639.pdf

18
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Decomposing a General Tensor

* In general, we may be interested in decomposing data indexable along = 2 axes

* E.g term, document, and time or term, document, and news organization

* For a brief video overview: https://www.youtube.com/watch?v=L8uT6hgMt00

* For a good textual overview: https://www.cs.uct.edu/~epapalex/papers/tist16-tensors.pdf

In general, we can write more
. .. c, c
higher mode decompositions - / %
R
[ 1L 1 w*

as a linear combination of

outer products of vectors. X ~ - B

Recall for SVD: A = ¥ o;u;v7 a, an

l IxdxK IxR

Decomposing a General Tensor

* Decomposing a general tensor can be framed as a canonical polyadic
(CP) decomposition (also called CANDECOMP and PARAFAC)

* CP Decomposition for a 3-mode tensor into 7 = 1: R components is
X = yra” ob" oc" where (@ ob" o ¢"); ;) =a; Xb; X

» If X is nxmxk then a* is nx1, b* is mx1, ¢* is kx1

* We say X is approximated by a sum of (tensor) rank-1 tensors

* Easily extends to N-mode case (e.g include d*)

* CP is unique under fairly mild conditions!

* Variants of ALS are widely used (derived in aforementioned review)

19
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Applications of Tensor Decomposition

* https://www.sciencedirect.com/science/article/pii/S0165027015001016

64 F. Cong et al. / Journal of Neuroscience Methods 248 (2015) 59-69
Waveform of feature # 1 Spectrum of feature # 1 Topography of feature # 1 Feature # 1
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Fig. 3. Example of CPD of a fourth-order ERP tensor including TFR of MMN data with the The first thr in each mode are shown.

Relevant Packages

* Scikit-Learn has implementations of both NMF and SVD (truncated)
* https://scikit-learn.org/stable

* Numpy/Scipy also have an implementation of SVD (full)
* https://www.scipy.org

* Gensim has an implementation of LSI model that supports updates
* https://radimrehurek.com/gensim/

* Tensorly has implementations of some tensor decompositions

* http://tensotly.org/stable/index.html
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