Designing a learning system

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square, x4-8845

people.cs.pitt.edu/~milos/courses/cs2750/

Administrivia

- No homework assignment this week

- Please try to obtain a copy of Matlab:
 http://technology.pitt.edu/software/matlab-students

- A brief tutorial on Matlab next week
Learning: first look

Assume we get a dataset D that consists of pairs (x, y)

Goal: learn the mapping $f : X \rightarrow Y$ to is able to predict well y for some future x.

Question: How do we learn f?

1. **Data:** $D = \{d_1, d_2, ..., d_n\}$
2. **Model selection:**
 - **Select a model** or a set of models (with parameters)
 E.g. $y = ax + b$
3. **Choose the objective (error) function**
 - **Squared error** $\text{Error}(D, a, b) = \frac{1}{n} \sum_{i=1}^{n} (y_i - ax_i - b)^2$
4. **Learning:**
 - Find the set of parameters (a, b) optimizing the error function
 $$(a^*, b^*) = \arg\max_{(a, b)} \text{Error}(D, a, b)$$
5. **Application**
 - **Apply the learned model to new data** $f(x) = a^* x + b^*$
 - E.g. predict ys for the new input x
Learning: first look

1. Data: \(D = \{d_1, d_2, \ldots, d_n\} \)
2. Model selection:
 - Select a model or a set of models (with parameters)
 - E.g. \(y = ax + b \)
3. Choose the error function
 - Squared error
4. Learning:
 - Find the set of parameters \((a, b)\) optimizing the error function
5. Application
 - Apply the learned model to new data
 - E.g. predict \(y_s \) for the new input \(x \)

\[
(a, b) = \underset{(a, b)}{\arg\min} \sum_{i=1}^{n} (y_i - (ax_i + b))^2
\]

\[
E = \sum_{i=1}^{n} (y_i - (ax_i + b))^2
\]
Learning: first look

1. Data: $D = \{d_1, d_2, \ldots, d_n\}$

2. Model selection:
 - Select a model or a set of models (with parameters)
 E.g. $y = ax + b$

3. Choose the objective (error) function
 - Squared error
 \[
 Error(D, a, b) = \frac{1}{n} \sum_{i=1}^{n} (y_i - ax_i - b)^2
 \]

4. Learning:
 - Find the set of parameters (a, b) optimizing the error function

5. Application
 - Apply the learned model to new data
 E.g. predict ys for the new input x
 \[
 f(x) = a^* x + b^*
 \]
Learning: first look

1. Data: \(D = \{d_1, d_2, \ldots, d_n\} \)
2. Model selection:
 - **Select a model** or a set of models (with parameters)
 E.g. \(y = ax + b \)
3. Choose the objective (error) function
 - **Squared error** \(Error(D, a, b) = \frac{1}{n} \sum_{i=1}^{n} (y_i - ax_i - b)^2 \)
4. Learning:
 - Find the set of parameters \((a, b)\) optimizing the error function \((a^*, b^*) = \arg \max_{(a, b)} Error(D, a, b)\)
5. Application
 - Apply the learned model to new data \(f(x) = a^* x + b^* \)

Looks straightforward, but there are problems
Learning: generalization error

We fit the model based on past examples observed in D

Training data: Data used to fit the parameters of the model

Training error:
\[
Error(D, a, b) = \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2
\]

Problem: Ultimately we are interested in learning the mapping that performs well on the whole population of examples

True (generalization) error (over the whole population):
\[
Error(a, b) = E_{(x,y)}[(y - f(x))^2]
\]

Mean squared error

Training error tries to approximate the true error !!!!

Does a good training error imply a good generalization error ?

Overfitting

* Assume we have a set of 10 points and we consider polynomial functions as our possible models
Overfitting

- Fitting a linear function with the square error
- Error is nonzero. Why?

\[
\text{Error}(D, f) = \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2
\]
Overfitting

Assume in addition to a linear model: \(y = f(x) = ax + b \)
also: \(y = f(x) = a_3x^3 + a_2x^2 + a_1x + b \)
Which model would give us a smaller error for the least squares fit?

Overfitting

- Linear vs. cubic polynomial
- Higher order polynomial leads to a better fit, smaller error
Overfitting

- Is it always good to minimize the error of the observed data?

Overfitting

- For 10 data points, the degree 9 polynomial gives a perfect fit (Lagrange interpolation). Error is zero.
- Is it always good to minimize the training error?
Overfitting

• For 10 data points, degree 9 polynomial gives a perfect fit (Lagrange interpolation). Error is zero.
• Is it always good to minimize the training error? NO!!
• **More important:** How do we perform on the unseen data?

Overfitting

Situation when the training error is low and the generalization error is high. Causes of the phenomenon:

• Model with a large number of parameters (degrees of freedom)
• Small data size (as compared to the complexity of the model)
How to evaluate the learner’s performance?

- **Generalization error** is the true error for the population of examples we would like to optimize
 \[E_{(x,y)}[(y - f(x))^2] \]
 - But it cannot be computed exactly
 - **Sample mean only approximates the true mean**

- **Optimizing the training error can lead to the overfit**, i.e. training error may not reflect properly the generalization error
 \[\frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2 \]
 - So how to assess the generalization error?

How to evaluate the learner’s performance?

- **Generalization error** is the true error for the population of examples we would like to optimize
- **Sample mean only approximates it**
- **Two ways to assess the generalization error is:**
 - **Theoretical:** Law of Large numbers
 - statistical bounds on the difference between true and sample mean errors
 - **Practical:** Use a separate data set with \(m \) data samples to test the model
 - **(Average) test error**
 \[Error(D_{test}, f) = \frac{1}{m} \sum_{j=1}^{m} (y_j - f(x_j))^2 \]
Assessment of the generalization performance

- **Simple holdout method**
 - Divide the data into the disjoint training and test data
 - Typically 2/3 training and 1/3 testing

Testing of models: regression

- Learn on the training set
- The model
- Evaluate on the test set
Testing of models: classification

Data set

Training set

Test set

Learn on the training set

The model

Evaluate on the test set

Evaluation measures

Easiest way to evaluate the model:
- Error function used in the optimization is adopted also in the evaluation
- Advantage: may help us to see model overfitting. Simply compare the error on the training and testing data.

Evaluation of the models often considers:
- Other aspects or statistics of the model and its performance
- Moreover the Error function used for the optimization may be a convenient approximation of the quality measure we would really like to optimize
Evaluation measures

Classification:

<table>
<thead>
<tr>
<th>Prediction</th>
<th>Actual</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Case</td>
<td>Control</td>
</tr>
<tr>
<td>Case</td>
<td>TP 0.3</td>
<td>FP 0.1</td>
</tr>
<tr>
<td>Control</td>
<td>FN 0.2</td>
<td>TN 0.4</td>
</tr>
</tbody>
</table>

Misclassification error:

\[
E = FP + FN
\]

Sensitivity:

\[
SN = \frac{TP}{TP + FN}
\]

Specificity:

\[
SP = \frac{TN}{TN + FP}
\]

A learning system: basic cycle

1. **Data:** \(D = \{d_1, d_2, \ldots, d_n\} \)
2. **Model selection:**
 - **Select a model** or a set of models (with parameters)
 E.g. \(y = ax + b \)
3. **Choose the objective function**
 - Squared error
 \[
 \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2
 \]
4. **Learning:**
 - Find the set of parameters optimizing the error function
 - The model and parameters with the smallest error
5. **Testing/validation:**
 - Evaluate on the test data
6. **Application**
 - Apply the learned model to new data \(f(x) \)
A learning system: basic cycle

1. Data: \(D = \{d_1, d_2, \ldots, d_n\} \)
2. Model selection:
 - Select a model or a set of models (with parameters)
 E.g. \(y = ax + b \)
3. Choose the objective function
 - Squared error \(\frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2 \)
4. Learning:
 - Find the set of parameters optimizing the error function
 – The model and parameters with the smallest error
5. Testing/validation:
 – Evaluate on the test data
6. Application
 – Apply the learned model to new data \(f(x) \)
Steps taken when designing an ML system

- Data
- Model selection
- Choice of Error function
- Learning/optimization
- Evaluation
- Application

Add some complexity

- Data
- Data cleaning/preprocessing
- Feature selection/dimensionality reduction
- Model selection
- Choice of Error function
- Learning/optimization
- Evaluation
- Application
Designing an ML solution

Data

Data cleaning/preprocessing

Feature selection/dimensionality reduction

Model selection

Choice of Error function

Learning/optimization

Evaluation

Application
Data source and data biases

- Understand the data source
- Understand the data your models will be applied to
- Watch out for data biases:
 - Make sure the data we make conclusions on are the same as data we used in the analysis
 - It is very easy to derive “unexpected” results when data used for analysis and learning are biased

- Results (conclusions) derived for a biased dataset do not hold in general !!!

Data biases

Example: Assume you want to build an ML program for predicting the stock behavior and for choosing your investment strategy

Data extraction:

- pick companies that are traded on the stock market on January 2017
- Go back 30 years and extract all the data for these companies
- Use the data to build an ML model supporting your future investments

Question:
- Would you trust the model?
- Are there any biases in the data?
Steps taken when designing an ML system

Data

Data cleaning/preprocessing

Feature selection/dimensionality reduction

Model selection

Choice of Error function

Learning/optimization

Evaluation

Application

Data cleaning and preprocessing

Data you receive may not be perfect:
• Cleaning
• Preprocessing (conversions)

Cleaning:
 – Get rid of errors, noise,
 – Removal of redundancies

Preprocessing:
 – Renaming
 – Rescaling (normalization)
 – Discretizations
 – Abstraction
 – Aggregation
 – New attributes
Data preprocessing

Renaming (relabeling) categorical values to numbers

- dangerous in conjunction with some learning methods
- numbers will impose an order that is not warranted

<table>
<thead>
<tr>
<th>High</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>1</td>
</tr>
<tr>
<td>Low</td>
<td>0</td>
</tr>
</tbody>
</table>

Problem: How to safely represent the different categories as numbers when no order exists?

Solution: Use indicator vector (or one-hot) representation.

- Example: Red, Blue, Green colors
 - 3 categories → use a vector of binary (0,1) values of size 3
 - Encoding: **Red**: (1,0,0); **Blue**: (0,1,0); and **Green**: (0,0,1)

Data preprocessing

- **Rescaling (normalization):** continuous values transformed to some range, typically [-1, 1] or [0,1].

![Diagram of rescaling with values 50 and 200, and range -1 to 1.]

- Why normalization?
 - Some learning algorithms are sensitive to the values recorded in the specific input field and its magnitude
Data preprocessing

- **Discretization (binning):** continuous values to a finite set of discrete values

- **Example:**

 ![Discretization Example](image)

- **Example 2:**

 ![Example 2](image)

- **Abstraction:** merge together categorical values

- **Aggregation:** summary or aggregation operations, such as minimum value, maximum value, average etc.

- **New attributes:**
 - example: obesity-factor = weight/height