Learning with multiple models. Boosting.

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Learning with multiple models: Approach 2

- **Approach 2**: use multiple models (classifiers, regressors) that cover the complete input (x) space and combine their outputs

- **Committee machines**:
 - Combine predictions of all models to produce the output
 - **Regression**: averaging
 - **Classification**: a majority vote
 - **Goal**: Improve the accuracy of the ‘base’ model

- **Methods**:
 - **Bagging** (the same base models)
 - **Boosting** (the same base models)
 - **Stacking** (different base model) not covered
Bagging algorithm

- **Training**
 - For each model M1, M2, … Mk
 - Randomly sample with replacement N samples from the training set (bootstrap)
 - Train a chosen “base model” (e.g. neural network, decision tree) on the samples

![Diagram of bagging algorithm](image)

- **Test**
 - For each test example
 - Run all base models M1, M2, … Mk
 - Predict by combining results of all T trained models:
 - **Regression**: averaging
 - **Classification**: a majority vote
When Bagging works

• Main property of Bagging (proof omitted)
 – Bagging decreases variance of the base model without changing the bias!!!
 – Why? averaging!
• Bagging typically helps
 – When applied with an over-fitted base model
 • High dependency on actual training data
 • Example: fully grown decision trees
• It does not help much
 – High bias. When the base model is robust to the changes in the training data (due to sampling)

Boosting

• Bagging
 – Multiple models covering the complete space, a learner is not biased to any region
 – Learners are learned independently

• Boosting
 – Every learner covers the complete space
 – Learners are biased to regions not predicted well by other learners
 – Learners are dependent
Boosting. Theoretical foundations.

- **PAC:** Probably Approximately Correct framework
 - \((\varepsilon, \delta)\) solution
- **PAC learning:**
 - Learning with a pre-specified error \(\varepsilon\) and a confidence parameter \(\delta\)
 - the probability that the misclassification error is larger than \(\varepsilon\) is smaller than \(\delta\)
 \[P(ME(c) > \varepsilon) \leq \delta \]

Alternative rewrite:
\[P(Acc(c) > 1 - \varepsilon) > (1 - \delta) \]

- **Accuracy (1-\(\varepsilon\)):** Percent of correctly classified samples in test
- **Confidence (1-\(\delta\)):** The probability that in one experiment some accuracy will be achieved

PAC Learnability

Strong (PAC) learnability:
- There exists a learning algorithm that efficiently learns the classification with a pre-specified error and confidence values

Strong (PAC) learner: A learning algorithm \(P\) that
- Given an arbitrary:
 - classification error \(\varepsilon\) (<1/2), and
 - confidence \(\delta\) (<1/2)
 - or in other words:
 - classification accuracy > (1-\(\varepsilon\))
 - confidence probability > (1- \(\delta\))
- Outputs a classifier that satisfies this parameters
- **Efficiency:** runs in time polynomial in \(1/\delta, 1/\varepsilon\)
 - Implies: number of samples \(N\) is polynomial in \(1/\delta, 1/\varepsilon\)
Weak Learner

Weak learner:
- A learning algorithm (learner) M that gives **some fixed (not arbitrary):**
 - error $\epsilon_o (<1/2)$ and
 - confidence $\delta_o (<1/2)$
- Alternatively:
 - a classification accuracy > 0.5
 - with probability > 0.5
 and this on an arbitrary distribution of data entries

Weak learnability=Strong (PAC) learnability

- Assume there exists a **weak learner**
 - it is better that a random guess ($> 50\%$) with confidence higher than 50% on any data distribution
- **Question:**
 - Is the problem also strong PAC-learnable?
 - Can we generate an algorithm P that achieves an arbitrary (ϵ, δ) accuracy?
- **Why is important?**
 - Usual classification methods (decision trees, neural nets), have specified, but uncontrollable performances.
 - Can we improve performance to achieve any pre-specified accuracy (confidence)?
Proof due to R. Schapire
An arbitrary \((\varepsilon, \delta)\) improvement is possible

Idea: combine multiple weak learners together
- Weak learner \(W\) with confidence \(\delta_o\) and maximal error \(\varepsilon_o\)
- It is possible:
 - To improve (boost) the confidence
 - To improve (boost) the accuracy
by training different weak learners on slightly different datasets
Boosting accuracy

- **Training**
 - Sample randomly from the distribution of examples
 - Train hypothesis H_1 on the sample
 - Evaluate accuracy of H_1 on the distribution
 - Sample randomly such that for the half of samples H_1 provides correct, and for another half, incorrect results;
 Train hypothesis H_2.
 - Train H_3 on samples from the distribution where H_1 and H_2 classify differently

- **Test**
 - For each example, decide according to the majority vote of H_1, H_2 and H_3

Theorem

- If each hypothesis has an error $< \epsilon_o$, the final ‘voting’ classifier has error $< g(\epsilon_o) = 3 \epsilon_o^2 - 2 \epsilon_o^3$
- **Accuracy improved !!!!**
- **Apply recursively to get to the target accuracy !!!**

![Graph](attachment:image.png)
Theoretical Boosting algorithm

- Similarly to boosting the accuracy we can boost the confidence at some restricted accuracy cost
- **The key result:** we can improve both the accuracy and confidence

- **Problems with the theoretical algorithm**
 - A good (better than 50%) classifier on all distributions and problems
 - We cannot get a good sample from data-distribution
 - The method requires a large training set

- **Solution to the sampling problem:**
 - Boosting by sampling
 - **AdaBoost** algorithm and variants

AdaBoost

- **AdaBoost:** boosting by sampling

- **Classification** (Freund, Schapire; 1996)
 - AdaBoost.M1 (two-class problem)
 - AdaBoost.M2 (multiple-class problem)

- **Regression** (Drucker; 1997)
 - AdaBoostR
AdaBoost training

Training data

Distribution

D_1

Uniform distribution D_1 training examples

$P(\text{example } i) = 1/N$

AdaBoost training

Training data

Distribution

D_1

Learn

Model 1

Sample randomly according to D_1

And train the Model 1
AdaBoost training

Test the Model 1 and calculate errors

Use errors to recalculate the new distribution on data
More probability to pick examples with errors
AdaBoost

- **Given:**
 - A training set of N examples (attributes + class label pairs)
 - A “base” learning model (e.g. a decision tree, a neural network)

- **Training stage:**
 - Train a sequence of T “base” models on T different sampling distributions defined upon the training set (D)
 - A sample distribution D_t for building the model t is constructed by modifying the sampling distribution D_{t-1} from the $(t-1)$th step.
 - Examples classified incorrectly in the previous step receive higher weights in the new data (attempts to cover misclassified samples)

- **Application (classification) stage:**
 - Classify according to the weighted majority of classifiers
AdaBoost algorithm

Training (step t)

- **Sampling Distribution** D_t

 $D_t(i)$ - a probability that example i from the original training dataset is selected

 $D_1(i) = 1/N$ for the first step (t=1)

- Take K samples from the training set according to D_t

- Train a classifier h_t on the samples

- Calculate the error ε_t of h_t: $\varepsilon_t = \sum_i D_t(i)$

- **Classifier weight**: $\beta_t = \varepsilon_t/(1-\varepsilon_t)$

- **New sampling distribution**

 $D_{t+1}(i) = \frac{D_t(i)}{Z_t} \times \begin{cases}
 \beta_t & h_t(x_i) = y_i \\
 1 & \text{otherwise}
 \end{cases}$

 Norm. constant

AdaBoost. Sampling Probabilities

Example:
- Nonlinearly separable binary classification
- NN used as week learners
AdaBoost classification

- We have T different classifiers h_t,
 - weight w_t of the classifier is proportional to its accuracy on the training set
 \[w_t = \log(1 / \beta_t) = \log \left(\frac{1 - \epsilon_t}{\epsilon_t} \right) \]
 \[\beta_t = \frac{\epsilon_t}{1 - \epsilon_t} \]
- **Classification:**
 For every class $j=0,1$
 - Compute the sum of weights w corresponding to ALL classifiers that predict class j;
 - Output class that correspond to the maximal sum of weights (weighted majority)
 \[h_{\text{final}}(x) = \arg \max_j \sum_{\forall h_t(x) = j} w_t \]
Two-Class example. Classification.

- Classifier 1 “yes” 0.7
- Classifier 2 “no” 0.3
- Classifier 3 “no” 0.2

• Weighted majority “yes”

 \[0.7 - 0.5 = +0.2\]

• The final choice is “yes” + 1

What is boosting doing?

- Each classifier specializes on a particular subset of examples
- Algorithm is concentrating on “more and more difficult” examples
- **Boosting can:**
 - Reduce variance (the same as Bagging)
 - Eliminate the effect of high bias of the weak learner (unlike Bagging)
- **Train versus test errors performance:**
 - Train errors can be driven close to 0
 - But test errors do not show overfitting
- Proofs and theoretical explanations in a number of papers
Boosting. Error performances

Model Averaging

• An alternative way to combine weight multiple models
• Can be used for supervised and unsupervised frameworks
• For example:
 – Likelihood of the data can be expressed by averaging over the multiple models
 \[P(D) = \sum_{i=1}^{N} P(D \mid M = m_i)P(M = m_i) \]
 – Prediction:
 \[P(y \mid x) = \sum_{i=1}^{N} P(y \mid x, M = m_i)P(M = m_i) \]