Modern Generative Models:

Restricted Boltzmann Machines

Based on presentation by Hung Chao https://people.cs.pitt.edu/~milos/courses/cs3750/lectures/class22.pdf

Jun Luo 02/2020

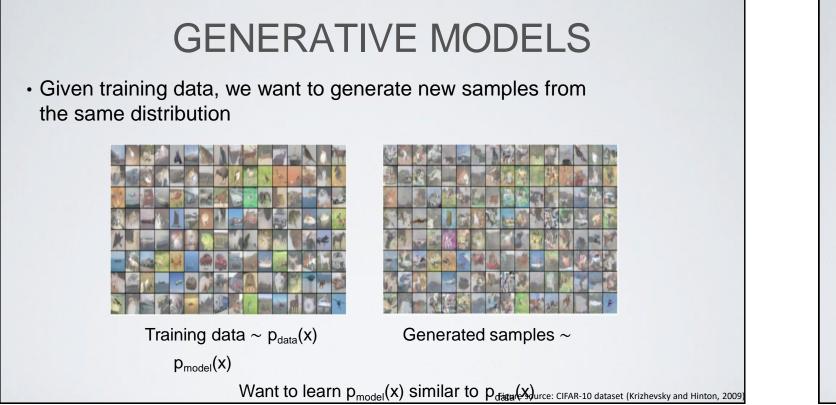
- > automatically extract meaningful features for data
- > Leverage the availability of unlabeled data
- - > Restricted Boltzmann Machines
 - Variational Autoencoders

RESTRICTED BOLTZMANN MACHINE

• Unsupervised Learning: use only the inputs $\mathbf{x}^{(t)}$ for learning

> Can use negative log-likelihood to learn the underlying feature

• We will see 2 neural networks for unsupervised learning



- Why generative models?

- (reinforcement learning applications!)
- that can be useful as general features

GENERATIVE MODELS

• Realistic samples for artwork, super-resolution, colorization, etc.

• Training generative models can also enable inference of latent representation

Figure source: Internet

RESTRICTED BOLTZMANN MACHINE

 Many interesting theoretical results about undirected models depends on the assumption that $\forall x, \tilde{p}(x) > 0$ A convenient way to enforce this condition is to use an energy-based model where

$$\tilde{p}(x) = \exp(-E(x))$$

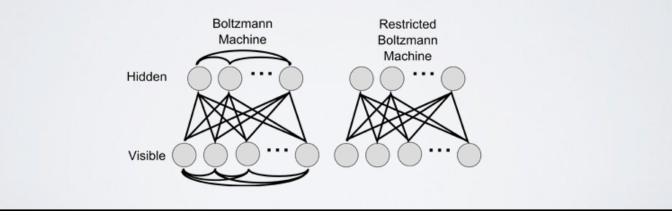
 $\rightarrow p(x) = \frac{1}{Z}\tilde{p}(x)$ Normalized probability

- E(x) is known as the energy function
- Any distribution of this form is an example of a Boltzmann distribution. For this reason, many energy-based models are called Boltzmann machines.

e.g. (a)-(b)-(d) (e)

E(a, b, c, d, e, f) can be written as $\begin{array}{l} E_{a,b}\left(a,b\right)+E_{b,c}\left(b,c\right)+E_{a,d}\left(a,d\right)+E_{b,e}\left(b,e\right)+\\ E_{e,f}\left(e,f\right) \end{array}$

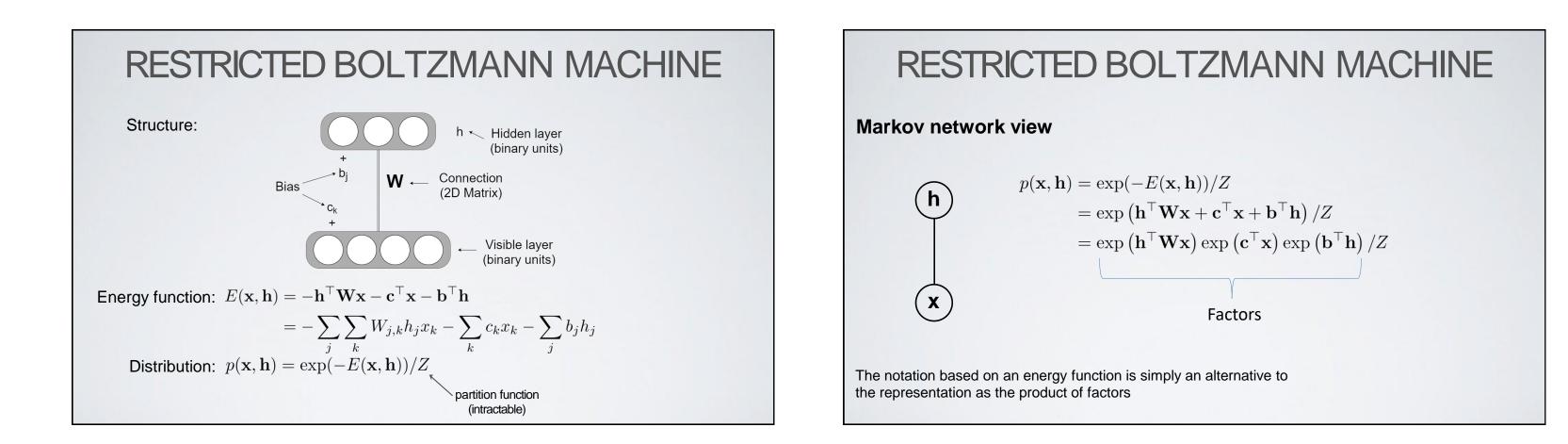
- layer of latent variables



RESTRICTED BOLTZMANN MACHINE

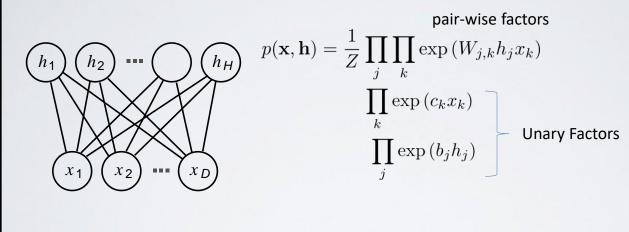
• Restricted Boltzmann machines (RBMs) are undirected probabilistic graphical models containing a layer of observable variables and a single

• RBM is a bipartite graph, with no connections permitted between any variables in the observed layer or between any units in the latent layer

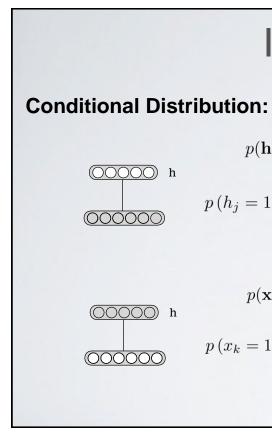


2/11/2020

Markov network view

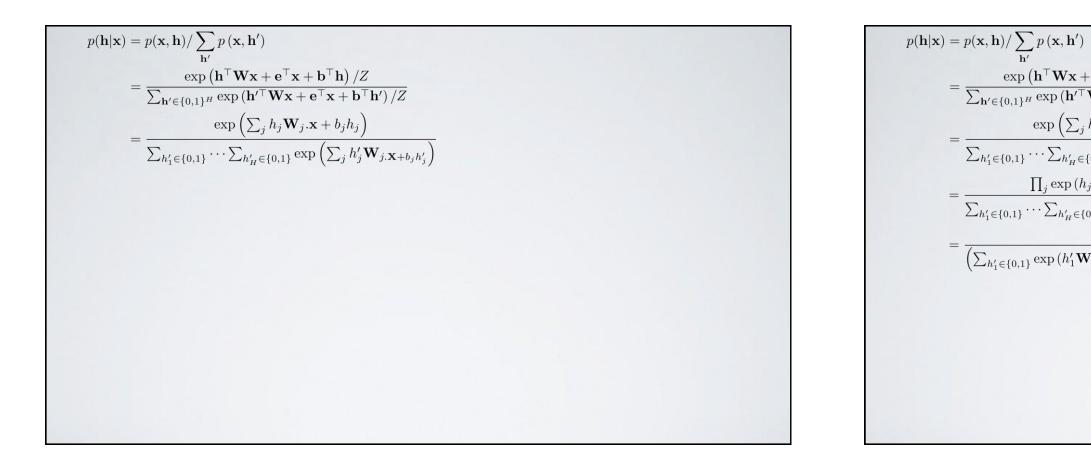


The scalar visualization is more informative of the structure within the vectors



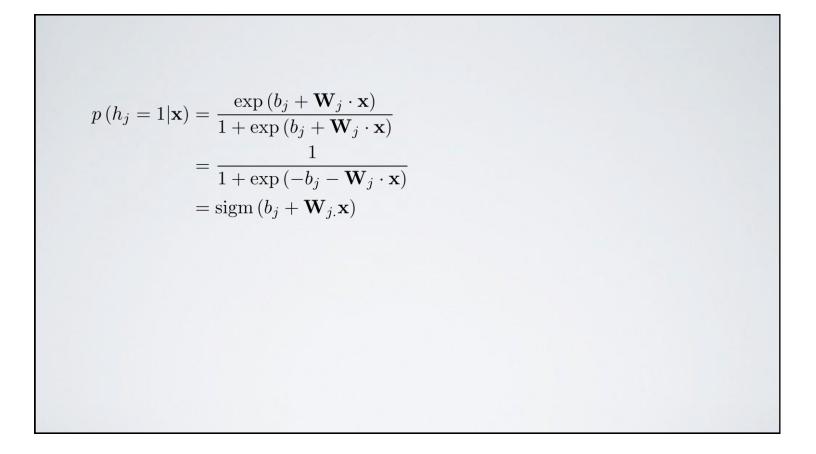
INFERENCE

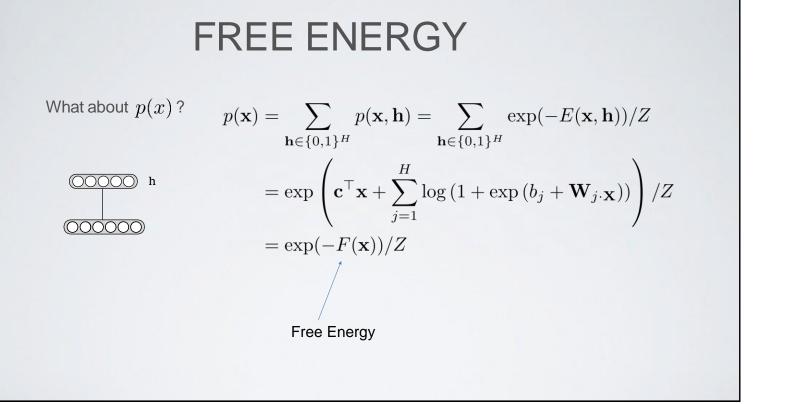
$$\begin{aligned} \mathbf{h}|\mathbf{x}\rangle &= \prod_{j} p\left(h_{j}|\mathbf{x}\right) \\ 1|\mathbf{x}\rangle &= \frac{1}{1 + \exp\left(-\left(b_{j} + \mathbf{W}_{j} \cdot \mathbf{x}\right)\right)} \\ &= \operatorname{sigm}\left(b_{j} + \mathbf{W}_{j} \cdot \mathbf{x}\right) \\ \mathbf{x}|\mathbf{h}\rangle &= \prod_{k} p\left(x_{k}|\mathbf{h}\right) \\ 1|\mathbf{h}\rangle &= \frac{1}{1 + \exp\left(-\left(c_{k} + \mathbf{h}^{\top}\mathbf{W} \cdot k\right)\right)} \\ &= \operatorname{sigm}\left(c_{k} + \mathbf{h}^{\top}\mathbf{W}_{.k}\right) \end{aligned}$$

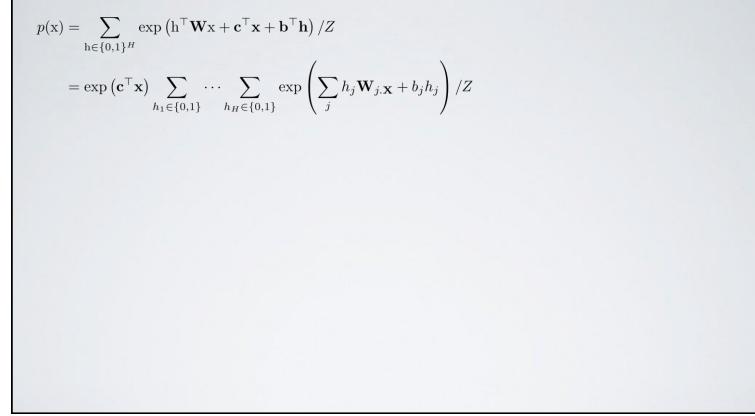


 $= \frac{\exp\left(\mathbf{h}^{\top}\mathbf{W}\mathbf{x} + \mathbf{e}^{\top}\mathbf{x} + \mathbf{b}^{\top}\mathbf{h}\right)/Z}{\sum_{\mathbf{h}'\in\{0,1\}^{H}}\exp\left(\mathbf{h}'^{\top}\mathbf{W}\mathbf{x} + \mathbf{e}^{\top}\mathbf{x} + \mathbf{b}^{\top}\mathbf{h}'\right)/Z}$ $= \frac{\exp\left(\sum_{j}h_{j}\mathbf{W}_{j}.\mathbf{x} + b_{j}h_{j}\right)}{\sum_{h_{1}'\in\{0,1\}}\cdots\sum_{h_{H}'\in\{0,1\}}\exp\left(\sum_{j}h_{j}'\mathbf{W}_{j}.\mathbf{x} + b_{j}h_{j}\right)}$ $= \frac{\prod_{j}\exp\left(h_{j}\mathbf{W}_{j}\cdot\mathbf{x} + b_{j}h_{j}\right)}{\sum_{h_{1}'\in\{0,1\}}\cdots\sum_{h_{H}'\in\{0,1\}}\prod_{j}\exp\left(h_{j}'\mathbf{W}_{j}.\mathbf{x} + b_{j}h_{j}\right)}$ $= \frac{\prod_{j}\exp\left(h_{j}\mathbf{W}_{j}\cdot\mathbf{x} + b_{j}h_{j}\right)}{\left(\sum_{h_{1}'\in\{0,1\}}\exp\left(h_{1}'\mathbf{W}_{1}\cdot\mathbf{x} + b_{1}h_{1}'\right)\right)\cdots\left(\sum_{h_{H}'\in\{0,1\}}\exp\left(h_{H}'\mathbf{W}_{H}\cdot\mathbf{x} + b_{H}h_{H}'\right)\right)}$

$p(\mathbf{h} \mathbf{x}) = p(\mathbf{x}, \mathbf{h}) / \sum_{\mathbf{h}'} p(\mathbf{x}, \mathbf{h}')$
$= \frac{\exp\left(\mathbf{h}^{\top}\mathbf{W}\mathbf{x} + \mathbf{e}^{\top}\mathbf{x} + \mathbf{b}^{\top}\mathbf{h}\right)/Z}{\sum_{\mathbf{h}' \in \{0,1\}^{H}} \exp\left(\mathbf{h}'^{\top}\mathbf{W}\mathbf{x} + \mathbf{e}^{\top}\mathbf{x} + \mathbf{b}^{\top}\mathbf{h}'\right)/Z}$
$= \frac{\exp\left(\sum_{j} h_{j} \mathbf{W}_{j} \cdot \mathbf{x} + b_{j} h_{j}\right)}{(\mathbf{x} + \mathbf{y})^{2}}$
$\sum_{h'_1 \in \{0,1\}} \cdots \sum_{h'_H \in \{0,1\}} \exp\left(\sum_j h'_j \mathbf{W}_{j.\mathbf{x}+b_j h'_j}\right)$ $\prod_j \exp\left(h_j \mathbf{W}_j \cdot \mathbf{x} + b_j h_j\right)$
$= \frac{1}{\sum_{h'_1 \in \{0,1\}} \cdots \sum_{h'_H \in \{0,1\}} \prod_j \exp\left(h'_j \mathbf{W}_{j,\mathbf{X}+b_j}h'_j\right)}$
$= \frac{\prod_{j} \exp\left(h_{j} \mathbf{W}_{j} \cdot \mathbf{x} + b_{j} h_{j}\right)}{\left(\sum_{h_{1}' \in \{0,1\}} \exp\left(h_{1}' \mathbf{W}_{1} \cdot \mathbf{x} + b_{1} h_{1}'\right)\right) \dots \left(\sum_{h_{H}' \in \{0,1\}} \exp\left(h_{H}' \mathbf{W}_{H} \cdot \mathbf{x} + b_{H} h_{H}'\right)\right)}$
$= \frac{\prod_{j} \exp\left(h_{j} \mathbf{W}_{j} \cdot \mathbf{x} + b_{j} h_{j}\right)}{\prod_{j} \left(\sum_{h'_{j} \in \{0,1\}} \exp\left(h'_{j} \mathbf{W}_{j,\mathbf{x}+b_{j} h'_{j}}\right)\right)}$
$= \frac{\prod_{j} \exp\left(h_{j} \mathbf{W}_{j \cdot \mathbf{x}} + b_{j} h_{j}\right)}{\prod_{j} \left(1 + \exp\left(b_{j} + \mathbf{W}_{j} \cdot \mathbf{x}\right)\right)}$ $\mathbf{T} \exp\left(h_{j} \mathbf{W}_{j} \cdot \mathbf{x} + b_{j} h_{j}\right)$
$= \prod_{j} \frac{\exp(h_{j} \mathbf{W}_{j} \cdot \mathbf{x} + b_{j} h_{j})}{1 + \exp(b_{j} + \mathbf{W}_{j} \cdot \mathbf{x})}$ $= \prod p(h_{j} \mathbf{x})$
$-\prod_{j} P(i j \mathbf{x})$







$$p(\mathbf{x}) = \sum_{\mathbf{h} \in \{0,1\}^{H}} \exp\left(\mathbf{h}^{\mathsf{T}} \mathbf{W} \mathbf{x} + \mathbf{c}^{\mathsf{T}} \mathbf{x} + \mathbf{b}^{\mathsf{T}} \mathbf{h}\right) / Z$$

$$= \exp\left(\mathbf{c}^{\mathsf{T}} \mathbf{x}\right) \sum_{h_{1} \in \{0,1\}} \cdots \sum_{h_{H} \in \{0,1\}} \exp\left(\sum_{j} h_{j} \mathbf{W}_{j,\mathbf{x}} + b_{j} h_{j}\right) / Z$$

$$= \exp\left(\mathbf{c}^{\mathsf{T}} \mathbf{x}\right) \left(\sum_{h_{1} \in \{0,1\}} \exp\left(h_{1} \mathbf{W}_{1}.\mathbf{x} + b_{1} h_{1}\right)\right) \cdots \left(\sum_{h_{H} \in \{0,1\}} \exp\left(h_{H} \mathbf{W}_{H} \cdot \mathbf{x} + b_{H} h_{H}\right)\right) / Z$$

$$= \exp\left(\mathbf{c}^{\mathsf{T}} \mathbf{x}\right) \left(1 + \exp\left(b_{1} + \mathbf{W}_{1} \cdot \mathbf{x}\right)\right) \cdots \left(1 + \exp\left(b_{H} + \mathbf{W}_{H} \cdot \mathbf{x}\right)\right) / Z$$

$$p(\mathbf{x}) = \sum_{\mathbf{h} \in \{0,1\}^{H}} \exp\left(\mathbf{h}^{\top} \mathbf{W} \mathbf{x} + \mathbf{c}^{\top} \mathbf{x} + \mathbf{b}^{\top} \mathbf{h}\right) / Z$$

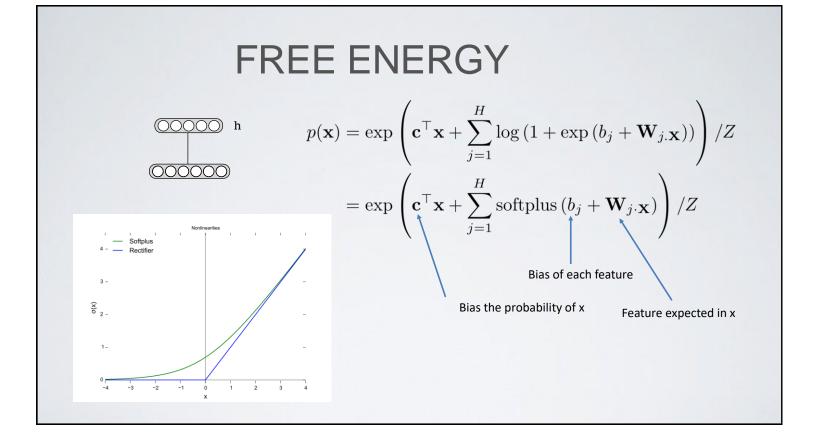
$$= \exp\left(\mathbf{c}^{\top} \mathbf{x}\right) \sum_{h_{1} \in \{0,1\}} \cdots \sum_{h_{H} \in \{0,1\}} \exp\left(\sum_{j} h_{j} \mathbf{W}_{j,\mathbf{x}} + b_{j} h_{j}\right) / Z$$

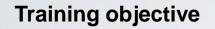
$$= \exp\left(\mathbf{c}^{\top} \mathbf{x}\right) \left(\sum_{h_{1} \in \{0,1\}} \exp\left(h_{1} \mathbf{W}_{1}.\mathbf{x} + b_{1} h_{1}\right)\right) \cdots \left(\sum_{h_{H} \in \{0,1\}} \exp\left(h_{H} \mathbf{W}_{H} \cdot \mathbf{x} + b_{H} h_{H}\right)\right) / Z$$

$$= \exp\left(\mathbf{c}^{\top} \mathbf{x}\right) \left(1 + \exp\left(b_{1} + \mathbf{W}_{1} \cdot \mathbf{x}\right)\right) \cdots \left(1 + \exp\left(b_{H} + \mathbf{W}_{H} \cdot \mathbf{x}\right)\right) / Z$$

$$= \exp\left(\mathbf{c}^{\top} \mathbf{x}\right) \exp\left(\log\left(1 + \exp\left(b_{1} + \mathbf{W}_{1} \cdot \mathbf{x}\right)\right)\right) \cdots \exp\left(\log\left(1 + \exp\left(b_{H} + \mathbf{W}_{H} \cdot \mathbf{x}\right)\right)\right) / Z$$

$$= \exp\left(\mathbf{c}^{\top} \mathbf{x} + \sum_{j=1}^{H} \log\left(1 + \exp\left(b_{j} + \mathbf{W}_{j}.\mathbf{x}\right)\right)\right) / Z$$





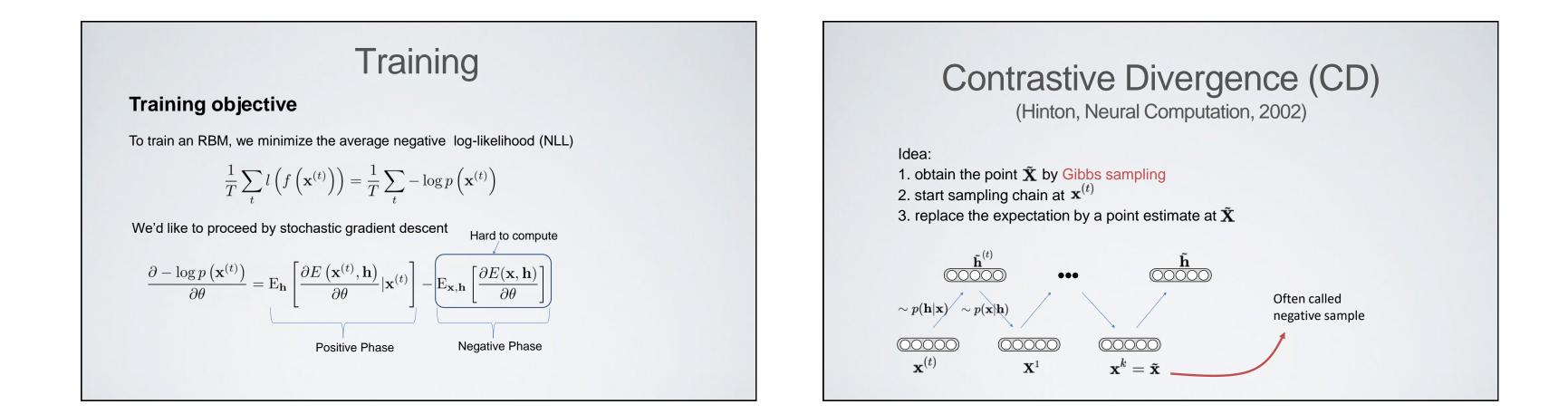
To train an RBM, we minimize the average negative log-likelihood (NLL)

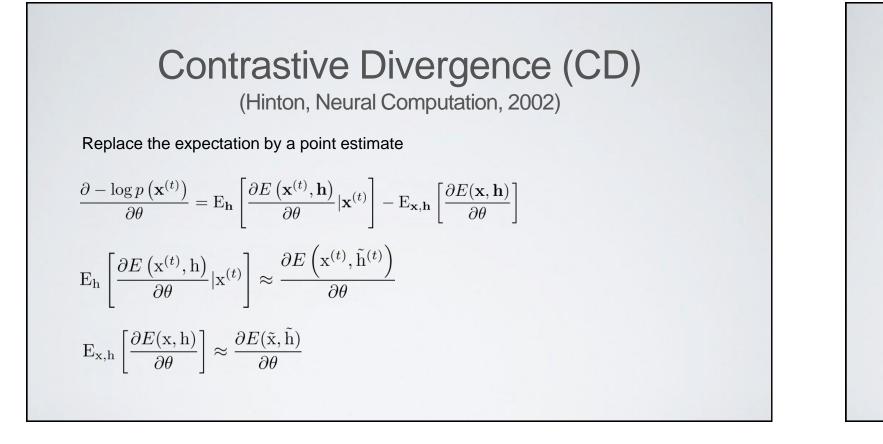
$$\frac{1}{T}\sum_{t}l\left(f\left(\right.\right.\right)$$

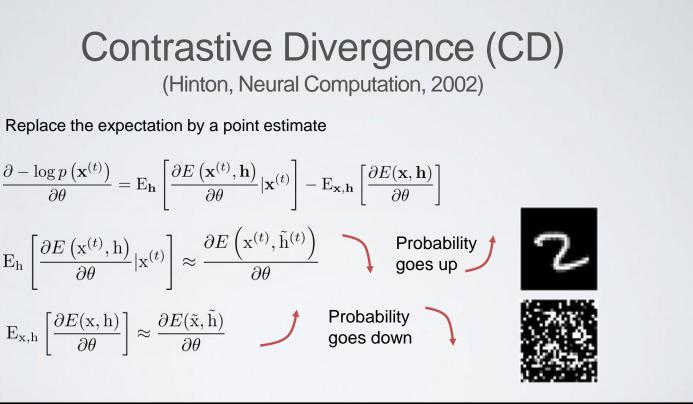
$$\frac{1}{T} \sum_{t} l\left(f\left(\mathbf{x}^{(t)}\right)\right) = \frac{1}{T} \sum_{t} -\log p\left(\mathbf{x}^{(t)}\right) \quad \log p\left(x^{(t)}\right) = \log\left(\sum_{h} p\left(x^{(t)},h\right)\right)$$
We'd like to proceed by stochastic gradient descent
$$\frac{\partial -\log p\left(\mathbf{x}^{(t)}\right)}{\partial \theta} = \mathbf{E}_{\mathbf{h}} \left[\frac{\partial E\left(\mathbf{x}^{(t)},\mathbf{h}\right)}{\partial \theta}|\mathbf{x}^{(t)}\right] - \mathbf{E}_{\mathbf{x},\mathbf{h}} \left[\frac{\partial E(\mathbf{x},\mathbf{h})}{\partial \theta}\right] = \log\left(\sum_{h} \exp\left(-E\left(x^{(t)},h\right)\right)\right) - \log 2$$

$$= \log\left(\sum_{h} \exp\left(-E\left(x^{(t)},h\right)\right)\right) - \log 2$$
Positive Phase Negative Phase

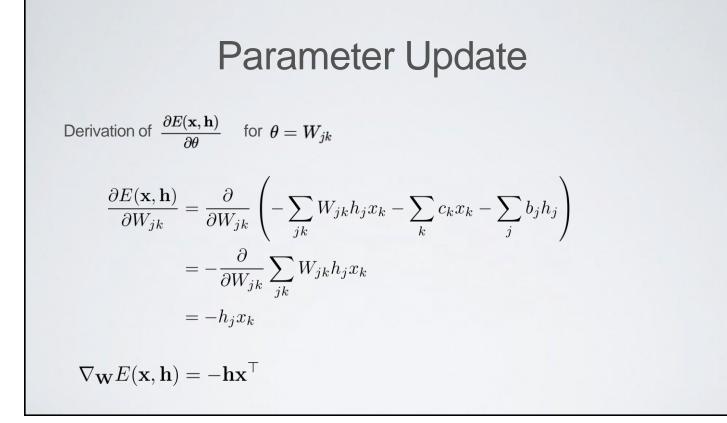
Training

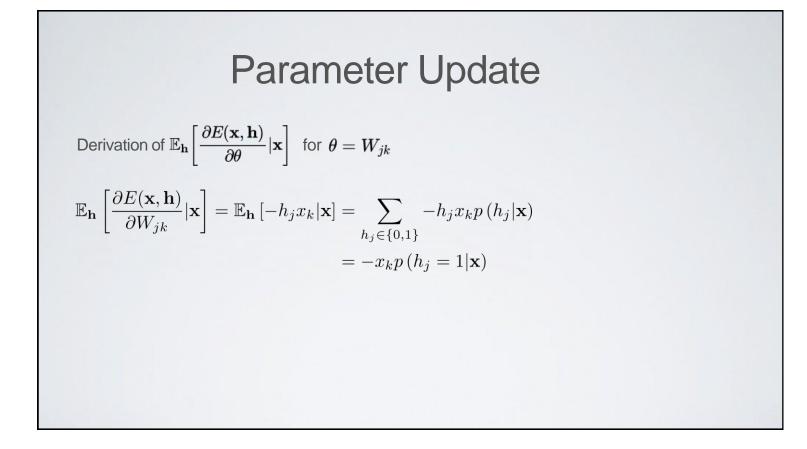


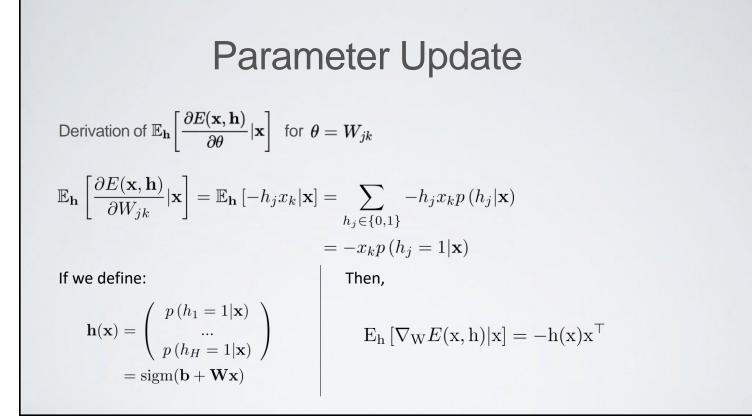


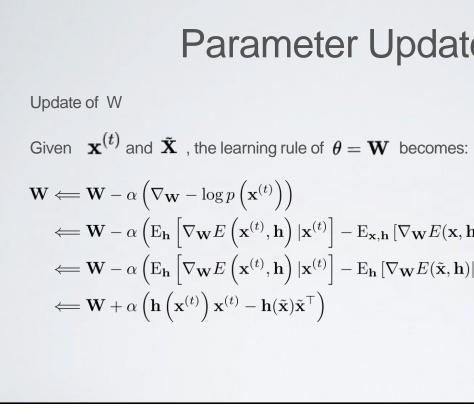


$$\frac{\partial - \log p\left(\mathbf{x}^{(t)}\right)}{\partial \theta} = \mathbf{E}_{\mathbf{h}} \left[\frac{\partial E}{\partial \theta} \right]$$
$$\mathbf{E}_{\mathbf{h}} \left[\frac{\partial E\left(\mathbf{x}^{(t)}, \mathbf{h}\right)}{\partial \theta} | \mathbf{x}^{(t)} \right] \approx$$
$$\mathbf{E}_{\mathbf{x}, \mathbf{h}} \left[\frac{\partial E(\mathbf{x}, \mathbf{h})}{\partial \theta} \right] \approx \frac{\partial E(\tilde{\mathbf{x}})}{\partial \theta}$$









Parameter Update

$$\begin{pmatrix} \mathbf{x}^{(t)} \end{pmatrix} \\ \mathbf{x}^{(t)}, \mathbf{h} \end{pmatrix} |\mathbf{x}^{(t)}] - \mathbf{E}_{\mathbf{x}, \mathbf{h}} [\nabla_{\mathbf{W}} E(\mathbf{x}, \mathbf{h})] \end{pmatrix} \\ \mathbf{x}^{(t)}, \mathbf{h} \end{pmatrix} |\mathbf{x}^{(t)}] - \mathbf{E}_{\mathbf{h}} [\nabla_{\mathbf{W}} E(\tilde{\mathbf{x}}, \mathbf{h}) |\tilde{\mathbf{x}}] \end{pmatrix} \\ - \mathbf{h}(\tilde{\mathbf{x}}) \tilde{\mathbf{x}}^{\top} \end{pmatrix}$$

CD-K: PSEUDOCODE

Contrastive Divergence:

- 1. For each training sample $\mathbf{x}^{(t)}$
 - i. Generate a negative sample $\tilde{\mathbf{X}}$ using k steps of Gibbs sampling, starting at $\mathbf{x}^{(t)}$
 - ii. Update parameters:

$$\mathbf{W} \Leftarrow \mathbf{W} + \alpha \left(\mathbf{h} \left(\mathbf{x}^{(t)} \right) \mathbf{x}^{(t)^{\top}} - \mathbf{h}(\tilde{\mathbf{x}}) \tilde{\mathbf{x}}^{\top} \right)$$
$$\mathbf{b} \Leftarrow \mathbf{b} + \alpha \left(\mathbf{h} \left(\mathbf{x}^{(t)} \right) - \mathbf{h}(\tilde{\mathbf{x}}) \right)$$
$$\mathbf{c} \Leftarrow \mathbf{c} + \alpha \left(\mathbf{x}^{(t)} - \tilde{\mathbf{x}} \right)$$

2. Go back to 1. until stopping criteria is reached

Contrastive Divergence-k

Contrastive Divergence:

- In general, the bigger k is, the less biased the estimate of the gradient will be
- In practice, k=1 works well for pre-training

• CD-k: contrastive divergence with k iterations of Gibbs sampling

Software

- Sci-kit learn https://scikitlearn.org/stable/modules/generated/sklearn.n eural network.BernoulliRBM.html
- Pydbm https://pypi.org/project/pydbm/
- Other self-implemented versions on github

2016. Chapter 20

[2] Hung Chao's CS 3750 year 2018 slides https://people.cs.pitt.edu/~milos/courses/cs3750/lectures/class22.pdf

[3] Hugo Larochelle. Neural networks class series - Université de Sherbrooke

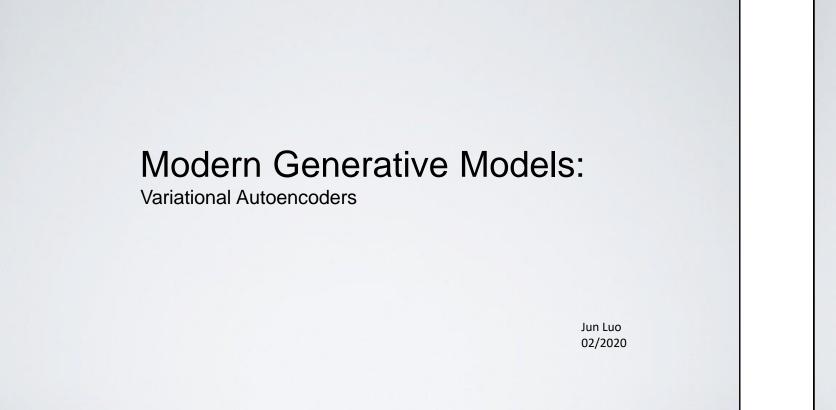
[4] Hinton, Geoffrey E. "Training products of experts by minimizing contrastive divergence." Neural computation 14.8 (2002): 1771-1800.

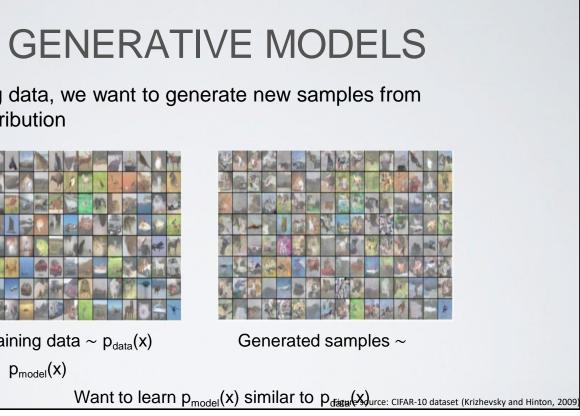
Machine learning. 2008.

References

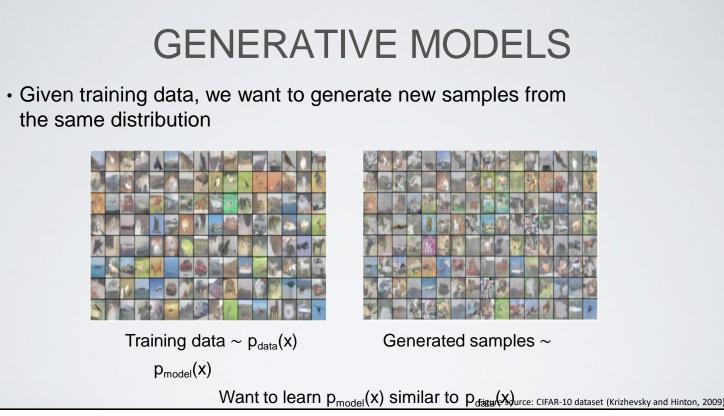
[1] Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press,

[5] Tieleman, Tijmen. "Training restricted Boltzmann machines using approximations to the likelihood gradient." Proceedings of the 25th international conference on





the same distribution



GENERATIVE MODELS

• Why generative models?

• Realistic samples for artwork, super-resolution, colorization, etc.

- · Generative models of time-series data can be used for simulation and planning (reinforcement learning applications!)
- Training generative models can also enable inference of latent representation that can be useful as general features

Figure source: Internet

Autoencoders (Recap)

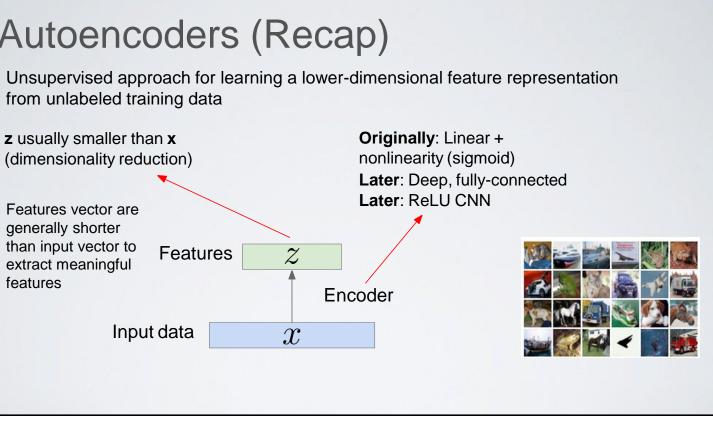
from unlabeled training data

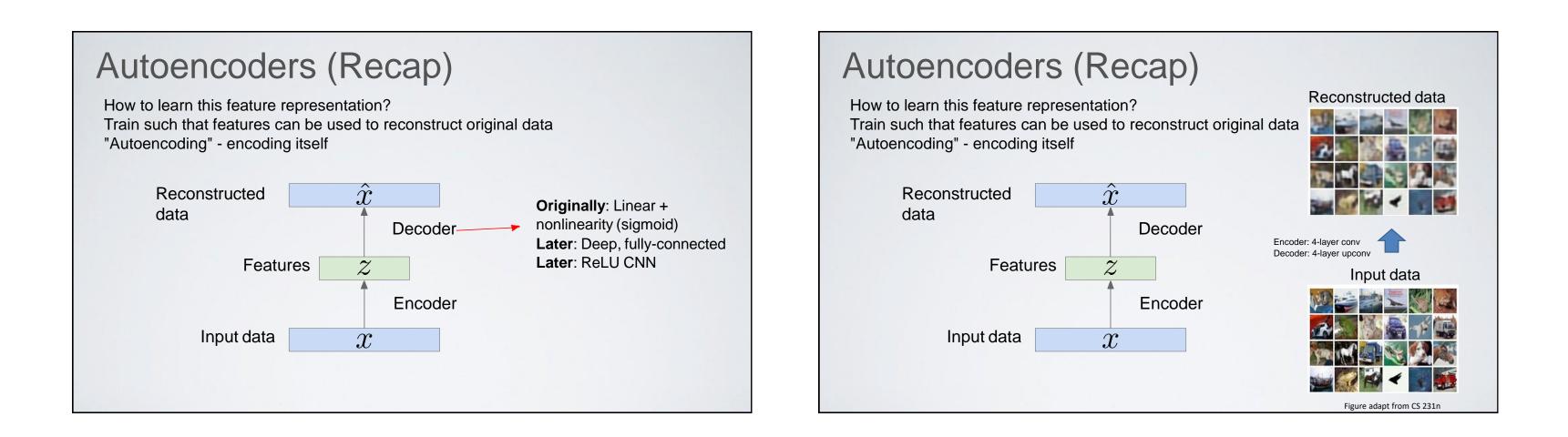
z usually smaller than x (dimensionality reduction)

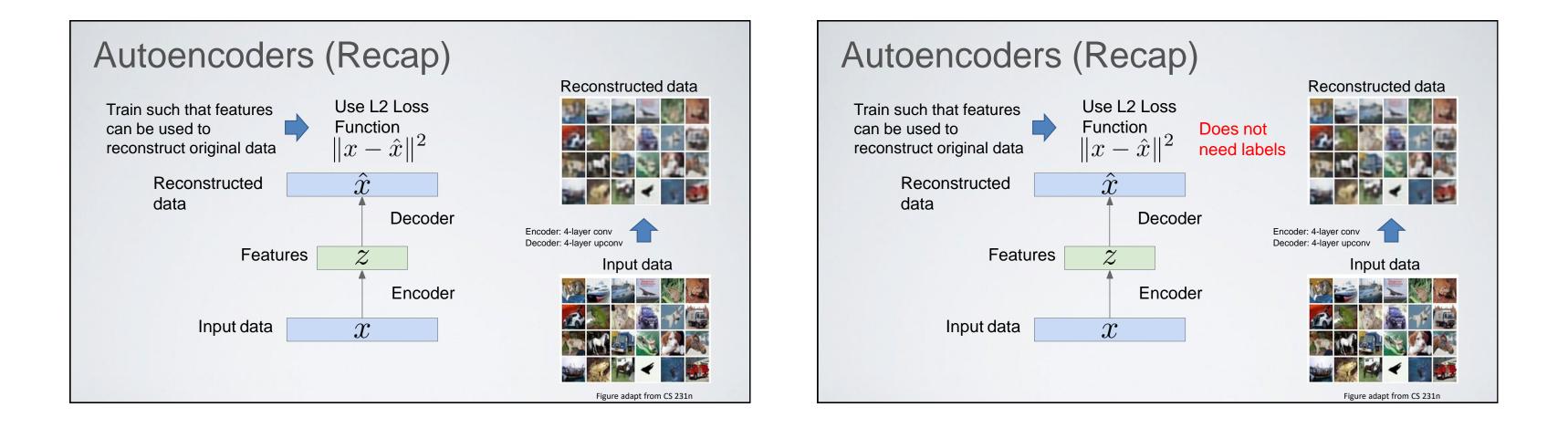
Features vector are generally shorter than input vector to extract meaningful features

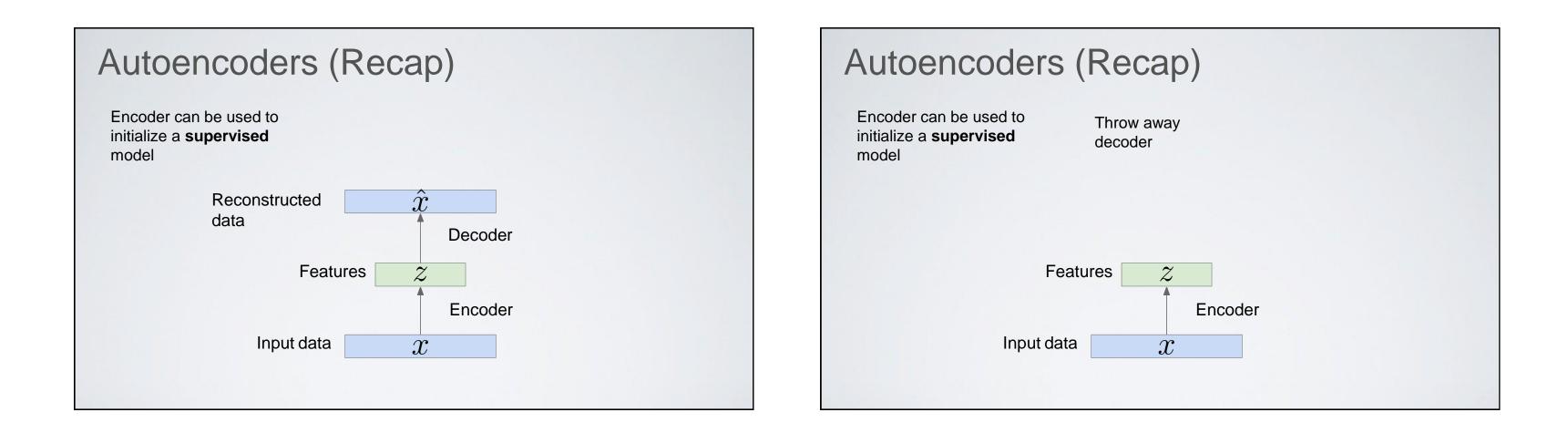
Features

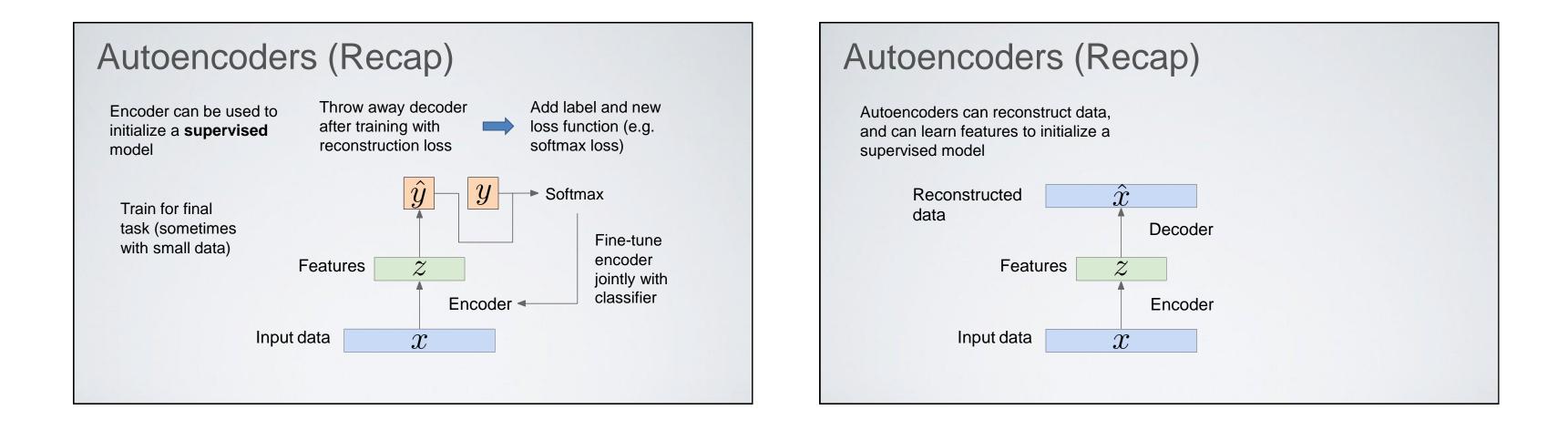
Input data

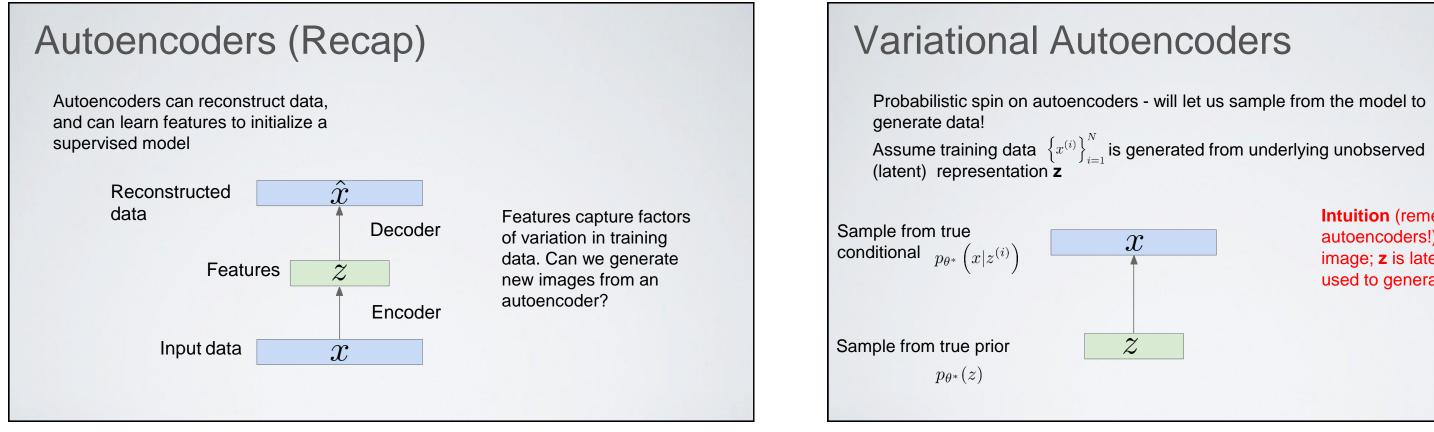




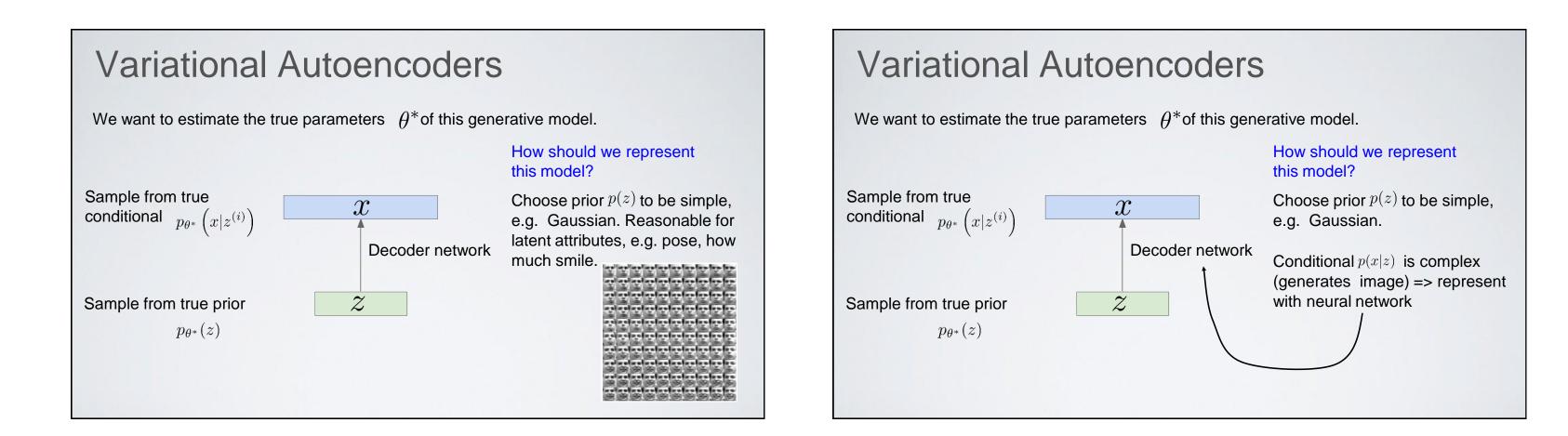


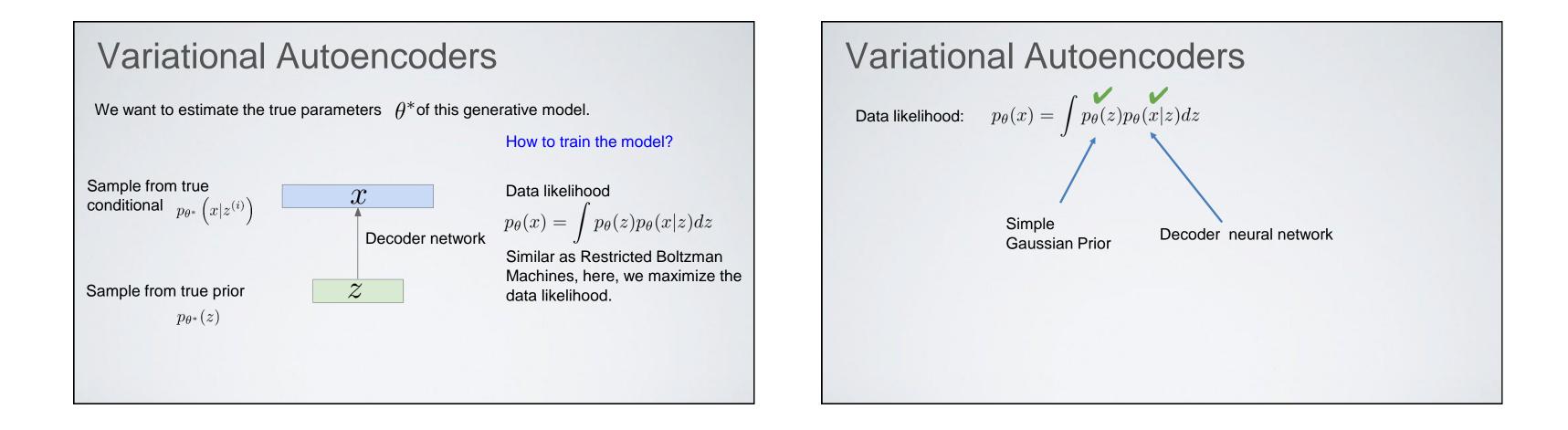






Intuition (remember from autoencoders!): **x** is an image; z is latent factors used to generate





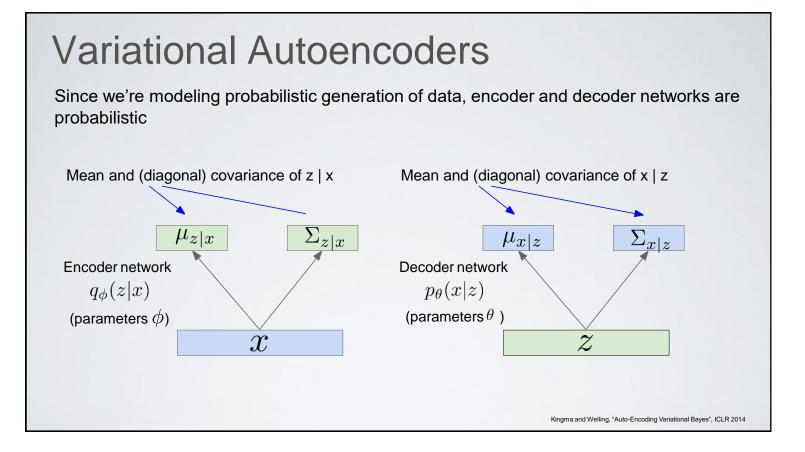
Variational Autoencoders

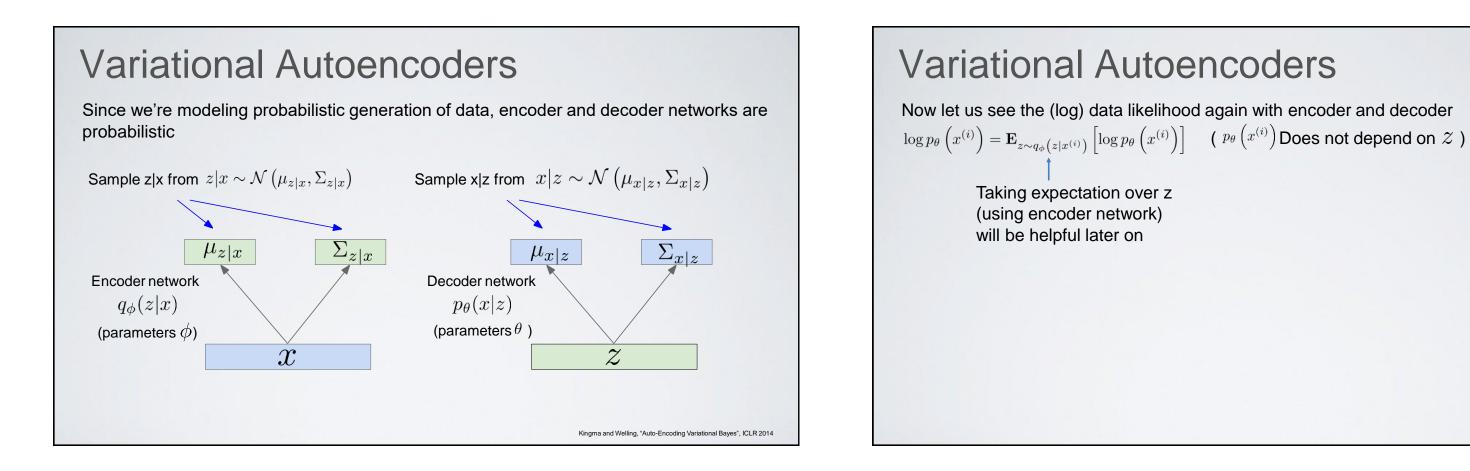
Data likelihood: $p_{\theta}(x) = \int p_{\theta}(z) p_{\theta}(x|z) dz$

Posterior density also intractable: $p_{\theta}(z|x) = p_{\theta}(x|z)p_{\theta}(z)/p_{\theta}(x)$

Solution: In addition to decoder network modeling $p_{\theta}(x|z)$, define additional encoder network $q_{\phi}(z|x)$ that approximates $p_{\theta}(z|x)$

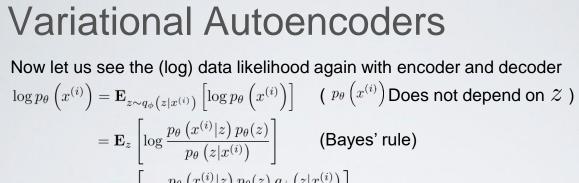
Will see that this allows us to derive a lower bound on the data likelihood that is tractable, which we can optimize





Now let us see the (log) data likelihood again with encoder and decoder

Variational Autoencoders Now let us see the (log) data likelihood again with encoder and decoder $\log p_{\theta}\left(x^{(i)}\right) = \mathbf{E}_{z \sim q_{\phi}\left(z|x^{(i)}\right)}\left[\log p_{\theta}\left(x^{(i)}\right)\right] \quad \text{(} \ p_{\theta}\left(x^{(i)}\right) \text{Does not depend on } \mathcal{Z} \text{)}$ $= \mathbf{E}_{z} \left[\log \frac{p_{\theta} \left(x^{(i)} | z \right) p_{\theta}(z)}{p_{\theta} \left(z | x^{(i)} \right)} \right]$ (Bayes' rule)

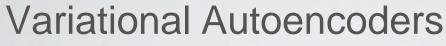


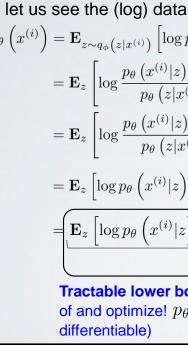
 $= \mathbf{E}_{z} \left[\log \frac{p_{\theta}\left(x^{(i)}|z\right) p_{\theta}(z)}{p_{\theta}\left(z|x^{(i)}\right)} \frac{q_{\phi}\left(z|x^{(i)}\right)}{q_{\phi}\left(z|x^{(i)}\right)} \right]$ (Multiply by 1)

Variational Autoencoders Now let us see the (log) data likelihood again with encoder and decoder $\log p_{\theta}\left(x^{(i)}\right) = \mathbf{E}_{z \sim q_{\phi}\left(z|x^{(i)}\right)} \left[\log p_{\theta}\left(x^{(i)}\right)\right]$ ($p_{\theta}\left(x^{(i)}\right)$ Does not depend on \mathcal{Z}) $= \mathbf{E}_{z} \left[\log \frac{p_{\theta} \left(x^{(i)} | z \right) p_{\theta}(z)}{p_{\theta} \left(z | x^{(i)} \right)} \right]$ (Bayes' rule) $= \mathbf{E}_{z} \left[\log \frac{p_{\theta}\left(x^{(i)}|z\right) p_{\theta}(z)}{p_{\theta}\left(z|x^{(i)}\right)} \frac{q_{\phi}\left(z|x^{(i)}\right)}{q_{\phi}\left(z|x^{(i)}\right)} \right] \quad \text{(Multiply by 1)}$ $= \mathbf{E}_{z} \left[\log p_{\theta} \left(x^{(i)} | z \right) \right] - \mathbf{E}_{z} \left[\log \frac{q_{\phi} \left(z | x^{(i)} \right)}{p_{\theta}(z)} \right] + \mathbf{E}_{z} \left[\log \frac{q_{\phi} \left(z | x^{(i)} \right)}{p_{\theta} \left(z | x^{(i)} \right)} \right]$ (Logarithm)

Variational Autoencoders Now let us see the (log) data likelihood again with encoder and decoder $\log p_{\theta}\left(x^{(i)}\right) = \mathbf{E}_{z \sim q_{\phi}\left(z|x^{(i)}\right)} \left[\log p_{\theta}\left(x^{(i)}\right)\right]$ ($p_{\theta}\left(x^{(i)}\right)$ Does not depend on \mathcal{Z}) $= \mathbf{E}_{z} \left[\log \frac{p_{\theta} \left(x^{(i)} | z \right) p_{\theta}(z)}{p_{\theta} \left(z | x^{(i)} \right)} \right]$ (Bayes' rule) $= \mathbf{E}_{z} \left[\log \frac{p_{\theta}\left(x^{(i)}|z\right) p_{\theta}(z)}{p_{\theta}\left(z|x^{(i)}\right)} \frac{q_{\phi}\left(z|x^{(i)}\right)}{q_{\phi}\left(z|x^{(i)}\right)} \right]$ (Multiply by 1) $= \mathbf{E}_{z} \left[\log p_{\theta} \left(x^{(i)} | z \right) \right] - \mathbf{E}_{z} \left[\log \frac{q_{\phi} \left(z | x^{(i)} \right)}{p_{\theta}(z)} \right] + \mathbf{E}_{z} \left[\log \frac{q_{\phi} \left(z | x^{(i)} \right)}{p_{\theta} \left(z | x^{(i)} \right)} \right]$ (Logarithm) $= \mathbf{E}_{z} \left[\log p_{\theta} \left(x^{(i)} | z \right) \right] - D_{KL} \left(q_{\phi} \left(z | x^{(i)} \right) \| p_{\theta}(z) \right) + D_{KL} \left(q_{\phi} \left(z | x^{(i)} \right) \| p_{\theta} \left(z | x^{(i)} \right) \right)$ The expectation over z lead to nice KL Divergence form

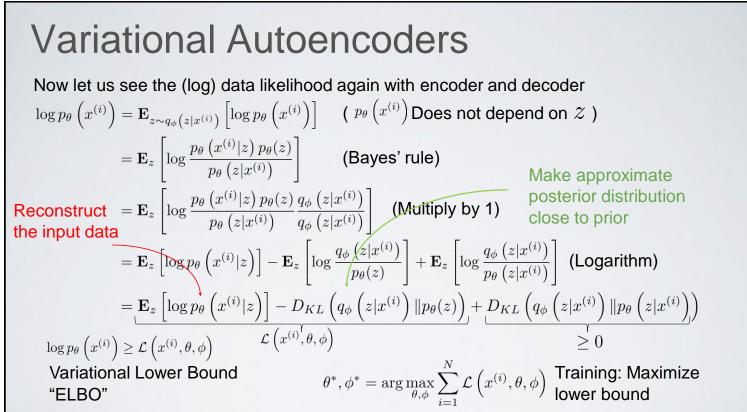
Variational Autoencoders Now let us see the (log) data likelihood again with encoder and decoder $\log p_{\theta}\left(x^{(i)}\right) = \mathbf{E}_{z \sim q_{\phi}\left(z|x^{(i)}\right)} \left[\log p_{\theta}\left(x^{(i)}\right)\right] \quad (p_{\theta}\left(x^{(i)}\right) \text{Does not depend on } \mathcal{Z})$ $= \mathbf{E}_{z} \left[\log \frac{p_{\theta} \left(x^{(i)} | z \right) p_{\theta}(z)}{p_{\theta} \left(z | x^{(i)} \right)} \right]$ (Bayes' rule) $= \mathbf{E}_{z} \left[\log \frac{p_{\theta}\left(x^{(i)}|z\right) p_{\theta}(z)}{p_{\theta}\left(z|x^{(i)}\right)} \frac{q_{\phi}\left(z|x^{(i)}\right)}{q_{\phi}\left(z|x^{(i)}\right)} \right]$ (Multiply by 1) $= \mathbf{E}_{z} \left[\log p_{\theta} \left(x^{(i)} | z \right) \right] - \mathbf{E}_{z} \left[\log \frac{q_{\phi} \left(z | x^{(i)} \right)}{p_{\theta}(z)} \right] + \mathbf{E}_{z} \left[\log \frac{q_{\phi} \left(z | x^{(i)} \right)}{p_{\theta} \left(z | x^{(i)} \right)} \right]$ (Logarithm) $z = \mu + \sigma \odot \varepsilon \left[\log p_{\theta} \left(x^{(i)} | z \right) \right] - D_{KL} \left(q_{\phi} \left(z | x^{(i)} \right) \| p_{\theta}(z) \right) + D_{KL} \left(q_{\phi} \left(z | x^{(i)} \right) \| p_{\theta} \left(z | x^{(i)} \right) \right)$ Decoder network gives $p_{\theta}(x|z)$, can This KL term (between $p_{\theta}(z|x)$ intractable (saw earlier). compute estimate of this term through can't compute this KL term. But Gaussians for encoder sampling. (Sampling differentiable we know KL divergence always and z prior) has nice through reparam. trick, see paper.) closed-form solution! >= 0.

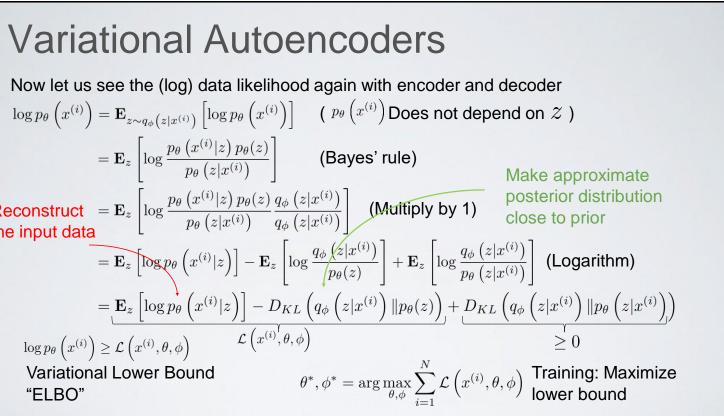




Now let us see the (log) data likelihood again with encoder and decoder $\log p_{\theta}\left(x^{(i)}\right) = \mathbf{E}_{z \sim q_{\phi}\left(z|x^{(i)}\right)} \left[\log p_{\theta}\left(x^{(i)}\right)\right] \quad \text{(} p_{\theta}\left(x^{(i)}\right) \text{Does not depend on } \mathcal{Z} \text{)}$ $= \mathbf{E}_{z} \left| \log \frac{p_{\theta} \left(x^{(i)} | z \right) p_{\theta}(z)}{p_{\theta} \left(z | x^{(i)} \right)} \right|$ (Bayes' rule) $= \mathbf{E}_{z} \left[\log \frac{p_{\theta} \left(x^{(i)} | z \right) p_{\theta}(z)}{p_{\theta} \left(z | x^{(i)} \right)} \frac{q_{\phi} \left(z | x^{(i)} \right)}{q_{\phi} \left(z | x^{(i)} \right)} \right]$ (Multiply by 1) $= \mathbf{E}_{z} \left[\log p_{\theta} \left(x^{(i)} | z \right) \right] - \mathbf{E}_{z} \left[\log \frac{q_{\phi} \left(z | x^{(i)} \right)}{p_{\theta}(z)} \right] + \mathbf{E}_{z} \left[\log \frac{q_{\phi} \left(z | x^{(i)} \right)}{p_{\theta} \left(z | x^{(i)} \right)} \right]$ (Logarithm) $= \underbrace{\left[\mathbf{E}_{z} \left[\log p_{\theta} \left(x^{(i)} | z \right) \right] - D_{KL} \left(q_{\phi} \left(z | x^{(i)} \right) \| p_{\theta}(z) \right)}_{\mathbf{1} \neq \mathbf{1} = \mathbf{1} \left[\mathbf{E}_{z} \left[\log p_{\theta} \left(x^{(i)} \right) \| p_{\theta} \left(z | x^{(i)} \right) \| p_{\theta} \left(z | x^{(i)} \right) \right]}_{\mathbf{1} \neq \mathbf{1} = \mathbf{1} \left[\mathbf{E}_{z} \left[\log p_{\theta} \left(x^{(i)} | z \right) \right]_{\mathbf{1} \neq \mathbf{1} = \mathbf{1} \left[\mathbf{E}_{z} \left[\log p_{\theta} \left(x^{(i)} | z \right) \right]_{\mathbf{1} \neq \mathbf{1} = \mathbf{1} \left[\mathbf{E}_{z} \left[\log p_{\theta} \left(x^{(i)} | z \right) \right]_{\mathbf{1} \neq \mathbf{1} = \mathbf{1} \left[\mathbf{E}_{z} \left[\log p_{\theta} \left(x^{(i)} | z \right) \right]_{\mathbf{1} \neq \mathbf{1} = \mathbf{1} \left[\mathbf{E}_{z} \left[\log p_{\theta} \left(x^{(i)} | z \right) \right]_{\mathbf{1} \neq \mathbf{1} = \mathbf{1} \left[\mathbf{E}_{z} \left[\log p_{\theta} \left(x^{(i)} | z \right) \right]_{\mathbf{1} \neq \mathbf{1} = \mathbf{1} \left[\mathbf{E}_{z} \left[\log p_{\theta} \left(x^{(i)} \right) \right]_{\mathbf{1} \neq \mathbf{1} = \mathbf{1} \left[\mathbf{E}_{z} \left[\log p_{\theta} \left(x^{(i)} \right) \right]_{\mathbf{1} \neq \mathbf{1} = \mathbf{1} \left[\mathbf{E}_{z} \left[\log p_{\theta} \left(x^{(i)} \right]_{\mathbf{1} \neq \mathbf{1} = \mathbf{1} \right]_{\mathbf{1} \neq \mathbf{1} = \mathbf{1} \left[\mathbf{E}_{z} \left[\log p_{\theta} \left(x^{(i)} \right) \right]_{\mathbf{1} \neq \mathbf{1} = \mathbf{1} \left[\log p_{\theta} \left(x^{(i)} \right]_{\mathbf{1} \neq \mathbf{1} = \mathbf{1} \right]_{\mathbf{1} \neq \mathbf{1} = \mathbf{1} \left[\log p_{\theta} \left(x^{(i)} \right]_{\mathbf{1} \neq \mathbf{1} = \mathbf{1} \right]_{\mathbf{1} \neq \mathbf{1} = \mathbf{1} \left[\log p_{\theta} \left(x^{(i)} \right]_{\mathbf{1} \neq \mathbf{1} = \mathbf{1} \right]_{\mathbf{1} \neq \mathbf{1} \neq \mathbf{1} = \mathbf{1} \left[\log p_{\theta} \left(x^{(i)} \right]_{\mathbf{1} \neq \mathbf{1} \neq \mathbf{1} \right]_{\mathbf{1} \neq \mathbf{1} \neq \mathbf{1} \left[\log p_{\theta} \left(x^{(i)} \right]_{\mathbf{1} \neq \mathbf{1} \neq \mathbf{1} \right]_{\mathbf{1} \neq \mathbf{1} \neq \mathbf{1} \left[\log p_{\theta} \left(x^{(i)} \right]_{\mathbf{1} \neq \mathbf{1} \neq \mathbf{1} \right]_{\mathbf{1} \neq \mathbf{1} \neq \mathbf{1} \left[\log p_{\theta} \left(x^{(i)} \right]_{\mathbf{1} \neq \mathbf{1} \neq \mathbf{1} \right]_{\mathbf{1} \neq \mathbf{1} \neq \mathbf{1} \neq \mathbf{1} \left[\log p_{\theta} \left(x^{(i)} \right]_{\mathbf{1} \neq \mathbf{1} \neq \mathbf{1} \right]_{\mathbf{1} \neq \mathbf{1} \neq \mathbf{1} \neq \mathbf{1} = \mathbf{1} \left[\log p_{\theta} \left(x^{(i)} \right]_{\mathbf{1} \neq \mathbf{1} \neq \mathbf{1} \neq \mathbf{1} \right]_{\mathbf{1} \neq \mathbf{1} \neq \mathbf{1} \neq \mathbf{1} = \mathbf{1} \left[\log p_{\theta} \left(x^{(i)} \right]_{\mathbf{1} \neq \mathbf{1} \neq \mathbf{1} \neq \mathbf{1} \right]_{\mathbf{1} \neq \mathbf{1} \neq \mathbf{1} = \mathbf{1} \left[\log p_{\theta} \left(x^{(i)} \right]_{\mathbf{1} \neq \mathbf{1} \neq \mathbf{1} \in \mathbf{1} \right]_{\mathbf{1} \neq \mathbf{1} \neq \mathbf{1} = \mathbf{1} \left[\log p_{\theta} \left(x^{(i)} \right]_{\mathbf{1} \neq \mathbf{1} \neq \mathbf{1} \neq \mathbf{1} \right]_{\mathbf{1} \neq \mathbf{1} \neq \mathbf{1} = \mathbf{1} \left[\log p_{\theta} \left(x^{(i)} \right]_{\mathbf{1} \neq \mathbf{1} \neq \mathbf{1} = \mathbf{1} \left[\log p_{\theta} \left(x^{(i)} \right]_{\mathbf{1} \neq \mathbf{1} \neq \mathbf{1} \in \mathbf{1} \right]_{\mathbf{1} \neq \mathbf{1} \neq \mathbf{1} \neq \mathbf{1} = \mathbf{1} \left[\log p_{\theta} \left(x^{(i)} \right]_{\mathbf{1} \neq \mathbf{1} \neq \mathbf{1} \in \mathbf{1} \right]_{\mathbf{1} \neq \mathbf{1} \neq \mathbf{1} \neq \mathbf{1} = \mathbf{1} \left[\log p_{\theta} \left(x^{(i)} \right]_{\mathbf{1}$ $\mathcal{L}\left(x^{(i)}, \theta, \phi\right)$ Tractable lower bound which we can take gradient of and optimize! $p_{\theta}(x|z)$ differentiable, KL term

Variational Autoencoders Now let us see the (log) data likelihood again with encoder and decoder $\log p_{\theta}\left(x^{(i)}
ight) = \mathbf{E}_{z \sim q_{\phi}\left(z|x^{(i)}
ight)} \left[\log p_{\theta}\left(x^{(i)}
ight)
ight]$ ($p_{\theta}\left(x^{(i)}
ight)$ Does not depend on \mathcal{Z}) $= \mathbf{E}_{z} \left| \log \frac{p_{\theta} \left(x^{(i)} | z \right) p_{\theta}(z)}{p_{\theta} \left(z | x^{(i)} \right)} \right|$ (Bayes' rule) $= \mathbf{E}_{z} \left[\log \frac{p_{\theta}\left(x^{(i)}|z\right) p_{\theta}(z)}{p_{\theta}\left(z|x^{(i)}\right)} \frac{q_{\phi}\left(z|x^{(i)}\right)}{q_{\phi}\left(z|x^{(i)}\right)} \right]$ (Multiply by 1) $= \mathbf{E}_{z} \left[\log p_{\theta} \left(x^{(i)} | z \right) \right] - \mathbf{E}_{z} \left[\log \frac{q_{\phi} \left(z | x^{(i)} \right)}{p_{\theta}(z)} \right] + \mathbf{E}_{z} \left[\log \frac{q_{\phi} \left(z | x^{(i)} \right)}{p_{\theta} \left(z | x^{(i)} \right)} \right]$ (Logarithm) $= \underbrace{\mathbf{E}_{z}\left[\log p_{\theta}\left(x^{(i)}|z\right)\right] - D_{KL}\left(q_{\phi}\left(z|x^{(i)}\right) \|p_{\theta}(z)\right)}_{\mathcal{L}\left(x^{(i)},\theta,\phi\right)} + \underbrace{D_{KL}\left(q_{\phi}\left(z|x^{(i)}\right) \|p_{\theta}\left(z|x^{(i)}\right)\right)}_{\geq 0}$ $\log p_{\theta}\left(x^{(i)}\right) \geq \mathcal{L}\left(x^{(i)}, \theta, \phi\right)$ $\theta^*, \phi^* = \arg \max_{\theta, \phi} \sum_{i=1}^N \mathcal{L}\left(x^{(i)}, \theta, \phi\right)$ Training: Maximize lower bound Variational Lower Bound "ELBO"



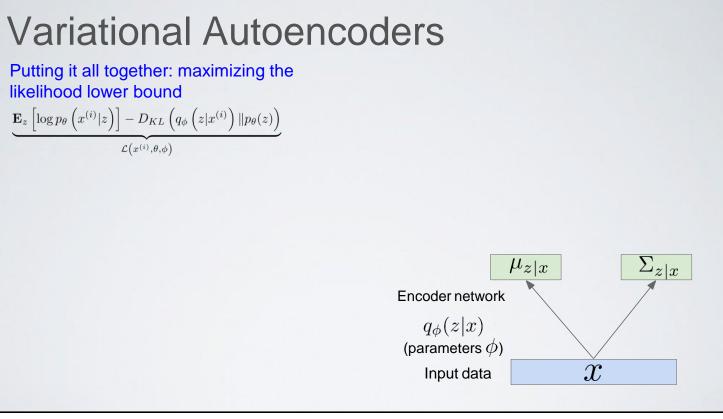


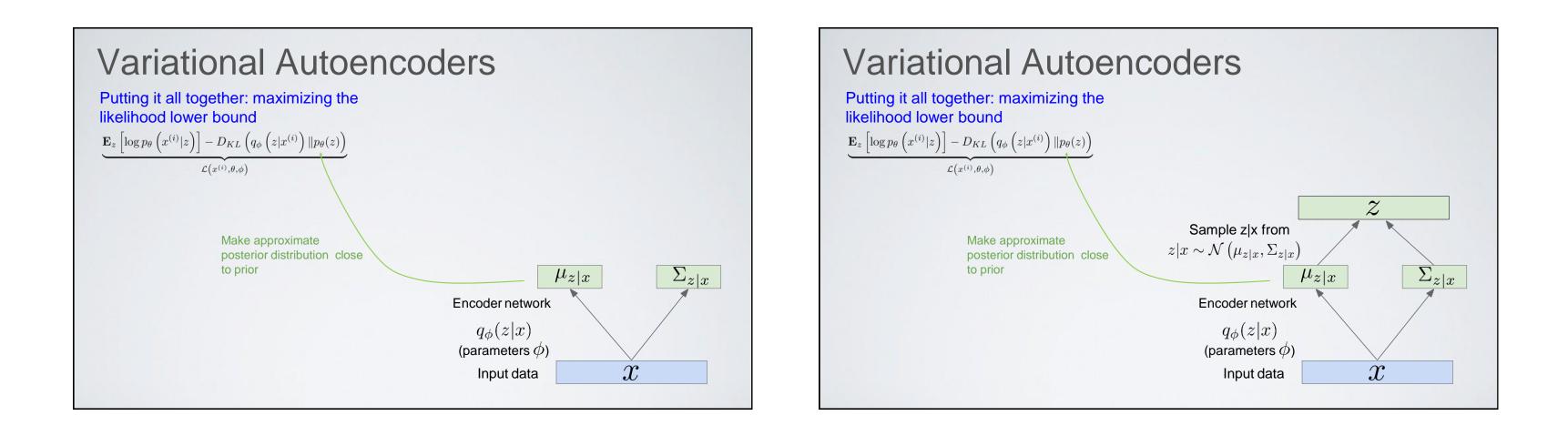
Variational Autoencoders

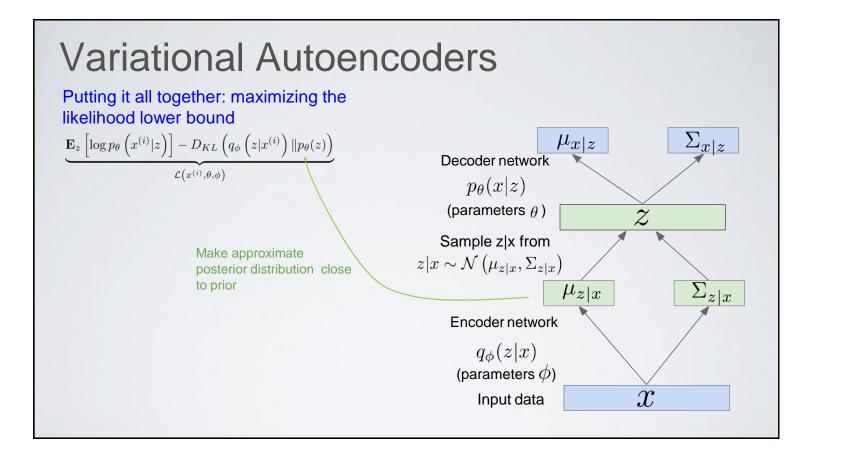
Putting it all together: maximizing the likelihood lower bound

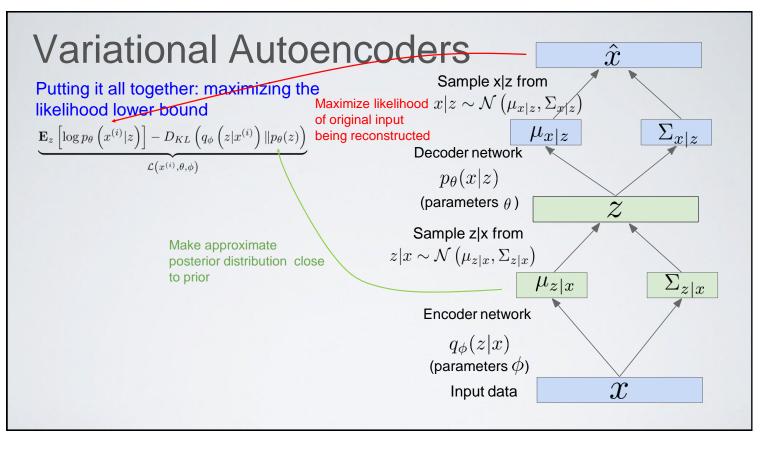
 $\underbrace{\mathbf{E}_{z}\left[\log p_{\theta}\left(x^{(i)}|z\right)\right] - D_{KL}\left(q_{\phi}\left(z|x^{(i)}\right) \| p_{\theta}(z)\right)}_{\mathcal{L}\left(x^{(i)},\theta,\phi\right)}$

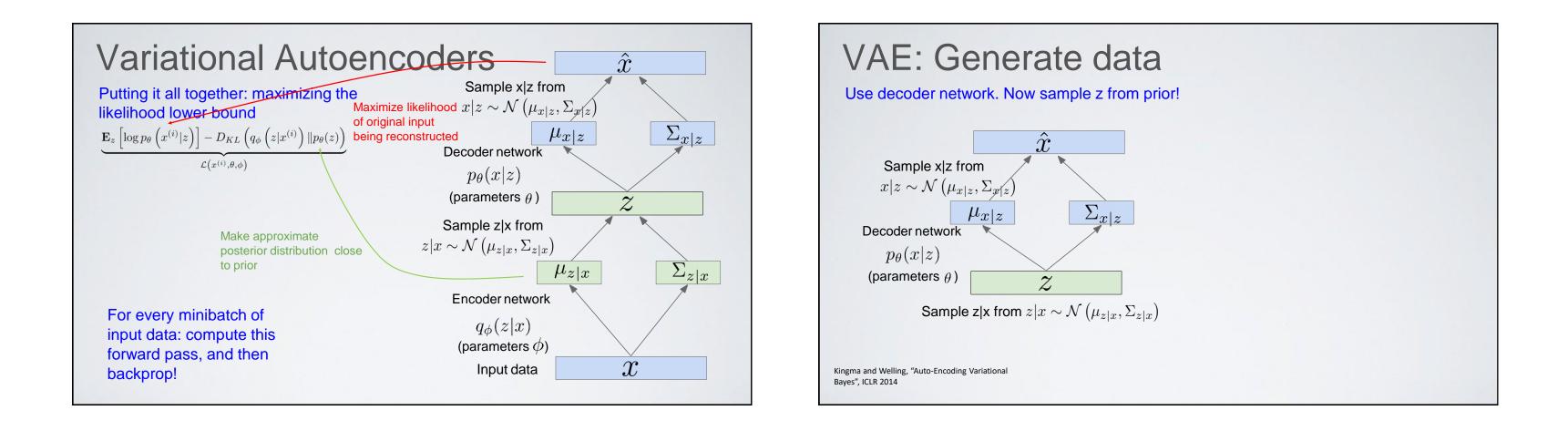
Let's look at computing the bound (forward pass) for a given minibatch of input

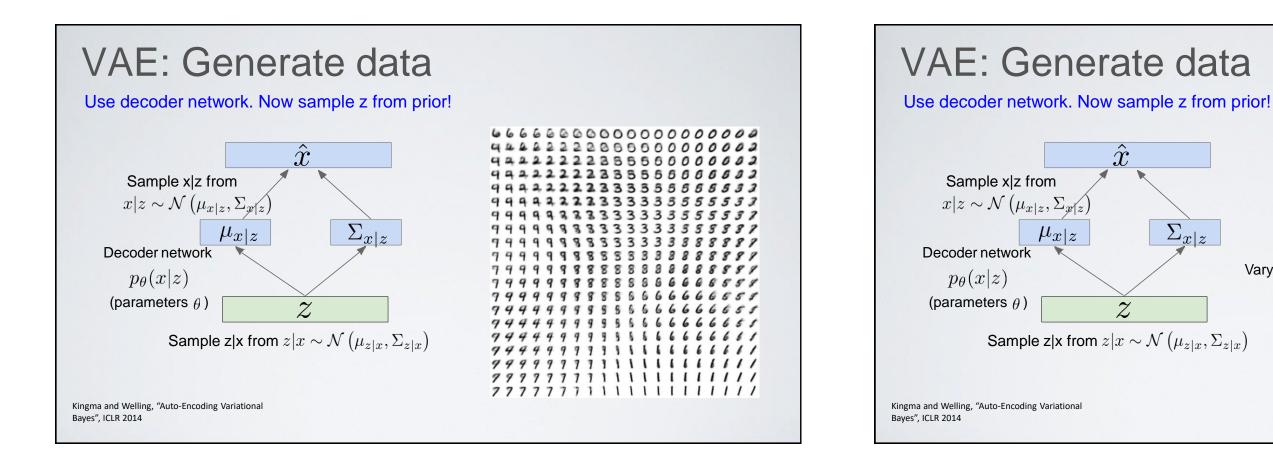


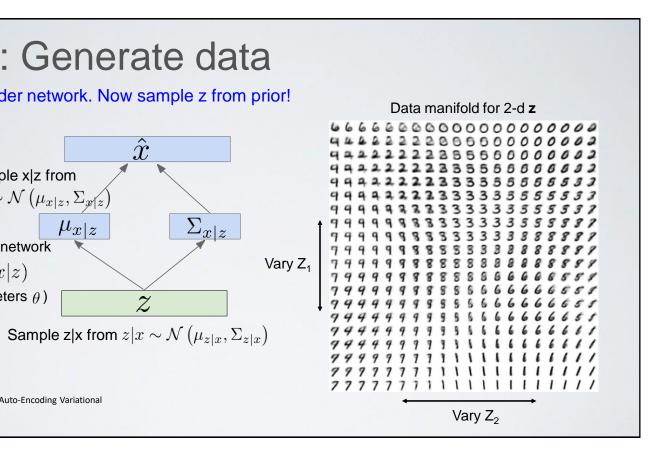


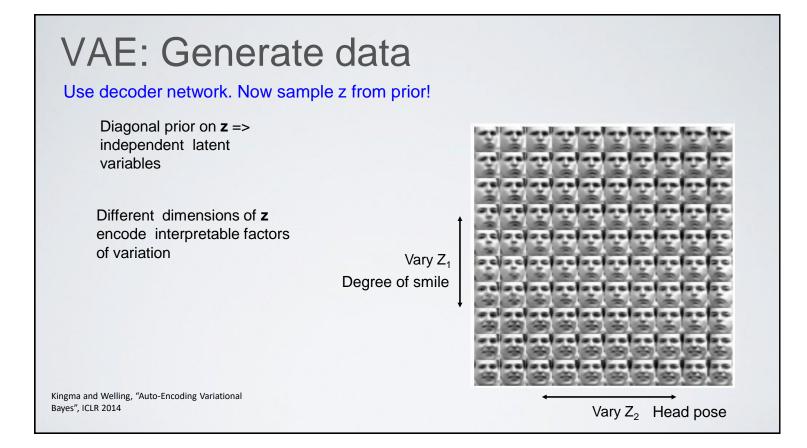


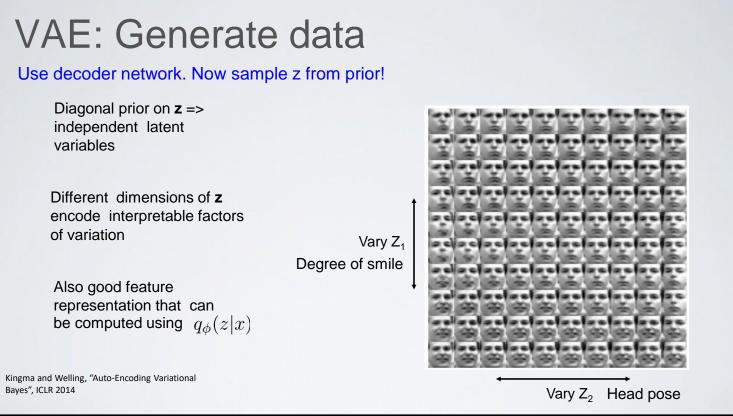


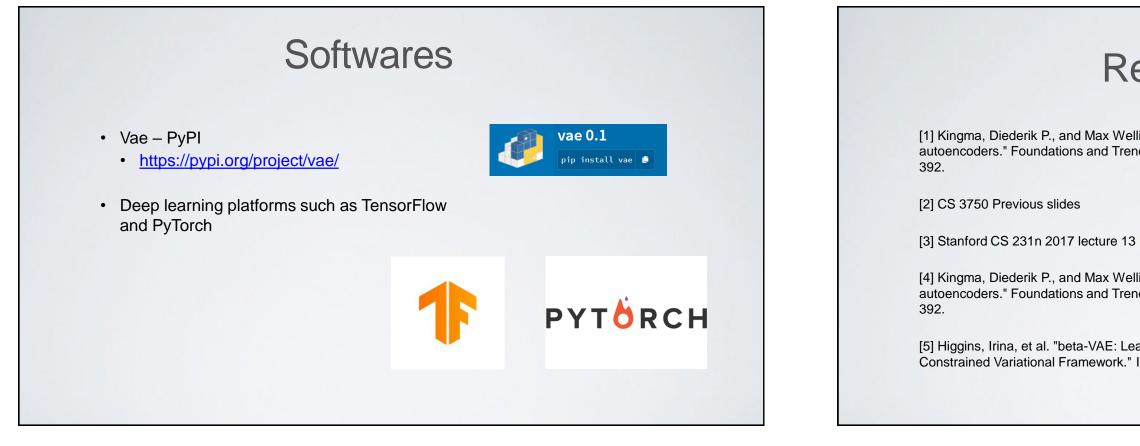












References

[1] Kingma, Diederik P., and Max Welling. "An introduction to variational autoencoders." Foundations and Trends® in Machine Learning 12.4 (2019): 307-

[4] Kingma, Diederik P., and Max Welling. "An introduction to variational autoencoders." Foundations and Trends® in Machine Learning 12.4 (2019): 307-

[5] Higgins, Irina, et al. "beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework." Iclr 2.5 (2017): 6.