Tentative topics

- **Review**: supervised learning, density estimation
- **Extending standard learning framework**:
 - sparsity, learning to rank, multiple task
- **Low dimensional representation of data**
 - Component analysis and their applications
 - PCA, LSA, PLSA, pPCA, ICA, etc
 - **Latent variable models**
 - Variational approximations
- **Kernels**
 - Kernel methods, Kernel-PCA, string kernels, etc.
- **Non-parametric models and methods**:
 - Graph-based kernels for classification and clustering
 - Metric learning
 - Gaussian processes
Learning

Starts with data & prior knowledge

Typical steps in learning:
• Define a model space
• Define an objective criterion: criterion for measuring the goodness of a model (fit to data)
• Optimization: finding the best model
Alternative: optimization is replaced with the inference, e.g. Bayesian inference in the Bayesian learning

Evaluation/application:
• Model learned from the training data
• generalization to the future (test) data

Density estimation

Data: \(D = \{D_1, D_2, \ldots, D_n\} \)
\(D_i = x_i \) a vector of attribute values

Objective: try to estimate the underlying true probability distribution over variables \(X \), \(p(X) \), using examples in \(D \)

Standard (iid) assumptions: Samples
• are independent of each other
• come from the same (identical) distribution (fixed \(p(X) \))
Density estimation

Types of density estimation:

Parametric
- the distribution is modeled using a set of parameters \(\Theta \)
- \(p(X | \Theta) \)
- **Example:** mean and covariances of multivariate normal
- **Estimation:** find parameters \(\hat{\Theta} \) that fit the data \(D \) the best

Non-parametric
- The model of the distribution utilizes all examples in \(D \)
- As if all examples were parameters of the distribution
- The density for a point \(x \) is influenced by examples in its neighborhood

Basic criteria

What is the best set of parameters?

- **Maximum likelihood (ML)**

 \[
 \text{maximize} \quad p(D \mid \Theta, \xi)
 \]

 \(\xi \) - represents prior (background) knowledge

- **Maximum a posteriori probability (MAP)**

 \[
 \text{maximize} \quad p(\Theta \mid D, \xi)
 \]

Selects the mode of the posterior

\[
p(\Theta \mid D, \xi) = \frac{p(D \mid \Theta, \xi)p(\Theta \mid \xi)}{p(D \mid \xi)}
\]
Example. Bernoulli distribution.

Outcomes: two possible values – 0 or 1 (head or tail)

Data: D a sequence of outcomes x_i with 0,1 values

Model: probability of an outcome 1 θ

probability of 0 $(1 - \theta)$

$$P(x_i \mid \theta) = \theta^{x_i} (1 - \theta)^{(1-x_i)}$$

Bernoulli distribution

Objective:

We would like to estimate the probability of seeing 1:

$$\hat{\theta}$$

Maximum likelihood (ML) estimate.

Likelihood of data:

$$P(D \mid \theta, \xi) = \prod_{i=1}^{n} \theta^{x_i} (1 - \theta)^{(1-x_i)}$$

Maximum likelihood estimate

$$\theta_{ML} = \arg \max_{\theta} P(D \mid \theta, \xi)$$

Optimize log-likelihood

$$l(D, \theta) = \log P(D \mid \theta, \xi) = \log \prod_{i=1}^{n} \theta^{x_i} (1 - \theta)^{(1-x_i)} =$$

$$\sum_{i=1}^{n} x_i \log \theta + (1-x_i) \log (1-\theta) = \log \theta \sum_{i=1}^{n} x_i + \log (1-\theta) \sum_{i=1}^{n} (1-x_i)$$

N_1 - number of 1s seen N_2 - number of 0s seen
Maximum likelihood (ML) estimate.

Optimize log-likelihood

\[l(D, \theta) = N_1 \log \theta + N_2 \log(1 - \theta) \]

Set derivative to zero

\[\frac{\partial l(D, \theta)}{\partial \theta} = \frac{N_1}{\theta} - \frac{N_2}{(1 - \theta)} = 0 \]

Solving

\[\theta = \frac{N_1}{N_1 + N_2} \]

\(\text{ML Solution: } \theta_{ML} = \frac{N_1}{N} = \frac{N_1}{N_1 + N_2} \)

Maximum a posteriori estimate

Maximum a posteriori estimate

– Selects the mode of the posterior distribution

\[\theta_{MAP} = \arg \max_\theta p(\theta \mid D, \xi) \]

\[p(\theta \mid D, \xi) = \frac{P(D \mid \theta, \xi) p(\theta \mid \xi)}{P(D \mid \xi)} \]

(via Bayes rule)

\(P(D \mid \theta, \xi) \) - is the likelihood of data

\[P(D \mid \theta, \xi) = \prod_{i=1}^{n} \theta^{x_i} (1 - \theta)^{(1-x_i)} = \theta^{N_1} (1 - \theta)^{N_2} \]

\(p(\theta \mid \xi) \) - is the prior probability on \(\theta \)

How to choose the prior probability?
Prior distribution

Choice of prior: **Beta distribution**

\[p(\theta \mid \xi) = \text{Beta}(\theta \mid \alpha_1, \alpha_2) = \frac{\Gamma(\alpha_1 + \alpha_2)}{\Gamma(\alpha_1)\Gamma(\alpha_2)} \theta^{\alpha_1-1}(1 - \theta)^{\alpha_2-1} \]

Why?
Beta distribution “fits” binomial sampling - **conjugate choices**

\[P(D \mid \theta, \xi) = \theta^{N_1}(1 - \theta)^{N_2} \]

\[p(\theta \mid D, \xi) = \frac{P(D \mid \theta, \xi)\text{Beta}(\theta \mid \alpha_1, \alpha_2)}{P(D \mid \xi)} = \text{Beta}(\theta \mid \alpha_1 + N_1, \alpha_2 + N_2) \]

MAP Solution:

\[\theta_{\text{MAP}} = \frac{\alpha_1 + N_1 - 1}{\alpha_1 + \alpha_2 + N_1 + N_2 - 2} \]
Bayesian learning

- Both ML or MAP pick one parameter value
 - Is it always the best solution?
- Full Bayesian approach
 - Remedies the limitation of one choice
 - Keeps and uses a complete posterior distribution
- How is it used? Assume we want: $P(\Delta \mid D, \xi)$
 - Considers all parameter settings and averages the result
 $$P(\Delta \mid D, \xi) = \int_{\theta} P(\Delta \mid \theta, \xi) p(\theta \mid D, \xi) d\theta$$
 - Example: predict the result of the next outcome
 - Choose outcome 1 if $P(x=1 \mid D, \xi)$ is higher

Modeling complex multivariate distributions

How to model complex multivariate distributions $\hat{p}(X)$ with large number of variables?

One solution:
- Decompose the distribution. Reduce the number of parameters, using some form of independence.

Two models:
- Bayesian belief networks (BBNs)
- Markov Random Fields (MRFs)

- Learning. Relies on the decomposition.
Bayesian belief network.

1. Directed acyclic graph
 - **Nodes** = random variables
 - **Links** = direct (causal) dependencies between variables
 - Missing links encode independences

2. Local conditional distributions
 - relate variables and their parents
Bayesian belief network.

![Bayesian belief network diagram]

Full joint distribution in BBNs

Full joint distribution is defined in terms of local conditional distributions (obtained via the chain rule):

\[
P(X_1, X_2, \ldots, X_n) = \prod_{i=1}^{n} P(X_i \mid pa(X_i))
\]

Example:

Assume the following assignment of values to random variables:

\[B = T, E = T, A = T, J = T, M = F\]

Then its probability is:

\[
P(B = T, E = T, A = T, J = T, M = F) = P(B = T)P(E = T)P(A = T)P(J = T \mid B = T, E = T)P(M = F \mid A = T)
\]
Markov Random Fields (MRFs)

Undirected graph
- **Nodes** = random variables
- **Links** = direct relations between variables
- BBNs used to model asymmetric dependencies (most often causal),
- MRFs model symmetric dependencies (bidirectional effects) such as spatial dependences

A probability distribution is defined in terms of potential functions defined over cliques of the graph

\[
P(X_1, X_2, \ldots, X_n) = \frac{1}{Z} \prod_{C_i \in \text{cliques}(G)} \Psi(C_i)
\]
Latent variable models

- We can have a model with hidden variables
- Hidden variables may help us to induce the decomposition of a complex distribution

Latent variable models

- More general latent variable models
- Various relations in between hidden and observable variables
- **Example:** Continuous vector quantizer (CVQ) model

Possible uses:
- A probabilistic model
- A low dimensional representation of observable data
Copula distributions

• Copula defines a joint distribution function for random variables U_1, U_2, \ldots, U_k each of which is marginally uniformly distributed on $(0, 1)$.

• **Important (Sklar’s theorem):** A distribution function for a multivariate X can be written as a copula of marginal distribution functions.

• Copula is used to model all dependences in between components of X.