Probabilistic Latent Semantic Analysis

Yuriy Sverchkov

Intelligent Systems Program
University of Pittsburgh

October 6, 2011
Outline

Latent Semantic Analysis (LSA)
 A quick review

Probabilistic LSA (pLSA)
 The pLSA model

Learning
 EM and tempered EM

Applications
 pLSI and pHITS
Outline

Latent Semantic Analysis (LSA)
 A quick review

Probabilistic LSA (pLSA)
 The pLSA model

Learning
 EM and tempered EM

Applications
 pLSI and pHITS

Yuriy Sverchkov (ISP) Probabilistic Latent Semantic Analysis October 6, 2011 3 / 16
LSA uses PCA to find a lower-dimensional “topic” space.

\[
\begin{pmatrix}
 x_{1,1} & \cdots & x_{1,n} \\
 \vdots & \ddots & \vdots \\
 x_{m,1} & \cdots & x_{m,n}
\end{pmatrix}
=
\begin{pmatrix}
 \text{terms} \\
 \text{documents}
\end{pmatrix}
\begin{pmatrix}
 w_{1,1} & \cdots & w_{1,r} \\
 \vdots & \ddots & \vdots \\
 w_{m,1} & \cdots & w_{m,r}
\end{pmatrix}
\begin{pmatrix}
 v_{1,1} & \cdots & v_{1,n} \\
 \vdots & \ddots & \vdots \\
 v_{r,1} & \cdots & v_{r,n}
\end{pmatrix}
\begin{pmatrix}
 \text{topics} \\
 \text{topic weights} \\
 \text{documents}
\end{pmatrix}
\]
PCA as reconstruction error minimization

For each data vector $\mathbf{x}_n = (x_{n1}, \ldots, x_{nd})$, and for $M < d$, find $U = (\mathbf{u}_1, \ldots, \mathbf{u}_M)$ that minimizes

$$E_M \equiv \sum_{n=1}^{N} \| \mathbf{x}_n - \hat{\mathbf{x}}_n \|^2$$

where $\hat{\mathbf{x}}_n = \bar{\mathbf{x}} + \sum_{i=1}^{M} y_{ni} \mathbf{u}_i$ and $\bar{\mathbf{x}} \equiv \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_n$ giving:

$$E_M = \sum_{i=M+1}^{d} \sum_{n=1}^{N} \left[\mathbf{u}_i^T (\mathbf{x}_n - \bar{\mathbf{x}}) \right]^2 = \sum_{i=M+1}^{d} \mathbf{u}_i^T \Sigma \mathbf{u}_i = \sum_{i=M+1}^{d} \lambda_i$$
Outline

Latent Semantic Analysis (LSA)
 A quick review

Probabilistic LSA (pLSA)
 The pLSA model

Learning
 EM and tempered EM

Applications
 pLSI and pHITS
Probabilistic LSA

- The same “document ↔ topic ↔ word” idea in a probabilistic framework.

- Asymmetric generative aspect model:
 1. Select a document d with probability $P(d)$.
 2. Select a latent class z with probability $P(z|d)$.
 3. Generate a word w with probability $P(w|z)$.

- A mixture model
 - Each document corresponds to a mixture of topics.
 - Each topic corresponds to a mixture of words.
Parametrization

\(d\) The index of a document in the dataset.

\(P(d)\) The frequency of the document in the corpus (uniform in practice).

\(z\) The index of a topic.

\(P(z|d)\) Latent parameters that define the distribution of topics for a particular document.

\(w\) The index of a word in the dictionary.

\(P(w|z)\) Latent parameters that define the distribution of words for a particular topics.
Independence

- Remember independence equivalence classes in Bayesian networks?
Symmetric aspect model

Parametrization

\[P(d, w) = \sum_{z \in Z} P(z)P(d|z)P(w|z) \]

- Inference is BN inference.
- Learning is the same as for any BN with latent variables: EM.
pLSA vs LSA

pLSA
- Assumes conditional independence given a lower-dimensional variable.
- Maximizes likelihood function.
- Parameters are multinomial distributions.
- EM is slow.
- EM converges to a local optimum.

LSA
- Assumes linear transformation to a low-dimensional space.
- Minimizes Gaussian error.
- Parameters have no obvious interpretation.
- Linear operations are fast.
- SVD is exact (up to numerical precision).
Outline

Latent Semantic Analysis (LSA)
A quick review

Probabilistic LSA (pLSA)
The pLSA model

Learning
EM and tempered EM

Applications
pLSI and pHITS
Learning: standard EM

- **E-step:**

 \[
P(z|d, w) = \frac{P(z)P(d|z)P(w|z)}{\sum_{z' \in Z} P(z')P(d|z')P(w|z')}
 \]

- **M-step:**

 \[
P(w|z) \propto \sum_{d \in D} n(d, w)P(z|d, w)
 \]

 \[
P(d|z) \propto \sum_{w \in W} n(d, w)P(z|d, w)
 \]

 \[
P(z) \propto \sum_{d \in D} \sum_{w \in W} n(d, w)P(z|d, w)
 \]
Learning: tempered EM (TEM)

• New E-Step:

\[P(z|d, w) = \frac{P(z) [P(d|z)P(w|z)]^\beta}{\sum_{z' \in Z} P(z') [P(d|z')P(w|z')]}^{\beta} \]

• Same as the standard E-Step when \(\beta = 1 \).

• Same as a posterior given uniform data when \(\beta = 0 \).

• Algorithm:
 1. Hold out some data.
 2. Set \(\beta \leftarrow 1 \).
 3. Perform EM and decrease \(\beta \) at some rate \((\beta \leftarrow \eta \beta \text{ with } \eta < 1) \).
 4. Stop if performance on held-out data doesn’t increase, otherwise repeat previous step.
 5. Perform some final iterations on full data.
Outline

Latent Semantic Analysis (LSA)
 A quick review

Probabilistic LSA (pLSA)
 The pLSA model

Learning
 EM and tempered EM

Applications
 pLSI and pHITS
Applications to information retrieval and link analysis

• **Information Retrieval:** pLSI
 - Index documents by their topic \((z)\) distributions.
 - Queries are computed by scoring each document with \(P(w|d)\) (for words in the query).
 - Can fold-in a new query as a “hypothesetical document” \(P(z|q)\) by updating that probability with EM.

• **Link analysis:** pHITS
 - \(d\) are documents, \(c\) are citations (correspond to \(w\) in pLSA).
 - Want to group these into “communities” \((z)\).
 - Authoritativeness measures:
 \[
 P(c|z) \quad \text{authority of } c \text{ within the community } z.

 P(z|c) \quad \text{topic-specific authority.}

 P(z|c)P(c|z) \quad \text{topic characteristic for community.}
 \]