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Generative Modelling
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Input Output Unsupervised Supervised
Training Examples Some representation of Data: X Data: X, y
~ @ probability Goal: Learn hidden Goal: Learn hidden
distribution, which underlying structure of mapping from X ->y
defines this example data
space.
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Why Generative Modelling?

Features
Representative of
Data

Q Noisy Input e Simulated Data @
Prediction of o Semi-supervised
Future State 6 il (DEIE) e Learning

MAXIMUM LIKELIHOOD BASED MODELS

X
p(x) |6 = ARG MAX(8) | Ex~PdatalogP(§)
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Fully visible belief nets:

Change of variables
models (nonlinear ICA)

NADE
MADE
PixelRNN

N\

VAE

N\

i

Boltzmann machine

© O

© O O

© O O O

© 0 ©0 0 O
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PixelRNN
Pixel CNN
WaveNet

o Generate image pixels from the corner

o Stable and Fast training

o Slow generation (sequential)

o Cannot generate samples based on latent code

o Tractable

o p(x) = [Tty p(xilxs, X2, o) Xi-1)
o Maximum Likelihood based Training
o Chain Rule
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AN

O
®

Variational Auto
Encoder

o

o

o

Able to achieve high likelihood

Not asymptotically consistent unless q is perfect

Lower Quality (blurry) samples

Non tractable

logp(x) = logp(x) — Dk, (q(2) || p(z|x))

= E,-qlogp(x,2) + H(q)

Boltzmann Machine

o Energy Function Based Model
o Markov Chains don’t work for long sequences

o Hard to scale on large dataset

o p(x,h) = exp(=E(x, 1)) | Z
o Z= Y.nexp(—E(x,h))

Deep Boltzman
Machine

W3
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Maximum Likelihood / m
GAN

p g

A
Markov Chain
Tractable density Approximate density prems

Fully visible belief nets:

bie be » \
MADE Variational
VAE

PixelRNN
Change of variables Boltzmann machine

models (nonlinear ICA)

Where are some properties of GANs?

@ Can use latent information
v/ Asymptotically consistent
Sy No Markov Chain assumption

fiiff Samples produced are high quality
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Groun d Truth MSE Adversarial

NEXT FRAME VIDEO GENERATION
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Generative Adversarial Networks

Training
Images
Discriminator Real

4___——-'.
[W— Fak
O Rl

Generator

https://www.slides

Latent random variable

hare.

X
Differentiable module
Realworld —— Sample »\\
images \\ D Rea D(x)
\
\ .
-
i 5
G > Discriminator ‘ @
z /
=] G/ =
( / Fake
/
Q / D(G®)
-~ Generator »| Sample [

Differentiable module

net/xavigiro/deep-learning-for-computer-vision-generative-models-and-adversarial-training-upc-2016
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Realworld ——
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= Discriminator : g
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3 O Fake
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s 1O Generator |— =
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7 Backprop error to
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Real
" Discriminator : §
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9 O Fake
E
s O Generator [——~ Sample
5 O
5 Backprop error to
L update generator

weights
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“The generative model can be thought of as analogous to a team

G ] of counterfeiters, trying to produce fake currency and use it
eneratlve without detection, while the discriminative model is analogous to
A d 3 the police, trying to detect the counterfeit currency. Competition in
Versarla]‘ this game drives both teams to improve their methods until the
_\ | etworks counterfeits are indistinguishable from the genuine articles.”

- Goodfellow, et. Al. “Generative Adversarial Nets” (2014)

min max — JP
G D

1 1
P = -3 Ex-p,,., logD(x) — 2 E, log (1 — D(G(z)))

_]D \_'_) \_'_/

Discriminator output for Discriminator output for
real data x fake data G(z)

~
D
I

o Generator minimizes the log-probability of the

Minim aX Game discriminator being correct

o Resembles Jensen-Shannon divergence

Approach

o Saddle point of Discriminator’s loss

10
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Nash Equilibrium / Saddle Point

D1scr1m1nat01:ﬂ / Data
N ifi e Modd P ey Para®)
4 e aD(X) - Paara(%) + Pmoger (%)

Minimax Game

Approach

Pdata(x) = Pmodet (x) vx

D*(x) =% Vx

o Generator minimizes the log-probability of the
discriminator being correct

o Resembles Jensen-Shannon divergence

o Saddle point of Discriminator’s loss

]D Ex"’Pdata log D(X)

Vanishing

Gradient Problem

—% E, log (1 - D(G(2)))

o Gradient disappears if D is confident, i.e. D(G(z)) — O

o As can be seen that whenever the discriminator becomes
very confident the loss value will be zero

o Nothing to improve for Generator
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1 1
JP = —5 Ex-py,., 10g D(x) — > E, log (1 — D(G(z)))

J6 = —% E, log D(G(2))

H euri Stic Non = o Generator maximizes the log probability of the

discriminator’s mistake

S aturating Games o Does not change when discriminator is successful

i Jo=—J°

_ 5t 1
3 J¢ =—=E,exp(c7D(G(2))
“10H — " Minimax 2
54— Non-saturating heuristic | 1
—  Maxi likelihood cost G — __
™ a;‘urnum i elI ood cos | . j — 2 Ez log D(G(Z))
0.0 0.2 0.4 0.6 0.8 1.0

COMPARISON OF GENERATOR LOSSES

12
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N o n-co nve rge nce « Differential Equation’s solution has sinusoidal

terms

D & G nullifies each others learning in every iteration + Even with a small learning rate, it will not
converge
Train for ng time — with nerati i | A ) ) ;
ain for a long time — without generating good quality samples | Discrete time gradient descent can spiral
outward for large step size

Vx(0), y(1)) = x()y(t)

Vix,y) =xy
ax
x=0, y=0 TG,
)
r &_;: =x(t)
e, ,A %y ox
' EZiR TR
% : x(t) = x(0)cost(t) — y(0)sin(t)
A y(t) = x(0)cost(t) — y(0)sin(t)

Khushboo Thaker

- -

Step 0 Step 5k Step 10k Step 15k Step 20k Step 25k Target

MODE COLLAPSE

mingmaxpV(G,D) # maxpmingV (G, D)

13
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Why are
GANSs hard to

train?

GENERATOR KEEPS MAINTAIN TRADE-OFF OF THE TWO LEARNING TASKS

GENERATING SIMILAR GENERATING MORE NEED TO HAVE BALANCE TO
IMAGES - SO NOTHING TO ACCURATE VS HIGH ACHIEVE STABILITY
LEARN COVERAGE SAMPLES

IF DISCRIMINATOR IS NOT
SUFFICIENTLY TRAINED -
LEADS TO POOR GENERATOR
PERFORMANCE

IF DISCRIMINATOR IS OVER-
TRAINED - VANISHING
GRADIENT PROBLEM

14
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One-Sided Label Smoothing

Historically generated batches

Tricks to
Train GANs

Feature Matching

Batch Normalization

Regularizing discriminator gradient in
region around real data (DRAGAN)

16
14
1.2
1.0
0.8
0.6
0.4
0.2
0.0
-0.2

=3 -2 =1 0 ) 1 2 3

1 1
]D = —3 EX"‘Pdata 091logD(x) — > E, log (1 - D(G(Z)))

3 o Generator is VERY sensitive to output from Discriminator
One-Sided Label @ seeosmorgons

o Does-not reduce accuracy

Smoothing | - wesem

o Only smooth positive samples

15
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Feature Matching

o

o

o

Generated images must match statistics of real images

Discriminator defines the statistics

Generator is trained such that the expected value of statistics matches the expected value of real statistics

Generator tries to minimize the L2 distance in expected values in some arbitrary space

Discriminator defines that arbitrary space

I Ex~pdata f(x) — Ez<pmodel f(G(Z))“%

Discriminator

Batch
Normalization

o Construct different mini-batches for real and fake

o Each mini-batch needs to contain only all real
images or all generated images.

o Makes samples with-in a batch less dependent

16
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¢ DRAGAN

Failed GANs typically have extreme gradients/sharp
peaks around real data

Regularize GANs to reduce the gradient of the
- discriminator in region around real data

A. Ex~pdata,6~N(0,cI) [ ”AxD (x+ )l - k]z

GAN Variations

o

Conditional GAN
o LapGAN

o DCGAN

o CatGAN

o InfoGan

o AAE

o DRAGAN

o IRGAN

o ProGAN

o and more!

17
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I S
. Suide2 16
Project and reshape b

CONV 2
G(2)

Figure 1: DCGAN generator used for LSUN scene modeling. A 100 dimensional uniform distribu-
tion Z is projected to a small spatial extent convolutional representation with many feature maps.
A series of four fractionally-strided convolutions (in some recent papers, these are wrongly called
deconvolutions) then convert this high level representation into a 64 x 64 pixel image. Notably, no
fully connected or pooling layers are used.

DCGAN

o Multiple Convolutional
Layers

° Batch Normalization
o Strides with Convolution

o Leaky ReLUs

man man woman
with glasses without glasses without glasses

EH-E+0
i -

woman with glasses

A Results of doing the same
’ c_\,, arithmetic In pixel space
e

DCGAN

o Multiple Convolutional
Layers

o Batch Normalization
o Strides with Convolution

o Leaky ReLUs

18
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Figure 4: Manipulating latent codes on 3D Chairs: In (a), we show that the continuous code
captures the pose of the chair while preserving its shape, although the learned pose mapping varies
across different types: in (b), we show that the continuous code can alternatively learn to capture the
widths of different chair types, and smoothly interpolate between them. For each factor, we present
the representation that most resembles prior supervised results [7] out of 5 random runs to provide
direct comparison.

DCGAN

o

o

o

o

Multiple Convolutional
Layers

Batch Normalization
Strides with Convolution

Leaky RelLUs

PX|Y)

Discriminator

00000
QOO

o Generator Learns P(X|Z,Y)

o Discriminator Learns P(L|X,Y)

Conditional GANs

1 1
I = =3 Exoryya 108 DGY) — 5 Exlog (1~ D(GCzly))

19
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Source Video

Detected
Pose

Source to Targe 2 R"I

Saurce to Terget 1 Result

InfoGAN

G |

o Rewards Disentanglement
o (individual dimensions capturing key attributes of images)
\

o Z - partitioned into two parts
oz - capture slight variation in the images
oy - captures the main attributes of the images
\ -
LC(Iatent]) \Z (noxselj

o Mutual Information

° maximizing mutual information Between the code and generator output
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InfoGAN

mGin max V;(D,G) =V(D,G) — Al(c; G(z,¢))

I(c;G(z,¢)) = H(c) — H(c|G(z,¢))
= Ex~G(z,c)[DKL (P ||Q) ar Ec'~p(c|x) [lOgQ(C'lI)] ] + H(C)

= Ex-g(ze)c~plc) [log @(clx)] + H(c)

d

x

[X,u: (data)) ( X!w J

E

features data

1) o
@)

OF)
é#

o Encoder

BiGAN - o

o Discriminator

21
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LapGAN

o Scale GANs for large
images

o Laplacian pyramid
function is used to
generate different scales
of image

Level 4
Blurand LMG resolution
subsample Level 3
Blur and 1/8 resolution

subsample ' Level 2
1/4 resolution

Blur and
subsample

Level 1

Blur and 1/2 resolution
subsample

Level 0
' Original

/: ¥ » image

LapGAN

o Scale GANs for large
images

o Laplacian pyramid
function is used to
generate different scales
of image

22
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G Latent Latent Latent
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Training progresses ————»

PROGAN

Draw samples
from p(z)

Adversarial Autoencoder Variational Autoencoder

Manifold of
Adversarial Autoencoder
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ADVERSARIAL AUTOENCODER
(GAN + VAE)
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GAN is still an active
area of research

GAN can capture
perceptual similarity
and generates

Conclusion

GAN framework is
flexible to support
variety of learning
problems

Needs a lot of work in
theoretic foundation of
Network

GAN does not
guarantee to converge

Evaluation of GAN is
still an open research
(Theis et. al)

better images than VAE

Important Papers to dig into GAN

NIPS 2016 Tutorial:

Arjovsky, Martin, and Léon Bottou. "Towards principled methods for training generative adversarial
networks." arXiv preprint arXiv:1701.04862 (2017).

- lan Goodfellow

* Roth, Kevin, et al. "Stabilizing training of generative adversarial networks through regularization." Advances
in Neural Information Processing Systems. 2017.

* Li, Jerry, et al. "Towards understanding the dynamics of generative adversarial networks." arXiv preprint
arXiv:1706.09884 (2017).

* Kodali, Naveen, et al. "On convergence and stability of GANs." arXiv preprint arXiv:1705.07215 (2017).

* Fedus, William, et al. "Many Paths to Equilibrium: GANs Do Not Need to Decrease aDivergence At Every

Step." arXiv preprint arXiv:1710.08446 (2017).
* https://github.com/soumith/ganhacks#authors

 http://www.inference.vc/instance-noise-a-trick-for-stabilising-gan-training/

* https://www.araya.org/archives/1183

Khushboo Thaker

24
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Software

o https://github.com/eriklindernoren/Keras-GAN

o https://github.com/eriklindernoren/PyTorch-GAN

o https://github.com/znxlwm/tensorflow-MNIST-cGAN-cDCGAN

o
1F TensorFlow

References

Deep Learning Book

GAN Tutorial:
https://www.youtube.com/watch?v=HGYYEUSm-0O
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THANK YOU!
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