CS 2750 Machine Learning

 Lecture 13
Multilayer neural networks

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Classification with the linear model

The majority of the models covered so far are linear
Example: 2 classes (blue and red points)

Modeling nonlinearities

- Feature (basis) functions to model nonlinearities

Linear regression
$f(\mathbf{x})=w_{0}+\sum_{j=1}^{m} w_{j} \phi_{j}(\mathbf{x})$
Logistic regression
$f(\mathbf{x})=g\left(w_{0}+\sum_{j=1}^{m} w_{j} \phi_{j}(\mathbf{x})\right)$
$\phi_{j}(\mathbf{x}) \quad$ - an arbitrary function of \mathbf{x}

Modeling nonlinearities

Feature (basis) functions model nonlinearities

Linear regression
 Logistic regression

$f(\mathbf{x})=w_{0}+\sum_{j=1}^{m} w_{j} \phi_{j}(\mathbf{x}) \quad f(\mathbf{x})=g\left(w_{0}+\sum_{j=1}^{m} w_{j} \phi_{j}(\mathbf{x})\right)$

Advantage:

- The same problem as learning of the weights of linear units Limitations/problems:
- How to define the right set of basis functions
- Many basis functions \rightarrow many weights to learn

Modeling nonlinearities

Support vector machines model nonlinearities via:

- feature expansion
- Folded in efficient kernels

Advantage:

- The learning problem is similar to the problem of learning weights of a linear model
- Efficient kernels reduce the computational complexity
- Problem:
- How to define the right the kernels

Multi-layered neural networks

- An alternative way to model nonlinearities for regression /classification problems
- Idea: Cascade several simple nonlinear models (e.g. logistic units) to approximate nonlinear functions for regression /classification. Learn/adapt these simple models.
- Motivation: neuron connections

Multilayer neural network

Also called a multilayer perceptron (MLP)
Cascades multiple non-linear (e.g. logistic regression) units
Example: (2 layer) classifier with non-linear decision boundaries

Multilayer neural network

- Models non-linearity through nonlinear switching units
- Can be applied to both regression and binary classification problems

Why we need nonlinearities? Why not multiple linear units

Cascading of multiple linear units is equivalent to one linear unit

$$
f(\mathbf{x})=b_{0,1}+b_{1,1} z_{1}+b_{2,1} z_{2}
$$

Why we need nonlinearities? Why not multiple linear units

Cascading of multiple linear units is equivalent to one linear unit

$$
\begin{aligned}
& f(\mathbf{x})=b_{0,1}+b_{1,1} z_{1}+b_{2,1} z_{2} \\
& =b_{0,1}+b_{1,1}\left(a_{0,1}+a_{1,1} x_{1}+a_{2,1} x_{2}\right)+b_{2,1}\left(a_{0,2}+a_{2,1} x_{1}+a_{2,2} x_{2}\right)
\end{aligned}
$$

Why we need nonlinearities? Why not multiple linear units

Cascading of multiple linear units is equivalent to one linear unit

$$
\begin{aligned}
& f(\mathbf{x})=b_{0,1}+b_{1,1} z_{1}+b_{2,1} z_{2} \\
& =b_{0,1}+b_{1,1}\left(a_{0,1}+a_{1,1} x_{1}+a_{2,1} x_{2}\right)+b_{2,1}\left(a_{0,2}+a_{2,1} x_{1}+a_{2,2} x_{2}\right) \\
& =b_{0,1}+b_{1,1} a_{0,1}+b_{1,1} a_{1,1} x_{1}+b_{1,1} a_{2,1} x_{2}+b_{2,1} a_{0,2}+b_{2,1} a_{2,1} x_{1}+b_{2,1} a_{2,2} x_{2} \\
& =b_{0,1}+b_{1,1} a_{0,1}+b_{2,1} \\
& =c+d_{1,2} x_{1}+d_{2} x_{2}
\end{aligned}
$$

Multilayer neural network

- Non-linearities are modeled using multiple hidden nonlinear units (organized in layers)
- The output layer determines whether it is a regression or a binary classification problem

Learning with MLP

- How to learn the parameters of the neural network?
- Gradient descent algorithm
- Weight updates based on the error: $J(D, \mathbf{w})$

$$
\mathbf{w} \leftarrow \mathbf{w}-\alpha \nabla_{\mathbf{w}} J(D, \mathbf{w})
$$

- We need to compute gradients for weights in all units
- Can be computed in one backward sweep through the net !!!

- The process is called back-propagation

Backpropagation: error function

- Error function: $J(D, \mathbf{w})$ (online) error where D is a data point
- Regression

$$
J(D, \mathbf{w})=\left(y_{u}-f\left(\mathbf{x}_{u}\right)\right)^{2}
$$

- Classification

$$
J(D, \mathbf{w})=-\log p\left(y_{u} \mid f\left(\mathbf{x}_{u}\right)\right)
$$

regression $f(\mathbf{x})=f(\mathbf{x}, \mathbf{w})$ classification $\xrightarrow{\int_{f(\mathbf{x})=p(y=1 \mid \mathbf{x}, \mathbf{w})}}$

Backpropagation

$x_{i}(k)$ - output of the unit i on level k
$x_{i}(k)=g\left(z_{i}(k)\right)$
$z_{i}(k)$ - input to the sigmoid function on level k
$z_{i}(k)=w_{i, 0}(k)+\sum_{j} w_{i, j}(k) x_{j}(k-1)$
$w_{i, j}(k)$ - weight between units j and i on levels ($\mathrm{k}-1$) and k

- Gradient descent: $w_{i, j}(k) \leftarrow w_{i, j}(k)-\alpha \frac{\partial}{\partial w_{i, j}(k)} J(D, \mathbf{w})$

$$
\begin{array}{c|}
\frac{\partial}{\partial w_{i, j}(k)} J(D, \mathbf{w})=\frac{\partial J(D, \mathbf{w})}{\partial z_{i}(k)} \frac{\partial z_{i}(k)}{\partial w_{i, j}(k)}=\delta_{i}(k) x_{j}(k-1) \\
\delta_{i}(k)=\frac{\partial}{\partial z_{i}(k)} J(D, \mathbf{w}) \\
x_{j}(k-1) \\
\frac{\partial f(g(u))}{\partial u}= \\
\frac{\partial f(g(u))}{\partial g(u)} \frac{\partial g(u)}{\partial u} \\
\hline
\end{array}
$$

Backpropagation

$\underline{(\mathrm{k}-1) \text {-th level }}$
k-th level $\quad(k+1)$-th level

- Derivation: $\delta_{i}(k)=\frac{\partial}{\partial z_{i}(k)} J(D, \mathbf{w})=\frac{\partial}{\partial x_{i}(k)} J(D, \mathbf{w}) * \frac{\partial x_{i}(k)}{\partial z_{i}(k)}$

$$
\frac{\partial}{\partial x_{i}(k)} J(D, \mathbf{w})=\sum_{l}^{\sum \frac{\partial}{\partial z_{l}(k+1)} J(D, \mathbf{w})} * \underbrace{\underbrace{\frac{\partial z_{l}(k+1)}{\partial x_{i}(k)}}_{w_{l, i}(k+1)}}_{\delta_{l}(k+1)}
$$

Backpropagation

(k-1)-th level
k-th level $\quad(k+1)$-th level

- Derivation: $\delta_{i}(k)=\frac{\partial}{\partial z_{i}(k)} J(D, \mathbf{w})=\frac{\partial}{\partial x_{i}(k)} J(D, \mathbf{w}) * \frac{\partial x_{i}(k)}{\partial z_{i}(k)}$

$$
\begin{gathered}
\frac{\partial}{\partial x_{i}(k)} J(D, \mathbf{w})=\underbrace{\sum_{l} \frac{\partial}{\partial z_{l}(k+1)} J(D, \mathbf{w}) * \underbrace{\frac{\partial z_{l}(k+1)}{\partial x_{i}(k)}}_{w_{l, i}(k+1)} \quad \sqrt{\frac{\partial x_{i}(k)}{\partial z_{i}(k)}}=x_{i}(k)\left(1-x_{i}(k)\right)}_{\delta_{l}(k+1)} \\
\delta_{i}(k)=\left[\sum_{l} \delta_{l}(k+1) w_{l, i}(k+1)\right] x_{i}(k)\left(1-x_{i}(k)\right)
\end{gathered}
$$

Backpropagation

- Gradient:

$$
\begin{gathered}
w_{i, j}(k) \leftarrow w_{i, j}(k)-\alpha\left[\delta_{i}(k) x_{j}(k-1)\right] \\
\delta_{i}(k)=\left[\sum_{l} \delta_{l}(k+1) w_{l, i}(k+1)\right] x_{i}(k)\left(1-x_{i}(k)\right)
\end{gathered}
$$

- Last unit (is the same as for the regular linear units),
E.g. for regression:

$$
\delta_{i}(K)=-\left(y_{u}-f\left(\mathbf{x}_{u}, \mathbf{w}\right)\right)
$$

Backpropagation

Update weight $w_{i, j}(k)$ using data $\mathrm{D} \quad D=\{\langle\mathbf{x}, y\rangle\}$
$w_{i, j}(k) \leftarrow w_{i, j}(k)-\alpha \frac{\partial}{\partial w_{i, j}(k)} J(D, \mathbf{w})$
Let $\quad \delta_{i}(k)=\frac{\partial}{\partial z_{i}(k)} J(D, \mathbf{w})$
Then: $\quad \frac{\partial}{\partial w_{i, j}(k)} J(D, \mathbf{w})=\frac{\partial J(D, \mathbf{w})}{\partial z_{i}(k)} \frac{\partial z_{i}(k)}{\partial w_{i, j}(k)}=\delta_{i}(k) x_{j}(k-1)$
S.t. $\delta_{i}(k)$ is computed from $x_{i}(k)$ and the next layer $\delta_{l}(k+1)$
$\delta_{i}(k)=\left[\sum_{l} \delta_{l}(k+1) w_{l, i}(k+1)\right] x_{i}(k)\left(1-x_{i}(k)\right)$
Last unit (is the same as for the regular linear units):

$$
\delta_{i}(K)=-\left(y_{u}-f\left(\mathbf{x}_{u}, \mathbf{w}\right)\right)
$$

It is the same for the classification with the log-likelihood measure of fit and linear regression with least-squares error!!!

Learning with MLP

- Online gradient descent algorithm
- Weight update:

$$
\begin{gathered}
w_{i, j}(k) \leftarrow w_{i, j}(k)-\alpha \frac{\partial}{\partial w_{i, j}(k)} J_{\text {online }}\left(D_{u}, \mathbf{w}\right) \\
\frac{\partial}{\partial w_{i, j}(k)} J_{\text {online }}\left(D_{u}, \mathbf{w}\right)=\frac{\partial J_{\text {online }}\left(D_{u}, \mathbf{w}\right)}{\partial z_{i}(k)} \frac{\partial z_{i}(k)}{\partial w_{i, j}(k)}=\delta_{i}(k) x_{j}(k-1) \\
w_{i, j}(k) \leftarrow w_{i, j}(k)-\alpha \delta_{i}(k) x_{j}(k-1) \\
x_{j}(k-1) \quad-\text { j-th output of the (k-1) layer } \\
\delta_{i}(k) \quad-\text { derivative computed via backpropagation } \\
\alpha \quad-\text { a learning rate }
\end{gathered}
$$

Online gradient descent algorithm for MLP

Online-gradient-descent (D, number of iterations)
Initialize all weights $w_{i, j}(k)$
for $i=1: 1$: number of iterations
do \quad select a data point $D_{u}=\langle\boldsymbol{x}, y\rangle$ from D set learning rate α compute outputs $x_{j}(k)$ for each unit compute derivatives $\delta_{i}(k)$ via backpropagation update all weights (in parallel)

$$
w_{i, j}(k) \leftarrow w_{i, j}(k)-\alpha \delta_{i}(k) x_{j}(k-1)
$$

end for
return weights \mathbf{w}

Xor Example.

- linear decision boundary does not exist

Xor example. Linear unit

Neural networks

Activation (transfer) functions

- Determine how inputs are transformed to output

Possible choices of nonlinear transfer functions:

- Logistic function

$$
f(z)=\frac{1}{1+e^{-z}} \quad f(z)^{\prime}=f(z)(1-f(z))
$$

- Hyperbolic tangent
$f(z)=\tanh (z)=\frac{2}{1+e^{-2 z}}-1 \quad f(z)^{\prime}=1-f(z)^{2}$

- Rectified linear function (Relu)

$$
f(z)=\begin{array}{ll}
0 & z<0 \\
z & z \geq 0
\end{array}
$$

Limitation of standard NNs

Standard NN:

- do not scale well to high dimensional data (e.g. images)
-100×100 image +100 hidden units $=1$ million parameters.
- Overfitting;
- Tremendous requirements of computation and storage.
- Sensitive to small translation of inputs
- Images: objects can have size, slant or position variations
- Speech: varying speed, pitch or intonation.
- Ignores the topology of the input
- i.e. the input variables can be presented in any order without affecting the outcome of training.
- However, images or speech have a strong local structure
- E.g. pixels nearby are highly correlated.

Deep learning

- Deep learning. Machine learning algorithms based on learning multiple levels of representation / abstraction. More than one layer of non-linear feature transformation.

Deep neural networks

Early efforts

- Optical character recognition - digits 20×20
- Automatic sorting of mails
- 5 layer network with multiple output functions and somewhat restricted topology

Convolutional NN

Take advantage of the local structure of the data (image, speech)
Convolution in Machine Learning

- the input array
- e.g. image pixels.
- a filter or kernel
- a smaller (local) matrix of parameters
- Output: a feature map
- Filter applied to the image

Feature Extraction using Convolution

- The statistics of one part of the image are the same as any other part.
- Meaning that different parts of an image can share the same feature parameters (kernel).

Image
Convolved Feature

- Use this kernel to convolve a set of features.
- This is called one feature mapping.

Feature Extraction using Convolution

4 features on full data (image) 4 features on the local data

Fully connected layer
9 weights per hidden unit $9 \times 4=36$ weights

Locally connected layer
5 weights per hidden unit
$5 \times 4=20$ weights Increased \#input, \#hidden unit, but fewer weights

Pooling (Subsampling, Down-sampling)

- Assumption: Features useful in one region are likely to be useful for other regions.
- To describe a large image, statistics can be aggregated.
- For example, one can calculate mean or max of a particular feature over a region.
- Called mean pooling, max pooling respectively.
- These summary statistics are much lower in dimension.
- Also can improve results (less-overfitting).

Convolution and Pooling

Convolution

Image

Convolved Feature

Pooling

Convolved Pooled feature feature

Convolutional NN

- $\mathrm{CNN}=(\geq 1)$ convolution layer(s) + standard NN
- One convolution layer is:
- Convolution operation + activation function + pooling
- You can view the convolution layer(s) as a feature extractor.
- Input: raw image pixels, raw time series
- Output: summarized features.

CNN vs. NN

- NN is sensitive to local distortions of unstructured data.
- NN can theoretically be trained to be invariant to these distortions, probably resulting in multiple units with identical weights.
- But such a training task requires a large number of training instances.
- CNN with pooling can be invariant to small translations:
- Shifts (automatically)
- Rotation (with extra mechanism)

Object Recognition Task

- ImageNet Data (2009-2016)

ImageNet 2012

Data

- Size:
- Number of images
- 1.2 million training images
- 50 K validation images
- 150 K testing images
- Variable image size
- Supervised task
- Labeled using Amazon's Mechanical Turk
- Categories:
- 1000 categories (objects)
- Approximately 1000 in each categor
- RGB pictures

Goal

Provide a probability for different categories that an image can belong to

