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Modern Generative Models:
Restricted Boltzmann Machines

Based on presentation by Hung Chao
https://people.cs.pitt.edu/~milos/courses/cs3750/lectures/class22.pdf 

• Unsupervised Learning: use only the inputs         for learning

 automatically extract meaningful features for data

 Leverage the availability of unlabeled data

 Can use negative log-likelihood to learn the underlying feature

• We will see 2 neural networks for unsupervised learning

 Restricted Boltzmann Machines

 Variational Autoencoders

RESTRICTED BOLTZMANN MACHINE
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• Given training data, we want to generate new samples from 

the same distribution

GENERATIVE MODELS

Training data ∼ pdata(x) Generated samples ∼

pmodel(x)

Want to learn pmodel(x) similar to pdata(x)Figure source: CIFAR-10 dataset (Krizhevsky and Hinton, 2009) 

GENERATIVE MODELS
• Why generative models?

• Realistic samples for artwork, super-resolution, colorization, etc.

• Generative models of time-series data can be used for simulation and planning 

(reinforcement learning applications!)

• Training generative models can also enable inference of latent representation 

that can be useful as general features

Figure source: Internet
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• Many interesting theoretical results about undirected models depends on 

the assumption  that                  . A convenient way to enforce this 

condition is to use an energy-based model where

RESTRICTED BOLTZMANN MACHINE

• E(x) is known as the energy function

• Any distribution of this form is an example of a Boltzmann distribution. 

For this reason,  many energy-based models are called Boltzmann 

machines.

• Normalized probability

a

d e f

cb E(a, b, c, d, e, f) can be written as

Ea,b (a,b) + Eb,c (b,c) + Ea,d (a,d) + Eb,e (b,e) + 

Ee,f (e,f)

e.g.

• Restricted Boltzmann machines (RBMs) are undirected probabilistic 

graphical models containing a layer of observable variables and a single 

layer of latent variables

• RBM is a bipartite graph, with no connections permitted between any 

variables in the observed layer or between any units in the latent layer

RESTRICTED BOLTZMANN MACHINE
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RESTRICTED BOLTZMANN MACHINE

partition function  
(intractable)

Energy function:

Distribution:

Structure: Markov network view

h

x
Factors

RESTRICTED BOLTZMANN MACHINE

The notation based on an energy function is simply an alternative to 

the representation as the product of factors
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...

...

hHh2h1

x 1 x 2 x D

pair-wise factors

Unary Factors

Markov network view

RESTRICTED BOLTZMANN MACHINE

The scalar visualization is more informative of the structure  

within the vectors

INFERENCE

h

h

Conditional Distribution:
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FREE ENERGY

What about ?

Free Energy

h



2/11/2020

9



2/11/2020

10

h

FREE ENERGY

Bias the probability of x

Bias of each feature

Feature expected in x

Training

We’d like to proceed by stochastic gradient descent

Positive Phase Negative Phase

Training objective

To train an RBM, we minimize the average negative  log-likelihood (NLL)



2/11/2020

11

Training

We’d like to proceed by stochastic gradient descent

Positive Phase Negative Phase

Training objective

To train an RBM, we minimize the average negative  log-likelihood (NLL)

Hard to compute

Contrastive Divergence (CD)
(Hinton, Neural Computation, 2002)

Idea:

1. obtain the point      by Gibbs sampling

2. start sampling chain at 

3. replace the expectation by a point estimate at

Often called 
negative sample
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Contrastive Divergence (CD)
(Hinton, Neural Computation, 2002)

Replace the expectation by a point estimate

Contrastive Divergence (CD)
(Hinton, Neural Computation, 2002)

Replace the expectation by a point estimate

Probability 

goes up

Probability 

goes down
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Parameter Update

Derivation of                      for 

Parameter Update

Derivation of                                 for 
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Parameter Update

Derivation of                                 for 

If we define: Then,

Parameter Update

Update of  W

Given             and        , the learning rule of                  becomes:  
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CD-K: PSEUDOCODE
Contrastive Divergence:

1. For each training sample

i. Generate a negative sample          using k steps of Gibbs 

sampling, starting at 

ii. Update parameters:

2. Go back to 1. until stopping criteria is reached

Contrastive Divergence-k
Contrastive Divergence:

• CD-k: contrastive divergence with k iterations of Gibbs sampling

• In general, the bigger k is, the less biased the estimate of the 

gradient will be

• In practice, k=1 works well for pre-training
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Software

• Sci-kit learn

https://scikit-
learn.org/stable/modules/generated/sklearn.n
eural_network.BernoulliRBM.html

• Pydbm

https://pypi.org/project/pydbm/

• Other self-implemented versions on github
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Modern Generative Models:
Variational Autoencoders

• Given training data, we want to generate new samples from 

the same distribution

GENERATIVE MODELS

Training data ∼ pdata(x) Generated samples ∼

pmodel(x)

Want to learn pmodel(x) similar to pdata(x)Figure source: CIFAR-10 dataset (Krizhevsky and Hinton, 2009) 
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GENERATIVE MODELS
• Why generative models?

• Realistic samples for artwork, super-resolution, colorization, etc.

• Generative models of time-series data can be used for simulation and planning 

(reinforcement learning applications!)

• Training generative models can also enable inference of latent representation 

that can be useful as general features

Figure source: Internet

Autoencoders (Recap)

Encoder

Input data

Features

Originally: Linear +  

nonlinearity (sigmoid)

Later: Deep, fully-connected

Later: ReLU CNN

z usually smaller than x

(dimensionality reduction)

Unsupervised approach for learning a lower-dimensional feature representation 

from unlabeled training data

Features vector are 

generally shorter 

than input vector to 

extract meaningful 

features
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Autoencoders (Recap)

Encoder

Input data

Features

Originally: Linear +  

nonlinearity (sigmoid)

Later: Deep, fully-connected

Later: ReLU CNN

How to learn this feature representation?

Train such that features can be used to reconstruct original data 

"Autoencoding" - encoding itself

Reconstructed 

data
Decoder

Autoencoders (Recap)

Encoder

Input data

Features

How to learn this feature representation?

Train such that features can be used to reconstruct original data 

"Autoencoding" - encoding itself

Reconstructed 

data
Decoder

Reconstructed data

Input data

Encoder: 4-layer conv

Decoder: 4-layer upconv

Figure adapt from CS 231n
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Autoencoders (Recap)

Encoder

Input data

Features

Train such that features 

can be used to 

reconstruct original data

Reconstructed 

data
Decoder

Reconstructed data

Input data

Encoder: 4-layer conv

Decoder: 4-layer upconv

Use L2 Loss 

Function

Figure adapt from CS 231n

Autoencoders (Recap)

Encoder

Input data

Features

Train such that features 

can be used to 

reconstruct original data

Reconstructed 

data
Decoder

Reconstructed data

Input data

Encoder: 4-layer conv

Decoder: 4-layer upconv

Use L2 Loss 

Function Does not 

need labels

Figure adapt from CS 231n
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Autoencoders (Recap)

Encoder

Input data

Features

Encoder can be used to 

initialize a supervised 

model

Reconstructed 

data
Decoder

Autoencoders (Recap)

Encoder

Input data

Features

Encoder can be used to 

initialize a supervised

model

Throw away 

decoder
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Autoencoders (Recap)

Encoder

Input data

Features

Encoder can be used to 

initialize a supervised

model

Throw away decoder 

after training with 

reconstruction loss

Add label and new 

loss function (e.g. 

softmax loss)

Softmax

Fine-tune  

encoder  

jointly with  

classifier

Train for final

task (sometimes 

with small data)

Autoencoders (Recap)

Encoder

Input data

Features

Autoencoders can reconstruct data, 

and can learn features to initialize a 

supervised model

Reconstructed 

data
Decoder
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Autoencoders (Recap)

Encoder

Input data

Features

Autoencoders can reconstruct data, 

and can learn features to initialize a 

supervised model

Reconstructed 

data
Decoder

Features capture factors 

of variation in training 

data. Can we generate 

new images from an  

autoencoder?

Variational Autoencoders

Probabilistic spin on autoencoders - will let us sample from the model to 

generate data!

Assume training data               is generated from underlying unobserved 

(latent)  representation z

Intuition (remember from 

autoencoders!):  x is an 

image; z is latent factors 

used to generate

Sample from true prior

Sample from true 

conditional



2/11/2020

24

Variational Autoencoders

We want to estimate the true parameters        of this generative model.

How should we represent 

this model?

Choose prior        to be simple, 

e.g.  Gaussian. Reasonable for 

latent attributes, e.g. pose, how 

much smile.

Sample from true prior

Sample from true 

conditional

Decoder network

Variational Autoencoders

We want to estimate the true parameters        of this generative model.

How should we represent 

this model?

Choose prior        to be simple, 

e.g.  Gaussian. 

Conditional           is complex 

(generates  image) => represent 

with neural networkSample from true prior

Sample from true 

conditional

Decoder network
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Variational Autoencoders

We want to estimate the true parameters        of this generative model.

How to train the model?

Sample from true prior

Sample from true 

conditional
Data likelihood

Decoder network
Similar as Restricted Boltzman

Machines, here, we maximize the 

data likelihood.

Variational Autoencoders

Simple 

Gaussian Prior
Decoder  neural network

Data likelihood:
✔ ✔
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Variational Autoencoders

Data likelihood:
✔ ✔

Intractable to compute 

for every z

Variational Autoencoders

Data likelihood:
✔ ✔

Posterior density also intractable:
✔ ✔

Because of intractable data likelihood
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Variational Autoencoders

Data likelihood:
✔ ✔

Posterior density also intractable:
✔ ✔

Solution: In addition to decoder network modeling               , define 

additional encoder network               that approximates

Will see that this allows us to derive a lower bound on the data likelihood 

that is tractable, which we can optimize

Variational Autoencoders
Since we’re modeling probabilistic generation of data, encoder and decoder networks are 

probabilistic 

Encoder network Decoder network

(parameters ) (parameters )

Mean and (diagonal) covariance of z | x Mean and (diagonal) covariance of x | z

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders
Since we’re modeling probabilistic generation of data, encoder and decoder networks are 

probabilistic 

Encoder network Decoder network

(parameters ) (parameters )

Sample z|x from

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Sample x|z from

Variational Autoencoders
Now let us see the (log) data likelihood again with encoder and decoder

(             Does not depend on     )

Taking expectation over z 

(using encoder network) 

will be helpful later on
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Variational Autoencoders
Now let us see the (log) data likelihood again with encoder and decoder

(             Does not depend on     )

(Bayes’ rule)

Variational Autoencoders
Now let us see the (log) data likelihood again with encoder and decoder

(             Does not depend on     )

(Multiply by 1)

(Bayes’ rule)
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Variational Autoencoders
Now let us see the (log) data likelihood again with encoder and decoder

(             Does not depend on     )

(Logarithm)

(Multiply by 1)

(Bayes’ rule)

Variational Autoencoders
Now let us see the (log) data likelihood again with encoder and decoder

(             Does not depend on     )

(Logarithm)

(Multiply by 1)

(Bayes’ rule)

The expectation over z lead to 

nice KL Divergence form
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Variational Autoencoders
Now let us see the (log) data likelihood again with encoder and decoder

(             Does not depend on     )

(Logarithm)

(Multiply by 1)

(Bayes’ rule)

This KL term (between  

Gaussians for encoder 

and z prior) has nice 

closed-form solution!

intractable (saw earlier), 

can’t compute this KL term. But 

we know KL divergence always 

>= 0.

Decoder network gives , can  

compute estimate of this term through  

sampling. (Sampling differentiable  

through reparam. trick, see paper.)

Variational Autoencoders
Now let us see the (log) data likelihood again with encoder and decoder

(             Does not depend on     )

(Logarithm)

(Multiply by 1)

(Bayes’ rule)

Tractable lower bound which we can take gradient 

of and optimize!                differentiable, KL term

differentiable)
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Variational Autoencoders
Now let us see the (log) data likelihood again with encoder and decoder

(             Does not depend on     )

(Logarithm)

(Multiply by 1)

(Bayes’ rule)

Variational Lower Bound

“ELBO”

Training: Maximize 

lower bound

Variational Autoencoders
Now let us see the (log) data likelihood again with encoder and decoder

(             Does not depend on     )

(Logarithm)

(Multiply by 1)

(Bayes’ rule)

Variational Lower Bound

“ELBO”

Training: Maximize 

lower bound

Reconstruct  

the input data

Make approximate  

posterior distribution  

close to prior
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Variational Autoencoders
Putting it all together: maximizing the 

likelihood lower bound
Let’s look at computing the bound 

(forward pass) for a given 

minibatch of input

Variational Autoencoders
Putting it all together: maximizing the 

likelihood lower bound

Input data

Encoder network

(parameters )
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Variational Autoencoders
Putting it all together: maximizing the 

likelihood lower bound

Input data

Encoder network

(parameters )

Make approximate  

posterior distribution  close 

to prior

Variational Autoencoders
Putting it all together: maximizing the 

likelihood lower bound

Input data

Encoder network

(parameters )

Sample z|x from
Make approximate  

posterior distribution  close 

to prior
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Variational Autoencoders
Putting it all together: maximizing the 

likelihood lower bound

Input data

Encoder network

Decoder network

(parameters )

(parameters )

Sample z|x from
Make approximate  

posterior distribution  close 

to prior

Variational Autoencoders
Putting it all together: maximizing the 

likelihood lower bound

Input data

Encoder network

Decoder network

(parameters )

(parameters )

Sample z|x from

Sample x|z from

Maximize likelihood 

of original input 

being reconstructed

Make approximate  

posterior distribution  close 

to prior



2/11/2020

36

Variational Autoencoders
Putting it all together: maximizing the 

likelihood lower bound

Input data

Encoder network

Decoder network

(parameters )

(parameters )

Sample z|x from

Sample x|z from

Maximize likelihood 

of original input 

being reconstructed

Make approximate  

posterior distribution  close 

to prior

For every minibatch of 

input data: compute this 

forward pass, and then 

backprop!

VAE: Generate data
Use decoder network. Now sample z from prior!

Kingma and Welling, “Auto-Encoding Variational 
Bayes”, ICLR 2014

Decoder network

(parameters )

Sample x|z from

Sample z|x from
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Use decoder network. Now sample z from prior!

Kingma and Welling, “Auto-Encoding Variational 
Bayes”, ICLR 2014

Decoder network

(parameters )

Sample x|z from

Sample z|x from

VAE: Generate data
Use decoder network. Now sample z from prior!

Kingma and Welling, “Auto-Encoding Variational 
Bayes”, ICLR 2014

Decoder network

(parameters )

Sample x|z from

Sample z|x from

Vary Z2

Vary Z1

Data manifold for 2-d z

VAE: Generate data
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Use decoder network. Now sample z from prior!

Kingma and Welling, “Auto-Encoding Variational 
Bayes”, ICLR 2014

Different  dimensions of z  

encode  interpretable factors  

of variation

Diagonal prior on z =>

independent  latent 

variables

Vary Z2

Vary Z1

Degree of smile

Head pose

VAE: Generate data
Use decoder network. Now sample z from prior!

Kingma and Welling, “Auto-Encoding Variational 
Bayes”, ICLR 2014

Different  dimensions of z  

encode  interpretable factors  

of variation

Diagonal prior on z =>

independent  latent 

variables

Vary Z2

Vary Z1

Degree of smile

Head pose

VAE: Generate data

Also good feature 

representation that  can 
be computed using
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Softwares

• Vae – PyPI

• https://pypi.org/project/vae/

• Deep learning platforms such as TensorFlow 

and PyTorch
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