Density estimation

Density estimation: is an unsupervised learning problem

• Goal: Learn a model that represent the relations among attributes in the data
 \[D = \{D_1, D_2, \ldots, D_n\} \]

Data: \[D_i = x_i \] a vector of attribute values

Attributes:
• modeled by random variables \[X = \{X_1, X_2, \ldots, X_d\} \] with
 – Continuous or discrete valued variables

Density estimation: learn an underlying probability distribution model: \[p(X) = p(X_1, X_2, \ldots, X_d) \] from \(D \)
Density estimation

Data: \(D = \{D_1, D_2, ..., D_n\} \)
\(D_i = x_i \) a vector of attribute values

Objective: estimate the model of the underlying probability distribution over variables \(\mathbf{X} \), \(p(\mathbf{X}) \), using examples in \(D \)

Density estimation

Standard (iid) assumptions: Samples
- are **independent** of each other
- come from the same (identical) distribution (fixed \(p(\mathbf{X}) \))

Independently drawn instances from the same fixed distribution
Density estimation

Types of density estimation:

Parametric
- the distribution is modeled using a set of parameters Θ
 \[\hat{p}(X) = p(X | \Theta) \]
- **Example**: mean and covariances of a multivariate normal
- **Estimation**: find parameters Θ describing data D

Non-parametric
- The model of the distribution utilizes all examples in D
- As if all examples were parameters of the distribution
- **Examples**: Nearest-neighbor

Learning via parameter estimation

In this lecture we consider **parametric density estimation**

Basic settings:
- A set of random variables $X = \{X_1, X_2, \ldots, X_d\}$
- **A model of the distribution** over variables in X
 with parameters $\Theta : \hat{p}(X | \Theta)$
- **Example**: Gaussian distribution with mean and variance parameters

- **Data** $D = \{D_1, D_2, \ldots, D_n\}$

Objective: find parameters Θ such that $p(X | \Theta)$ fits data D the best
ML Parameter estimation

Model \(\hat{p}(X) = p(X|\Theta) \)
Data \(D = \{D_1, D_2, ..., D_n\} \)

- **Maximum likelihood (ML)**
 - Find \(\hat{\Theta} \) that maximizes the likelihood \(p(D|\Theta, \xi) \)

\[
P(D|\Theta, \xi) = P(D_1, D_2, ..., D_n|\Theta, \xi) = \prod_{i=1}^{n} P(D_i|\Theta, \xi)
\]

\[
\log \text{-likelihood} \quad \log p(D|\Theta, \xi) = \sum_{i=1}^{n} \log P(D_i|\Theta, \xi)
\]

\[
\Theta_{ML} = \arg\max_{\Theta} p(D|\Theta, \xi) = \arg\max_{\Theta} \log p(D|\Theta, \xi)
\]

\[
\hat{p}(X) = p(X|\Theta_{ML})
\]

Bayesian parameter estimation

The ML estimate picks just one value of the parameter

- **Problem:** if there are two different parameter values that are close in terms of the likelihood, using only one of them may introduce a strong bias, if we use it, for example, for predictions.

Bayesian parameter estimation

- Remedies the limitation of one choice
- Uses the posterior distribution for parameters \(\Theta \)
- Posterior ‘covers’ all possible parameter values (and their “weights”)

\[
p(\Theta|D, \xi) = \frac{p(D|\Theta, \xi)p(\Theta|\xi)}{p(D|\xi)}
\]
Bayesian parameter estimation

What does it do?
- Prior and Posterior ‘covers’ all possible parameter values (and their “weights”)
Assume: we have a model of \(p(x \mid \Theta) \) with a parameter \(\Theta \)

- Bayesian parameter estimation:
 - Prior on a parameter
 \[
p(\Theta) + p(x \mid \Theta) = p(\Theta \mid D)
 \]
 - Data + \(p(x \mid \Theta) \)
 - Just one value

- ML Estimate
 \[
p(\Theta) + p(x \mid \Theta) = \text{Just one value}
 \]

Bayesian parameter estimation

- Uses the posterior distribution for parameters
- Posterior ‘covers’ all possible parameter values (and their “weights”)

Parameter posterior
\[
p(\Theta \mid D, \xi) = \frac{p(D \mid \Theta, \xi)p(\Theta \mid \xi)}{p(D \mid \xi)}
\]

- How to use the posterior for modeling \(p(X) \)?
\[
\hat{p}(X) = p(X \mid D) = \int p(X \mid \Theta)p(\Theta \mid D, \xi)d\Theta
\]
Parameter estimation

Other criteria:

• **Maximum a posteriori probability (MAP)**

 maximize \(p(\Theta \mid D, \xi) \) (mode of the posterior)

 – Yields: one set of parameters \(\Theta_{MAP} \)

 – Approximation:
 \[\hat{p}(X) = p(X \mid \Theta_{MAP}) \]

• **Expected value of the parameter**

 \(\hat{\Theta} = E(\Theta) \)
 (mean of the posterior)

 – Expectation taken with regard to posterior \(p(\Theta \mid D, \xi) \)

 – Yields: one set of parameters

 – Approximation:
 \[\hat{p}(X) = p(X \mid \hat{\Theta}) \]

Parameter estimation. Coin example.

Coin example: we have a coin that can be biased

Outcomes: two possible values -- head or tail

Data: \(D \) a sequence of outcomes \(x_i \) such that

- **head** \(x_i = 1 \)
- **tail** \(x_i = 0 \)

Model: probability of a head \(\theta \)

probability of a tail \((1 - \theta) \)

Objective: We would like to estimate the probability of a head \(\hat{\theta} \)

from data
Parameter estimation. Example.

- **Assume** the unknown and possibly biased coin
- Probability of the head is \(\theta \)
- **Data:**

 H H T T H H T H T T H T H H T H H T H H T T H H T T T H T H H H H T H H H H T

 – **Heads:** 15
 – **Tails:** 10

What would be your estimate of the probability of a head?

\[\tilde{\theta} = ? \]

Solution: use frequencies of occurrences to do the estimate

\[\tilde{\theta} = \frac{15}{25} = 0.6 \]

This is the maximum likelihood estimate of the parameter \(\theta \)
Probability of an outcome

Data: D a sequence of outcomes x_i such that
- head $x_i = 1$
- tail $x_i = 0$

Model:
- probability of a head θ
- probability of a tail $(1 - \theta)$

Assume: we know the probability θ

Probability of an outcome of a coin flip x_i

$$P(x_i | \theta) = \theta^{x_i} (1 - \theta)^{1-x_i}$$

Bernoulli distribution

- Combines the probability of a head and a tail
- So that x_i is going to pick its correct probability
- Gives θ for $x_i = 1$
- Gives $(1 - \theta)$ for $x_i = 0$

Probability of a sequence of outcomes.

Data: D a sequence of outcomes x_i such that
- head $x_i = 1$
- tail $x_i = 0$

Model:
- probability of a head θ
- probability of a tail $(1 - \theta)$

Assume: a sequence of independent coin flips

$$D = H H T H T H \quad \text{(encoded as } D = 110101)$$

What is the probability of observing the data sequence D:

$$P(D | \theta) = ?$$
Probability of a sequence of outcomes.

Data: \(D \) a sequence of outcomes \(x_i \) such that
- head \(x_i = 1 \)
- tail \(x_i = 0 \)

Model: probability of a head \(\theta \)
probability of a tail \(1 - \theta \)

Assume: a sequence of coin flips \(D = H H T H T H \)
encoded as \(D = 110101 \)

What is the probability of observing a data sequence \(D \):

\[
P(D \mid \theta) = \theta \theta (1 - \theta) \theta (1 - \theta) \theta
\]
Probability of a sequence of outcomes.

Data: \(D \) a sequence of outcomes \(x_i \) such that
- head \(x_i = 1 \)
- tail \(x_i = 0 \)

Model: probability of a head \(\theta \)
probability of a tail \((1 - \theta) \)

Assume: a sequence of coin flips \(D = \text{H H T H T H} \)
encoded as \(D = 110101 \)

What is the probability of observing a data sequence \(D \):

\[
P(D \mid \theta) = \theta \theta (1-\theta) \theta (1-\theta) \theta
\]

\[
P(D \mid \theta) = \prod_{i=1}^{6} \theta^{x_i} (1-\theta)^{(1-x_i)}
\]

Can be rewritten using the Bernoulli distribution:

The goodness of fit to the data

Learning: we do not know the value of the parameter \(\theta \)

Our learning goal:
- Find the parameter \(\theta \) that fits the data \(D \) the best?

One solution to the “best”: Maximize the likelihood

\[
P(D \mid \theta) = \prod_{i=1}^{n} \theta^{x_i} (1-\theta)^{(1-x_i)}
\]

Intuition:
- more likely are the data given the model, the better is the fit

Note: Instead of an error function that measures how bad the data fit the model we have a measure that tells us how well the data fit:

\[
\text{Error}(D, \theta) = -P(D \mid \theta)
\]
Maximum likelihood (ML) estimate.

Likelihood of data:
\[P(D \mid \theta, \xi) = \prod_{i=1}^{n} \theta^{x_i} (1 - \theta)^{(1-x_i)} \]

Maximum likelihood estimate
\[\theta_{ML} = \arg \max_{\theta} P(D \mid \theta, \xi) \]

Optimize log-likelihood (the same as maximizing likelihood)
\[l(D, \theta) = \log P(D \mid \theta, \xi) = \log \prod_{i=1}^{n} \theta^{x_i} (1 - \theta)^{(1-x_i)} = \]
\[\sum_{i=1}^{n} x_i \log \theta + (1 - x_i) \log (1 - \theta) = \log \theta \sum_{i=1}^{n} x_i + \log (1 - \theta) \sum_{i=1}^{n} (1 - x_i) \]

\[N_1 - \text{number of heads seen} \quad N_2 - \text{number of tails seen} \]

Maximum likelihood (ML) estimate.

Optimize log-likelihood
\[l(D, \theta) = N_1 \log \theta + N_2 \log (1 - \theta) \]

Set derivative to zero
\[\frac{\partial l(D, \theta)}{\partial \theta} = \frac{N_1}{\theta} - \frac{N_2}{(1 - \theta)} = 0 \]

Solving
\[\theta = \frac{N_1}{N_1 + N_2} \]

ML Solution:
\[\theta_{ML} = \frac{N_1}{N} = \frac{N_1}{N_1 + N_2} \]
Maximum likelihood estimate. Example

• Assume the unknown and possibly biased coin
• Probability of the head is θ
• Data:
 H H T T H H T H T H T T H T H H H H T H H H H T
 – Heads: 15
 – Tails: 10
What is the ML estimate of the probability of a head and a tail?

Maximum likelihood estimate. Example

• Assume the unknown and possibly biased coin
• Probability of the head is θ
• Data:
 H H T T H H T H T H T T H T H H H H T H H H H T
 – Heads: 15
 – Tails: 10
What is the ML estimate of the probability of head and tail?

\[
\theta_{ML}^{Head} = \frac{N_1}{N} = \frac{15}{25} = 0.6
\]
\[
(1 - \theta_{ML}^{Head}) = \frac{N_2}{N} = \frac{10}{25} = 0.4
\]
Bayesian parameter estimation

Uses the distributions (prior and posterior) over all possible values of the parameter θ of the sampling distribution $p(x \mid \theta)$ (Bernoulli):

Prior

$$p(\theta \mid D, \xi) = \frac{P(D \mid \theta, \xi)p(\theta \mid \xi)}{P(D \mid \xi)}$$

(via Bayes theorem)

Likelihood of data

Posterior

$$p(\theta \mid D, \xi) = \frac{P(D \mid \theta, \xi)p(\theta \mid \xi)}{P(D \mid \xi)}$$

Normalizing factor

We know that the likelihood is:

$$P(D \mid \theta, \xi) = \prod_{i=1}^{n} \theta^{x_i} (1 - \theta)^{(1-x_i)} = \theta^{N_1} (1 - \theta)^{N_2}$$

How to choose the prior probability?

$p(\theta \mid \xi)$ - is the prior probability on θ

Prior distribution

Choice of prior: Beta distribution

$$p(\theta \mid \xi) = \text{Beta}(\theta \mid \alpha_1, \alpha_2) = \frac{\Gamma(\alpha_1 + \alpha_2)}{\Gamma(\alpha_1)\Gamma(\alpha_2)} \theta^{\alpha_1-1} (1 - \theta)^{\alpha_2-1}$$

$\Gamma(x)$ - a Gamma function $\Gamma(x) = (x-1)!$

For integer values of x $\Gamma(n) = (n-1)!$

Why to use Beta distribution?

Beta distribution “fits” Bernoulli sample - conjugate choices

$$P(D \mid \theta, \xi) = \theta^{N_1} (1 - \theta)^{N_2}$$

Posterior distribution is again a Beta distribution

$$p(\theta \mid D, \xi) = \frac{P(D \mid \theta, \xi)\text{Beta}(\theta \mid \alpha_1, \alpha_2)}{P(D \mid \xi)} = \text{Beta}(\theta \mid \alpha_1 + N_1, \alpha_2 + N_2)$$
Beta distribution

\[p(\theta \mid \xi) = \text{Beta}(\theta \mid a, b) = \frac{\Gamma(a + b)}{\Gamma(a)\Gamma(b)} \theta^{a-1}(1 - \theta)^{b-1} \]

Posterior distribution

\[p(\theta \mid D, \xi) = \frac{P(D \mid \theta, \xi) \text{Beta}(\theta \mid \alpha_1, \alpha_2)}{P(D \mid \xi)} = \text{Beta}(\theta \mid \alpha_1 + N_1, \alpha_2 + N_2) \]
Posterior distribution

Beta posterior
- A conjugate prior to Bernoulli sample

\[
p(\theta | D, \xi) = \frac{P(D | \theta, \xi) \text{Beta}(\theta | \alpha_1, \alpha_2)}{P(D | \xi)} = \text{Beta}(\theta | \alpha_1 + N_1, \alpha_2 + N_2)
\]

\[
= \frac{\Gamma(\alpha_1 + \alpha_2 + N_1 + N_2)}{\Gamma(\alpha_1 + N_1)\Gamma(\alpha_2 + N_2)} \theta^{N_1 + \alpha_1 - 1}(1 - \theta)^{N_2 + \alpha_2 - 1}
\]

Notice that parameters of the prior act like counts of heads and tails (sometimes they are also referred to as **prior counts**)

Maximum a posteriori probability (MAP)

Maximum a posteriori estimate
- Selects the mode of the posterior distribution

\[
\theta_{\text{MAP}} = \arg \max_{\theta} p(\theta | D, \xi)
\]

Likelihood of data \[p(\theta | D, \xi) = \frac{P(D | \theta, \xi)p(\theta | \xi)}{P(D | \xi)}\] (via Bayes rule)

• Selects the model of the posterior represented as a Beta distribution

\[
p(\theta | D, \xi) = \frac{P(D | \theta, \xi) \text{Beta}(\theta | \alpha_1, \alpha_2)}{P(D | \xi)} = \text{Beta}(\theta | \alpha_1 + N_1, \alpha_2 + N_2)
\]
Maximum posterior probability

Maximum a posteriori estimate
- Selects the mode of the posterior distribution
- Assumes conjugate prior to Bernoulli sample

\[p(\theta \mid D, \xi) = \frac{P(D \mid \theta, \xi) \text{Beta}(\theta \mid \alpha_1, \alpha_2)}{P(D \mid \xi)} = \text{Beta}(\theta \mid \alpha_1 + N_1, \alpha_2 + N_2) \]

\[= \frac{\Gamma(\alpha_1 + \alpha_2 + N_1 + N_2)}{\Gamma(\alpha_1 + N_1)\Gamma(\alpha_2 + N_2)} \theta^{N_1 + \alpha_1 - 1}(1 - \theta)^{N_2 + \alpha_2 - 1} \]

Mode of the posterior satisfies: \[\frac{\partial \log p(\theta \mid D, \xi)}{\partial \theta} = 0 \]

MAP Solution:

\[\theta_{MAP} = \frac{\alpha_1 + N_1 - 1}{\alpha_1 + \alpha_2 + N_1 + N_2 - 2} \]

MAP estimate example

• Assume the unknown and possibly biased coin
• Probability of the head is \(\theta \)
• **Data:**
 H H T T H H T H T T H T H H H T H H H H T H H H H T
 - Heads: 15
 - Tails: 10
• Assume \(p(\theta \mid \xi) = \text{Beta}(\theta \mid 5,5) \)

What is the MAP estimate?
MAP estimate example

- Assume the unknown and possibly biased coin
- Probability of the head is θ
- **Data:**

 - Heads: 15
 - Tails: 10
- Assume $p(\theta | \xi) = Beta(\theta | 5,5)$

What is the MAP estimate?

$$\theta_{MAP} = \frac{N_1 + \alpha_1 - 1}{N - 2} = \frac{N_1 + \alpha_1 - 1}{N_1 + N_2 + \alpha_1 + \alpha_2 - 2} = \frac{19}{33}$$

MAP estimate example

- Note that the prior and data fit (data likelihood) are combined
- **The MAP can be biased with large prior counts**
- It is hard to overturn it with a smaller sample size
- **Data:**

 - Heads: 15
 - Tails: 10
- Assume $p(\theta | \xi) = Beta(\theta | 5,5)$

$$\theta_{MAP} = \frac{19}{33}$$

$$p(\theta | \xi) = Beta(\theta | 5,20)$$

$$\theta_{MAP} = \frac{19}{48}$$
Bayesian framework

- **Predictive probability of an outcome** \(x = 1 \) in the next trial \(P(x = 1 \mid D, \xi) \)

 \[
P(x = 1 \mid D, \xi) = \int P(x = 1 \mid \theta, \xi) p(\theta \mid D, \xi) d\theta
 \]

 Posterior density

\[
P(x = 1 \mid D, \xi) = \int_0^1 P(x = 1 \mid \theta, \xi) p(\theta \mid D, \xi) d\theta = E(\theta)
\]

- **Equivalent to the expected value of the parameter**
 - expectation is taken with respect to the posterior distribution

 \[
p(\theta \mid D, \xi) = \text{Beta}(\theta \mid \alpha_1 + N_1, \alpha_2 + N_2)
 \]

Expected value of the parameter

How to calculate the expected value of Beta?

\[
E(\theta) = \int_0^1 \theta \text{Beta}(\theta \mid \eta_1, \eta_2) d\theta = \int_0^1 \frac{\Gamma(\eta_1 + \eta_2)}{\Gamma(\eta_1) \Gamma(\eta_2)} \theta^{\eta_1 - 1} (1 - \theta)^{\eta_2 - 1} d\theta
\]

\[
= \frac{\Gamma(\eta_1 + \eta_2)}{\Gamma(\eta_1) \Gamma(\eta_2)} \int_0^1 \theta^{\eta_1 - 1} (1 - \theta)^{\eta_2 - 1} d\theta
\]

\[
= \frac{\Gamma(\eta_1 + \eta_2)}{\Gamma(\eta_1) \Gamma(\eta_2)} \frac{\Gamma(\eta_1 + 1) \Gamma(\eta_2)}{\Gamma(\eta_1 + \eta_2 + 1)} \int_0^1 \text{Beta}(\eta_1 + 1, \eta_2) d\theta
\]

\[
= \frac{\eta_1}{\eta_1 + \eta_2}
\]

Note: \(\Gamma(\alpha + 1) = \alpha \Gamma(\alpha) \) for integer values of \(\alpha \)
Expected value of the parameter

- **Substituting the results for the posterior:**
 \[p(\theta \mid D, \xi) = \text{Beta}(\theta \mid \alpha_1 + N_1, \alpha_2 + N_2) \]

- **We get**
 \[E(\theta) = \frac{\alpha_1 + N_1}{\alpha_1 + N_1 + \alpha_2 + N_2} \]

- **Note that the mean of the posterior is yet another “reasonable” parameter choice:**
 \[\hat{\theta} = E(\theta) \]

Binomial distribution

Example problem: a biased coin
Outcomes: two possible values -- head or tail
Data: a set of order-independent outcomes for N trials
\[N_1 \text{ - number of heads seen} \quad N_2 \text{ - number of tails seen} \]

Model: probability of a head \(\theta \)
probability of a tail \(1 - \theta \)

Probability of an outcome

\[P(N_1 \mid N, \theta) = \binom{N}{N_1} \theta^{N_1} (1 - \theta)^{N - N_1} \quad \text{Binomial distribution} \]

Objective:
We would like to estimate the probability of a head \(\hat{\theta} \)
Binomial distribution

Example problem: N coin flips, where each coin flip can have two results: head or tail

Outcome: N_1 - number of heads seen N_2 - number of tails seen in N trials

Model: probability of a head θ probability of a tail $(1-\theta)$

Probability of an outcome:

$$P(N_1 \mid N, \theta) = \binom{N}{N_1} \theta^{N_1} (1 - \theta)^{N-N_1}$$

Binomial distribution:
- models order independent sequence of Bernoulli trials

![Binomial distribution graph](image)
Maximum likelihood (ML) estimate.

Likelihood of data:
\[
P(D | \theta) = \binom{N}{N_1} \theta^{N_1} (1 - \theta)^{N_2} = \frac{N!}{N_1! N_2!} \theta^{N_1} (1 - \theta)^{N_2}
\]

Log-likelihood
\[
l(D, \theta) = \log \left(\binom{N}{N_1} \theta^{N_1} (1 - \theta)^{N_2} \right) = \log \frac{N!}{N_1! N_2!} + N_1 \log \theta + N_2 \log(1 - \theta)
\]

Constant from the point of optimization !!!

ML Solution:
\[
\theta_{ML} = \frac{N_1}{N} = \frac{N_1}{N_1 + N_2}
\]
The same as for Bernoulli and \(D \) with iid sequence of examples

Posterior density

Posterior density
\[
p(\theta | D, \xi) = \frac{P(D | \theta, \xi) p(\theta | \xi)}{P(D | \xi)} \quad \text{via Bayes rule}
\]

Prior choice
\[
p(\theta | \xi) = \text{Beta}(\theta | \alpha_1, \alpha_2) = \frac{\Gamma(\alpha_1 + \alpha_2)}{\Gamma(\alpha_1) \Gamma(\alpha_2)} \theta^{\alpha_1 - 1} (1 - \theta)^{\alpha_2 - 1}
\]

Likelihood
\[
P(D | \theta) = \frac{\Gamma(N_1 + N_2)}{\Gamma(N_1) \Gamma(N_2)} \theta^{N_1} (1 - \theta)^{N_2}
\]

Posterior
\[
p(\theta | D, \xi) = \text{Beta}(\alpha_1 + N_1, \alpha_2 + N_2)
\]

MAP estimate
\[
\theta_{MAP} = \arg \max_{\theta} p(\theta | D, \xi)
\]
\[
\theta_{MAP} = \frac{\alpha_1 + N_1 - 1}{\alpha_1 + \alpha_2 + N_1 + N_2 - 2}
\]
Multinomial distribution

Example: multiple rolls of a dice with 6 results

Outcome: counts of occurrences of \(k \) possible outcomes of \(N \) trials: \(N_i \) - a number of times an outcome \(i \) has been seen

\[
\sum_{i=1}^{k} N_i = N
\]

Model parameters: \(\Theta = (\theta_1, \theta_2, \ldots, \theta_k) \) s.t. \(\sum_{i=1}^{k} \theta_i = 1 \)

- \(\theta_i \) - probability of an outcome \(i \)

Probability distribution:

\[
P(N_1, N_2, \ldots, N_k \mid \Theta, \xi) = \frac{N!}{N_1! N_2! \ldots N_k!} \prod_{i=1}^{k} \theta_i^{N_i} \]

ML estimate:

\[
\theta_{i, ML} = \frac{N_i}{N}
\]

Posterior and MAP estimate

Choice of the prior: Dirichlet distribution

\[
Dir(\Theta \mid \alpha_1, \ldots, \alpha_k) = \frac{\Gamma(\sum_{i=1}^{k} \alpha_i)}{\prod_{i=1}^{k} \Gamma(\alpha_i)} \prod_{i=1}^{k} \theta_i^{\alpha_i - 1}
\]

Dirichlet is the conjugate choice for the multinomial sampling

\[
P(D \mid \Theta, \xi) = P(N_1, N_2, \ldots, N_k \mid \Theta, \xi) = \frac{N!}{N_1! N_2! \ldots N_k!} \prod_{i=1}^{k} \theta_i^{N_i} \]

Posterior density

\[
p(\Theta \mid D, \xi) = \frac{P(D \mid \Theta, \xi)Dir(\Theta \mid \alpha_1, \alpha_2, \ldots, \alpha_k)}{P(D \mid \xi)} = Dir(\Theta \mid \alpha_1 + N_1, \ldots, \alpha_k + N_k)
\]

MAP estimate:

\[
\hat{\theta}_{i, MAP} = \frac{\alpha_i + N_i - 1}{\sum_{i=1}^{k} (\alpha_i + N_i) - k}
\]
Dirichlet distribution

Dirichlet distribution:

\[\text{Dir}(\theta | \alpha_1, \ldots, \alpha_k) = \frac{\Gamma(k) \prod_{i=1}^{k} \Gamma(\alpha_i)}{\prod_{i=1}^{k} \Gamma(\alpha_i)} \theta_1^{\alpha_1-1} \theta_2^{\alpha_2-1} \cdots \theta_k^{\alpha_k-1} \]

Assume: \(k=3 \)

Other distributions

The same ideas can be applied to other distributions

- Typically we choose distributions that behave well so that computations lead to “nice” solutions

- Exponential family of distributions

 Conjugate choices for some of the distributions from the exponential family:
 - Binomial – Beta
 - Multinomial - Dirichlet
 - Exponential – Gamma
 - Poisson – Inverse Gamma
 - Gaussian - Gaussian (mean) and Wishart (covariance)
Gaussian (normal) distribution

- **Gaussian:** $x \sim N(\mu, \sigma)$
- **Parameters:**
 - μ - mean
 - σ - standard deviation
- **Density function:**
 $$p(x | \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left[-\frac{1}{2\sigma^2} (x - \mu)^2 \right]$$
- **Example:**

![Gaussian distribution graph](image)

Parameter estimates

- **Loglikelihood**
 $$l(D, \mu, \sigma) = \log \prod_{i=1}^{n} p(x_i | \mu, \sigma)$$
- **ML estimates of the mean and variance:**
 $$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i \quad \hat{\sigma} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \hat{\mu})^2$$
 - ML variance estimate is biased
 $$E_n(\sigma^2) = E_n\left(\frac{1}{n} \sum_{i=1}^{n} (x_i - \hat{\mu})^2 \right) = \frac{n-1}{n} \sigma^2 \neq \sigma^2$$
- **Unbiased estimate:**
 $$\hat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \hat{\mu})^2$$
Multivariate normal distribution

- **Multivariate normal:** \(\mathbf{x} \sim N(\boldsymbol{\mu}, \Sigma) \)
- **Parameters:**
 - \(\boldsymbol{\mu} \) - mean
 - \(\Sigma \) - covariance matrix
- **Density function:**
 \[
 p(\mathbf{x} | \boldsymbol{\mu}, \Sigma) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp \left[-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^T \Sigma^{-1} (\mathbf{x} - \boldsymbol{\mu}) \right]
 \]
- **Example:**

Partitioned Gaussian Distributions

- **Multivariate Gaussian:**

- **Example:**

 - Precision matrix

 - What are the distributions for marginals and conditionals?

 \[
 p(x_a), \quad p(x_a | x_b)
 \]
Partitioned Conditionals and Marginals

- Conditional density:

- Marginal Density:
Parameter estimates

- Loglikelihood
 \[l(D, \mu, \Sigma) = \log \prod_{i=1}^{n} p(x_i | \mu, \Sigma) \]

- ML estimates of the mean and covariances:
 \[
 \hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i \quad \hat{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \hat{\mu})(x_i - \hat{\mu})^T
 \]

 - Covariance estimate is biased
 \[
 E_n(\hat{\Sigma}) = E_n \left(\frac{1}{n} \sum_{i=1}^{n} (x_i - \hat{\mu})(x_i - \hat{\mu})^T \right) = \frac{n-1}{n} \Sigma \neq \Sigma
 \]

 - Unbiased estimate:
 \[
 \hat{\Sigma} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \hat{\mu})(x_i - \hat{\mu})^T
 \]

Posterior of a multivariate normal

- Assume a prior on the mean \(\mu \) that is normally distributed:
 \[p(\mu) \approx N(\mu_p, \Sigma_p) \]

- Then the posterior of \(\mu \) is normally distributed
 \[
 p(\mu | D) \approx \left(\prod_{i=1}^{n} \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp \left[-\frac{1}{2} (x_i - \mu)^T \Sigma^{-1} (x_i - \mu) \right] \right) \]
 \[
 \times \frac{1}{(2\pi)^{d/2} |\Sigma_p|^{1/2}} \exp \left[-\frac{1}{2} (\mu - \mu_p)^T \Sigma_p^{-1} (\mu - \mu_p) \right]
 \]
 \[
 = \frac{1}{(2\pi)^{d/2} |\Sigma_n|^{1/2}} \exp \left[-\frac{1}{2} (\mu - \mu_n)^T \Sigma_n^{-1} (\mu - \mu_n) \right]
 \]

CS 2750 Machine Learning
Posterior of a multivariate normal

- Then the posterior of μ is normally distributed

$$p(\mu \mid D) = \frac{1}{(2\pi)^{d/2}(\Sigma_n)^{1/2}} \exp \left[-\frac{1}{2}(\mu - \mu_n)^T \Sigma_n^{-1}(\mu - \mu_n)\right]$$

$$\Sigma_n^{-1} = n\Sigma^{-1} + \Sigma_p$$

$$\mu_n = \Sigma_p \left(\Sigma_p + \frac{1}{n} \Sigma\right)^{-1} \left(\frac{1}{n} \sum_{i=1}^{n} x_i \right) + \frac{1}{n} \Sigma \left(\Sigma_p + \frac{1}{n} \Sigma\right)^{-1} \mu_p$$

$$\Sigma_n = \Sigma_p \left(\Sigma_p + \frac{1}{n} \Sigma\right)^{-1} \frac{1}{n} \Sigma$$

Other distributions

Gamma distribution:

$$p(x \mid a, b) = \frac{1}{\Gamma(a)b^a} x^{a-1} e^{-\frac{x}{b}} \quad \text{for } x \in [0, \infty]$$

Exponential distribution:

- A special case of Gamma for $a=1$

$$p(x \mid b) = \left(\frac{1}{b}\right) e^{-\frac{x}{b}}$$

Poisson distribution:

$$p(x \mid \lambda) = \frac{e^{-\lambda} \lambda^x}{x!} \quad \text{for } x \in \{0, 1, 2, \ldots\}$$
Other distributions

Gamma distribution:

\[p(\lambda \mid a, b) = \frac{1}{\Gamma(a)b^a} \lambda^{a-1} e^{-\frac{\lambda}{b}} \quad \text{for} \quad \lambda \in [0, \infty] \]

Sequential Bayesian parameter estimation

- **Sequential Bayesian approach**
 - Under the iid the estimates of the posterior can be computed incrementally for a sequence of data points

\[
p(\Theta \mid D, \xi) = \frac{p(D \mid \Theta, \xi)p(\Theta \mid \xi)}{\int_{\Theta} p(D \mid \Theta, \xi)p(\Theta \mid \xi) d\Theta}
\]

- If we use a conjugate prior we get back the same posterior
- Assume we split the data D in the last element x and the rest

\[
p(D \mid \Theta) = p(x \mid \Theta)p(D_{n-1} \mid \Theta)
\]

- Then: A “new” prior

\[
p(\Theta \mid D, \xi) = \frac{p(x \mid \Theta)p(D_{n-1} \mid \Theta)p(\Theta \mid \xi)}{\int_{\Theta} p(x \mid \Theta)p(D_{n-1} \mid \Theta)p(\Theta \mid \xi) d\Theta}
\]

CS 2750 Machine Learning
Exponential family

Exponential family:
- all probability mass / density functions that can be written in the exponential normal form
 \[f(x | \eta) = \frac{1}{Z(\eta)} h(x) \exp[\eta^T t(x)] \]
- \(\eta \) a vector of natural (or canonical) parameters
- \(t(x) \) a function referred to as a sufficient statistic
- \(h(x) \) a function of x (it is less important)
- \(Z(\eta) \) a normalization constant (a partition function)

Other common form:

\[f(x | \eta) = h(x) \exp[\eta^T t(x) - A(\eta)] \quad \log Z(\eta) = A(\eta) \]

Exponential family: examples

- **Bernoulli distribution**
 \[p(x | \pi) = \pi^x (1 - \pi)^{1-x} \]
 \[= \exp \left\{ \log \left(\frac{\pi}{1 - \pi} \right) x + \log(1 - \pi) \right\} \]
 \[= \exp \{ \log(1 - \pi) \} \exp \left\{ \log \left(\frac{\pi}{1 - \pi} \right) x \right\} \]

- **Exponential family**

\[f(x | \eta) = \frac{1}{Z(\eta)} h(x) \exp[\eta^T t(x)] \]

- **Parameters**
 \[\eta = ? \]
 \[t(x) = ? \]
 \[Z(\eta) = ? \]
 \[h(x) = ? \]
Exponential family: examples

• Bernoulli distribution
 \[p(x \mid \pi) = \pi^x (1 - \pi)^{1-x} \]
 \[= \exp \left\{ \log \left(\frac{\pi}{1-\pi} \right) x + \log(1 - \pi) \right\} \]
 \[= \exp \left\{ \log(1 - \pi) \right\} \exp \left\{ \log \left(\frac{\pi}{1-\pi} \right) x \right\} \]

• Exponential family
 \[f(x \mid \eta) = \frac{1}{Z(\eta)} h(x) \exp \left[\eta^T t(x) \right] \]

• Parameters
 \[\eta = \log \frac{\pi}{1-\pi} \] (note \(\pi = \frac{1}{1 + e^{-\eta}} \)) \(t(x) = x \)
 \[Z(\eta) = \frac{1}{1 - \pi} = 1 + e^\eta \]
 \[h(x) = 1 \]

Exponential family: examples

• Univariate Gaussian distribution
 \[p(x \mid \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} \exp \left[- \frac{1}{2\sigma^2} (x - \mu)^2 \right] \]
 \[= \frac{1}{2\pi} \exp \left(- \frac{1}{2\sigma^2} - \log \sigma \right) \exp \left\{ \frac{\mu}{\sigma^2} x - \frac{1}{2\sigma^2} x^2 \right\} \]

• Exponential family
 \[f(x \mid \eta) = \frac{1}{Z(\eta)} h(x) \exp \left[\eta^T t(x) \right] \]

• Parameters
 \[\eta = ? \]
 \[t(x) = ? \]
 \[Z(\eta) = ? \]
 \[h(x) = ? \]
Exponential family: examples

- **Univariate Gaussian distribution**

 \[p(x \mid \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left[-\frac{1}{2\sigma^2} (x - \mu)^2 \right] \]

 \[= \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{\mu}{2\sigma^2} - \log \sigma \right) \exp\left\{ \frac{\mu}{\sigma^2} x - \frac{1}{2\sigma^2} x^2 \right\} \]

- **Exponential family**

 \[f(x \mid \eta) = \frac{1}{Z(\eta)} h(x) \exp[\eta^T t(x)] \]

- **Parameters**

 \[\eta = \begin{bmatrix} \mu / 2\sigma^2 \\ -1 / 2\sigma^2 \end{bmatrix} \]

 \[t(x) = \begin{bmatrix} x \\ x^2 \end{bmatrix} \]

 \[Z(\eta) = \exp\left\{ \frac{\mu^2}{2\sigma^2} + \log \sigma \right\} = \exp\left\{ -\frac{\eta_1^2}{4\eta_2} - \frac{1}{2} \log\left(-2\eta_2 \right) \right\} \]

 \[h(x) = 1 / \sqrt{2\pi} \]

Exponential family

- For iid samples, the likelihood of data is

 \[P(D \mid \eta) = \prod_{i=1}^{n} p(x_i \mid \eta) = \prod_{i=1}^{n} h(x_i) \exp[\eta^T t(x_i) - A(\eta)] \]

 \[= \prod_{i=1}^{n} h(x_i) \exp \left[\sum_{i=1}^{n} \eta^T t(x_i) - A(\eta) \right] \]

 \[= \prod_{i=1}^{n} h(x_i) \exp \left[\eta^T \left(\sum_{i=1}^{n} t(x_i) \right) - nA(\eta) \right] \]

- **Important:**

 - the dimensionality of the sufficient statistic remains the same with the number of samples
Exponential family

• The log likelihood of data is

\[l(D, \eta) = \log \left[\prod_{i=1}^{n} h(x_i) \right] \exp \left[\eta^T \left(\sum_{i=1}^{n} t(x_i) \right) - nA(\eta) \right] \]

\[= \log \left[\prod_{i=1}^{n} h(x_i) \right] + \left[\eta^T \left(\sum_{i=1}^{n} t(x_i) \right) - nA(\eta) \right] \]

• Optimizing the loglikelihood

\[\nabla_\eta l(D, \eta) = \left(\sum_{i=1}^{n} t(x_i) \right) - n \nabla_\eta A(\eta) = 0 \]

• For the ML estimate it must hold

\[\nabla_\eta A(\eta) = \frac{1}{n} \left(\sum_{i=1}^{n} t(x_i) \right) \]

Exponential family

• Rewritting the gradient:
Exponential family

- **Rewritting the gradient:**

\[
\nabla_\eta A(\eta) = \nabla_\eta \log Z(\eta) = \nabla_\eta \log \int h(x) \exp \left\{ \eta^T t(x) \right\} dx
\]

\[
\nabla_\eta A(\eta) = \frac{\int t(x) h(x) \exp \left\{ \eta^T t(x) \right\} dx}{\int h(x) \exp \left\{ \eta^T t(x) \right\} dx}
\]

\[
\nabla_\eta A(\eta) = \int t(x) h(x) \exp \left\{ \eta^T t(x) - A(\eta) \right\} dx
\]

\[
\nabla_\eta A(\eta) = E(t(x))
\]

- **Result:**

\[
E(t(x)) = \frac{1}{n} \left(\sum_{i=1}^{n} t(x_i) \right)
\]

- For the ML estimate the parameters η should be adjusted such that the expectation of the statistic $t(x)$ is equal to the observed sample statistics.

Moments of the distribution

- **For the exponential family**
 - The k-th moment of the statistic corresponds to the k-th derivative of $A(\eta)$
 - If x is a component of $t(x)$ then we get the moments of the distribution by differentiating its corresponding natural parameter

- **Example: Bernoulli** $p(x \mid \pi) = \exp \left\{ \log \left(\frac{\pi}{1-\pi} \right) x + \log(1 - \pi) \right\}$

\[
A(\eta) = \log \frac{1}{1-\pi} = \log(1 + e^\eta)
\]

- **Derivatives:**

\[
\frac{\partial A(\eta)}{\partial \eta} = \frac{\partial}{\partial \eta} \log(1 + e^\eta) = \frac{e^\eta}{1 + e^\eta} = \frac{1}{1 + e^{-\eta}} = \pi
\]

\[
\frac{\partial A(\eta)}{\partial \eta^2} = \frac{\partial}{\partial \eta} \frac{1}{1 + e^{-\eta}} = \pi(1 - \pi)
\]
Multivariate normal distribution

- **Multivariate normal**: \(\mathbf{x} \sim N(\mathbf{\mu}, \mathbf{\Sigma}) \)
- **Parameters**:
 - \(\mathbf{\mu} \): mean
 - \(\mathbf{\Sigma} \): covariance matrix
- **Density function**:

 \[
 p(\mathbf{x} | \mathbf{\mu}, \mathbf{\Sigma}) = \frac{1}{(2\pi)^{d/2}|\mathbf{\Sigma}|^{1/2}} \exp\left[-\frac{1}{2} (\mathbf{x} - \mathbf{\mu})^T \mathbf{\Sigma}^{-1} (\mathbf{x} - \mathbf{\mu})\right]
 \]

- **Example**:

![Multivariate normal distribution graph](image)
Parameter estimates

- **Loglikelihood**
 \[l(D, \mu, \Sigma) = \log \prod_{i=1}^{n} p(x_i | \mu, \Sigma) \]

- **ML estimates of the mean and covariances:**
 \[\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i \]
 \[\hat{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \hat{\mu})(x_i - \hat{\mu})^T \]
 - Covariance estimate is biased
 \[E_n(\hat{\Sigma}) = E_n \left(\frac{1}{n} \sum_{i=1}^{n} (x_i - \hat{\mu})(x_i - \hat{\mu})^T \right) = \frac{n-1}{n} \Sigma \neq \Sigma \]

- **Unbiased estimate:**
 \[\hat{\Sigma} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \hat{\mu})(x_i - \hat{\mu})^T \]

Learning via parameter estimation

In this lecture we consider **parametric density estimation**

Basic settings:
- A set of random variables \(X = \{ X_1, X_2, \ldots, X_d \} \)
- **A model of the distribution** over variables in \(X \) with parameters \(\Theta \)
- **Data** \(D = \{ D_1, D_2, \ldots, D_n \} \)

Objective: find parameters \(\hat{\Theta} \) that fit the data the best

What is the best set of parameters? There are various criteria one can apply here …
Parameter estimation.

- **Maximum likelihood (ML)**

 \[
 \text{maximize } p(D \mid \Theta, \xi) \\
 \xi \text{ - represents prior (background) knowledge}
 \]

- **Maximum a posteriori probability (MAP)**

 \[
 \text{maximize } p(\Theta \mid D, \xi) \\
 \text{Selects the mode of the posterior}
 \]

\[
p(\Theta \mid D, \xi) = \frac{p(D \mid \Theta, \xi) p(\Theta \mid \xi)}{p(D \mid \xi)}
\]

- **Bayesian framework**

 - use a posterior density
 - no optimization

Posterior of a multivariate normal

- **Assume that we use only a prior on the mean:** \(\mu \)
- **A prior**

 \[
 \mu \approx N(\mu_p, \Sigma_p)
 \]

- **Then the posterior is:**

 - **Normally**

 \[
 p(x \mid \mu, \Sigma) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp \left[-\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right]
 \]

- **ML estimates of the mean and covariances:**

 \[
 \hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i, \quad \hat{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \hat{\mu})(x_i - \hat{\mu})^T
 \]

 - Covariance estimate is biased

 \[
 E_n (\Sigma) = E_n \left(\frac{1}{n} \sum_{i=1}^{n} (x_i - \hat{\mu})(x_i - \hat{\mu})^T \right) = \frac{n-1}{n} \Sigma \neq \Sigma
 \]
 - **Unbiased estimate:**

 \[
 \Sigma = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \hat{\mu})(x_i - \hat{\mu})^T
 \]
Parameter estimates

- **Loglikelihood**
 \[l(D, \mu, \Sigma) = \log \prod_{i=1}^{n} p(x_i | \mu, \Sigma) \]

- **ML estimates of the mean and covariances:**
 \[
 \hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i \\
 \hat{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \hat{\mu})(x_i - \hat{\mu})^T
 \]

- **Unbiased estimate:**
 \[
 \hat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \hat{\mu})(x_i - \hat{\mu})^T
 \]

Unsupervised learning

- **Data:** \(D = \{D_1, D_2, ..., D_n\} \)
 \(D_i = x_i \) a vector of attribute values
 - e.g. the description of a patient
 - no specific target attribute we want to predict (no output \(y \))

- **Objective:**
 - learn (describe) relations between attributes, examples

Types of problems:

- **Clustering**
 Group together “similar” examples

- **Density estimation**
 - Model probabilistically the population of examples
Beta distribution

- $\alpha_1 = \alpha_2 = 0.5$
- $\alpha_1 = 2.5, \alpha_2 = 5$
- $\alpha_1 = \alpha_2 = 2.5$

Exponential family

- **Exponential family of distributions**

$$f(x, \theta, \phi) = \exp \left\{ \frac{(\theta x - b(\theta))}{a(\phi)} + c(x, \phi) \right\}$$

- **Parameters:**
 - θ - location parameters
 - ϕ - scaling parameters

- **Example:**
 - $$p(x \mid \mu, \Sigma) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp \left[-\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right]$$
Example: Bernoulli distribution

Coin example: we have a coin that can be biased

Outcomes: two possible values -- head or tail

Data: D a sequence of outcomes x_i such that
- **head** $x_i = 1$
- **tail** $x_i = 0$

Model:
- probability of a head θ
- probability of a tail $(1 - \theta)$

Objective:
We would like to estimate the probability of a head $\hat{\theta}$

Probability of an outcome x_i

$$P(x_i \mid \theta) = \theta^{x_i} (1 - \theta)^{(1 - x_i)}$$

Bernoulli distribution