Density estimation

Density estimation: is an unsupervised learning problem

- **Goal:** Learn a model that represent the relations among attributes in the data
 \[D = \{ D_1, D_2, \ldots, D_n \} \]

Data: \(D_i = x_i \) a vector of attribute values

Attributes:
- modeled by random variables \(X = \{ X_1, X_2, \ldots, X_d \} \) with
 - Continuous or discrete valued variables

Density estimation: learn an underlying probability distribution model:
\[p(X) = p(X_1, X_2, \ldots, X_d) \] from \(D \)
Density estimation

Data: \[D = \{D_1, D_2, \ldots, D_n\} \]
\[D_i = x_i \quad \text{a vector of attribute values} \]

Objective: estimate the model of the underlying probability distribution over variables \(X \), \(p(X) \), using examples in \(D \)

Density estimation

Standard (iid) assumptions: Samples
- are independent of each other
- come from the same (identical) distribution (fixed \(p(X) \))

Independently drawn instances from the same fixed distribution
Density estimation

Types of density estimation:

(1) Parametric
- the distribution is modeled using a set of parameters Θ
 \[\hat{p}(X) = p(X \mid \Theta) \]
- **Estimation**: find parameters Θ fitting the data D
- **Example**: estimate the mean and covariance of a normal distribution

\[\hat{p}(x) = N(x \mid \mu, \sigma) \]

(2) Non-parametric
- The model of the distribution utilizes all examples in D
- As if all examples were parameters of the distribution
- \[\hat{p}(X) = p(X \mid D) \]
- **Examples**:
 - histogram
 - Kernel density estimation
Learning via parameter estimation

In this lecture we consider **parametric density estimation**

Basic settings:
- A set of random variables $X = \{X_1, X_2, \ldots, X_d\}$
- **A model of the distribution** over variables in X
 - with parameters Θ : $\hat{p}(X | \Theta)$
- **Data** $D = \{D_1, D_2, \ldots, D_n\}$

Objective: find parameters Θ such that $p(X | \Theta)$ fits data D the best

- How to measure the goodness of fit or alternative the error?

ML Parameter estimation

Model $\hat{p}(X) = p(X | \Theta)$

Data $D = \{D_1, D_2, \ldots, D_n\}$

Maximum likelihood (ML)

- Find Θ that maximizes likelihood $p(D | \Theta, \xi)$

\[
P(D | \Theta, \xi) = P(D_1, D_2, \ldots, D_n | \Theta, \xi)
= P(D_1 | \Theta, \xi) P(D_2 | \Theta, \xi) \ldots P(D_n | \Theta, \xi)
= \prod_{i=1}^{n} P(D_i | \Theta, \xi)
\]

$\Theta_{ML} = \text{arg} \max_{\Theta} p(D | \Theta, \xi)$

Independent examples
Properties of log function:

\[\log x \]

\[\max \arg (\log \Theta) \]

\[\Theta^* = \arg \max \Theta f(\Theta) = \arg \max \Theta \log f(\Theta) \]
ML Parameter estimation

Model: \(\hat{p}(X) = p(X | \Theta) \)

Data: \(D = \{D_1, D_2, \ldots, D_n\} \)

- Maximum likelihood (ML)
 - Find \(\hat{\Theta} \) that maximizes likelihood \(p(D | \Theta, \xi) \)

\[
P(D | \Theta, \xi) = P(D_1, D_2, \ldots, D_n | \Theta, \xi)
= P(D_1 | \Theta, \xi)P(D_2 | \Theta, \xi) \ldots P(D_n | \Theta, \xi)
= \prod_{i=1}^{n} P(D_i | \Theta, \xi)
\]

\[
\log\text{-likelihood} \quad \log p(D | \Theta, \xi) = \sum_{i=1}^{n} \log P(D_i | \Theta, \xi)
\]

\[
\Theta_{ML} = \text{arg max } \Theta \quad p(D | \Theta, \xi) = \text{arg max } \Theta \quad \log p(D | \Theta, \xi)
\]

Bayesian parameter estimation

The ML estimate picks just one value of the parameter

- Problem: if there are two different parameter values that are close in terms of the likelihood, using only one of them may introduce a strong bias, if we use it, for example, for predictions.

Bayesian parameter estimation

- Remedies the limitation of one choice
- Uses the posterior distribution for parameters \(\Theta \)
- Posterior ‘covers’ all possible parameter values (and their “weights”)

\[
p(\Theta | D, \xi) = \frac{p(D | \Theta, \xi) p(\Theta | \xi)}{p(D | \xi)}
\]
Bayesian parameter estimation

What does it do?

• Prior and Posterior ‘covers’ all possible parameter values (and their “weights”)

Assume: we have a model of \(p(x \mid \Theta) \) with a parameter \(\Theta \)

• Bayesian parameter estimation:

\[
\begin{align*}
\text{Prior on a parameter} & \quad + \quad \text{Data} + \quad p(x \mid \Theta) \quad = \quad \text{Posterior on a parameter} \\
p(\Theta) & \quad + \quad p(x \mid \Theta) \quad = \quad p(\Theta \mid D)
\end{align*}
\]

• ML parameter estimate

\[
\begin{align*}
\text{Data} + \quad p(x \mid \Theta) \quad = \quad \text{Just one value}
\end{align*}
\]

Bayesian parameter estimation

Bayesian parameter estimation

– Uses the posterior distribution for parameters

– Posterior ‘covers’ all possible parameter values (and their “weights”)

Parameter posterior

\[
p(\Theta \mid D, \xi) = \frac{p(D \mid \Theta, \xi) p(\Theta \mid \xi)}{p(D \mid \xi)}
\]

• How to use the posterior for modeling \(p(X) \)?

\[
\hat{p}(X) = p(X \mid D) = \int_{\Theta} p(X \mid \Theta) p(\Theta \mid D, \xi) d\Theta
\]
Parameter estimation

Other criteria:

- **Maximum a posteriori probability (MAP)**

 maximize \(p(\Theta \mid D, \xi) \) \hspace{1cm} \text{(mode of the posterior)}

 - Yields: one set of parameters \(\Theta_{MAP} \)

 - Approximation:
 \[\hat{p}(X) = p(X \mid \Theta_{MAP}) \]

- **Expected value of the parameter**

 \(\hat{\Theta} = E(\Theta) \) \hspace{1cm} \text{(mean of the posterior)}

 - Expectation taken with regard to posterior \(p(\Theta \mid D, \xi) \)

 - Yields: one set of parameters

 - Approximation:
 \[\hat{p}(X) = p(X \mid \hat{\Theta}) \]

Parameter estimation. Coin example.

Coin example: we have a coin that can be biased

Outcomes: two possible values -- head or tail

Data: \(D \) a sequence of outcomes \(x_i \) such that

- **head** \(x_i = 1 \)
- **tail** \(x_i = 0 \)

Model: probability of a head \(\theta \)
probability of a tail \(1 - \theta \)

Objective:

We would like to estimate the probability of a head \(\hat{\theta} \) from data
Parameter estimation. Example.

- **Assume** the unknown and possibly biased coin
- Probability of the head is θ
- **Data:**

 H H T T H H T T H T T T H T H H H T H H T T T

 - Heads: 15
 - Tails: 10

What would be your estimate of the probability of a head?

$\tilde{\theta} = ?$

Parameter estimation. Example

- **Assume** the unknown and possibly biased coin
- Probability of the head is θ
- **Data:**

 H H T T H H T T H T T T H T H H H T H H T T T

 - Heads: 15
 - Tails: 10

What would be your choice of the probability of a head?

Solution: use frequencies of occurrences to do the estimate

$\tilde{\theta} = \frac{15}{25} = 0.6$

This is **the maximum likelihood estimate** of the parameter θ
Probability of an outcome

Data: D a sequence of outcomes x_i such that
- head $x_i = 1$
- tail $x_i = 0$

Model: probability of a head θ
 probability of a tail $(1-\theta)$

Assume: we know the probability θ

Probability of an outcome of a coin flip x_i

\[P(x_i \mid \theta) = \theta^{x_i} (1-\theta)^{(1-x_i)} \]

- Combines the probability of a head and a tail
- So that x_i is going to pick its correct probability
- Gives θ for $x_i = 1$
- Gives $(1-\theta)$ for $x_i = 0$

Probability of a sequence of outcomes.

Data: D a sequence of outcomes x_i such that
- head $x_i = 1$
- tail $x_i = 0$

Model: probability of a head θ
 probability of a tail $(1-\theta)$

Assume: a sequence of independent coin flips

$D = H \ H \ T \ H \ T \ H$ (encoded as D = 110101)

What is the probability of observing the data sequence D:

$P(D \mid \theta) = ?$
Probability of a sequence of outcomes.

Data: D a sequence of outcomes x_i such that
- head $x_i = 1$
- tail $x_i = 0$

Model: probability of a head θ
probability of a tail $(1 - \theta)$

Assume: a sequence of coin flips $D = H H T H T H$
encoded as $D = 110101$

What is the probability of observing a data sequence D:

$$ P(D \mid \theta) = \theta \theta (1 - \theta) \theta (1 - \theta) \theta $$

likelihood of the data
Probability of a sequence of outcomes

Data: \(D \) a sequence of outcomes \(x_i \) such that
- head \(x_i = 1 \)
- tail \(x_i = 0 \)

Model: probability of a head \(\theta \)
probability of a tail \(1 - \theta \)

Assume: a sequence of coin flips \(D = H H T H T H \)
encoded as \(D = 110101 \)

What is the probability of observing a data sequence \(D \):

\[
P(D \mid \theta) = \theta \theta (1 - \theta) \theta (1 - \theta) \theta
\]

\[
P(D \mid \theta) = \prod_{i=1}^{6} \theta^{x_i} (1 - \theta)^{(1-x_i)}
\]

Can be rewritten using the Bernoulli distribution:

The goodness of fit to the data

Learning: we do not know the value of the parameter \(\theta \)

Our learning goal:
- Find the parameter \(\theta \) that fits the data \(D \) the best?

Criterion for the best fit: Maximize the likelihood

\[
P(D \mid \theta) = \prod_{i=1}^{n} \theta^{x_i} (1 - \theta)^{(1-x_i)}
\]

Intuition:
- more likely are the data given the model, the better is the fit

Note: Instead of an error function that measures how bad the data fit the model we have a measure that tells us how well the data fit :

\[
Error(D, \theta) = -P(D \mid \theta)
\]
Maximum likelihood (ML) estimate.

Likelihood of data:
\[P(D \mid \theta, \xi) = \prod_{i=1}^{n} \theta^{x_i} (1 - \theta)^{(1-x_i)} \]

Maximum likelihood estimate
\[\Theta_{ML} = \arg \max_{\theta} P(D \mid \Theta, \xi) = \arg \max_{\theta} \log p(D \mid \Theta, \xi) \]

Optimize log-likelihood (the same as maximizing likelihood)
\[l(D, \theta) = \log P(D \mid \theta, \xi) = \log \prod_{i=1}^{n} \theta^{x_i} (1 - \theta)^{(1-x_i)} = \]
\[= \sum_{i=1}^{n} x_i \log \theta + (1 - x_i) \log(1 - \theta) = \log \theta \sum_{i=1}^{n} x_i + (1 - \theta) \sum_{i=1}^{n} (1 - x_i) \]

\[N_1 \text{ - number of heads seen} \quad N_2 \text{ - number of tails seen} \]

Maximum likelihood (ML) estimate.

Optimize log-likelihood
\[l(D, \theta) = N_1 \log \theta + N_2 (1 - \theta) \]

Set derivative to zero
\[\frac{\partial l(D, \theta)}{\partial \theta} = \frac{N_1}{\theta} - \frac{N_2}{(1 - \theta)} = 0 \]

Solving
\[\theta = \frac{N_1}{N_1 + N_2} \]

ML Solution:
\[\theta_{ML} = \frac{N_1}{N} = \frac{N_1}{N_1 + N_2} \]
Maximum likelihood estimate. Example

- **Assume** the unknown and possibly biased coin
- Probability of the head is \(\theta \)
- **Data:**
 - Heads: 15
 - Tails: 10

What is the ML estimate of the probability of a head and a tail?

\[
\hat{\theta} = \frac{N_1}{N} = \frac{15}{25} = 0.6
\]

\[
(1 - \hat{\theta}) = \frac{N_2}{N} = \frac{10}{25} = 0.4
\]
Bayesian parameter estimation

Uses the distributions (prior and posterior) over all possible values of the parameter \(\theta \) of the sampling distribution \(p(x \mid \theta) \) (Bernoulli):

\[
p(\theta \mid D, \xi) = \frac{P(D \mid \theta, \xi)p(\theta \mid \xi)}{P(D \mid \xi)}
\]

(via Bayes theorem)

Prior

Posterior

Normalizing factor

We know that the likelihood is:

\[
P(D \mid \theta, \xi) = \prod_{i=1}^{n} \theta^{x_i} (1 - \theta)^{(1-x_i)} = \theta^{N_1} (1 - \theta)^{N_2}
\]

How to choose the prior probability?

\[
p(\theta \mid \xi) \quad - \text{is the prior probability on } \theta
\]

Prior distribution

Choice of prior: Beta distribution

\[
p(\theta \mid \xi) = \text{Beta}(\theta \mid \alpha_1, \alpha_2) = \frac{\Gamma(\alpha_1 + \alpha_2)}{\Gamma(\alpha_1)\Gamma(\alpha_2)} \theta^{\alpha_1-1} (1 - \theta)^{\alpha_2-1}
\]

\(\Gamma(x) \) - a Gamma function \(\Gamma(x) = (x-1)! \Gamma(x-1) \)

For integer values of \(x \) \(\Gamma(n) = (n-1)! \)

Why to use Beta distribution?

Beta distribution “fits” Bernoulli sample - conjugate choices

\[
P(D \mid \theta, \xi) = \theta^{N_1} (1 - \theta)^{N_2}
\]

Posterior distribution is again a Beta distribution

\[
p(\theta \mid D, \xi) = \frac{P(D \mid \theta, \xi)\text{Beta}(\theta \mid \alpha_1, \alpha_2)}{P(D \mid \xi)} = \text{Beta}(\theta \mid \alpha_1 + N_1, \alpha_2 + N_2)
\]
Beta distribution

\[
p(\theta | \xi) = \text{Beta}(\theta | a, b) = \frac{\Gamma(a + b)}{\Gamma(a)\Gamma(b)} \theta^{a-1}(1-\theta)^{b-1}
\]

Posterior distribution

\[
p(\theta | \mathcal{D}, \xi) = \frac{P(\mathcal{D} | \theta, \xi) \text{Beta}(\theta | \mu_{1}, \mu_{2})}{P(\mathcal{D} | \xi)} = \text{Beta}(\theta | \alpha_{1} + N_{1}, \alpha_{2} + N_{2})
\]
Posterior distribution

Beta posterior
- A conjugate prior to Bernoulli sample

\[
p(\theta \mid D, \xi) = \frac{P(D \mid \theta, \xi)Beta(\theta \mid \alpha_1, \alpha_2)}{P(D \mid \xi)} = Beta(\theta \mid \alpha_1 + N_1, \alpha_2 + N_2)
\]

Notice that parameters of the prior act like counts of heads and tails (sometimes they are also referred to as **prior counts**).

Maximum a posteriori probability (MAP)

Maximum a posteriori estimate
- Selects the mode of the posterior distribution

\[
\theta_{MAP} = \arg \max_\theta p(\theta \mid D, \xi)
\]

Likelihood of data

\[
p(\theta \mid D, \xi) = \frac{P(D \mid \theta, \xi)p(\theta \mid \xi)}{P(D \mid \xi)} \quad \text{(via Bayes rule)}
\]

• The model of the posterior is represented by a Beta distribution

\[
p(\theta \mid D, \xi) = \frac{P(D \mid \theta, \xi)Beta(\theta \mid \alpha_1, \alpha_2)}{P(D \mid \xi)} = Beta(\theta \mid \alpha_1 + N_1, \alpha_2 + N_2)
\]
Maximum posterior probability

Maximum a posteriori estimate
– Selects the mode of the posterior distribution
– Assumes conjugate prior to Bernoulli sample

\[p(\theta \mid D, \xi) = \frac{P(D \mid \theta, \xi) \text{Beta}(\theta \mid \alpha_1, \alpha_2)}{P(D \mid \xi)} = \text{Beta}(\theta \mid \alpha_1 + N_1, \alpha_2 + N_2) \]

\[= \frac{\Gamma(\alpha_1 + \alpha_2 + N_1 + N_2)}{\Gamma(\alpha_1 + N_1)\Gamma(\alpha_2 + N_2)} \theta^{N_1+\alpha_2-1}(1-\theta)^{N_2+\alpha_1-1} \]

Mode of the posterior satisfies:
\[\frac{\partial \log p(\theta \mid D, \xi)}{\partial \theta} = 0 \]

MAP Solution:
\[\theta_{\text{MAP}} = \frac{\alpha_1 + N_1 - 1}{\alpha_1 + \alpha_2 + N_1 + N_2 - 2} \]

MAP estimate example

• Assume the unknown and possibly biased coin
• Probability of the head is \(\theta \)
• Data:
 H H T T H H T H T H T T H T H H H T H H T
 – Heads: 15
 – Tails: 10
• Assume \(p(\theta \mid \xi) = \text{Beta}(\theta \mid 5,5) \)

What is the MAP estimate?
MAP estimate example

• Assume the unknown and possibly biased coin
• Probability of the head is θ
• Data:

 H H T T H H T H T T H T H T H H H H T H H H H T

 – Heads: 15
 – Tails: 10
• Assume $p(\theta \mid \xi) = \text{Beta}(\theta \mid 5,5)$

What is the MAP estimate?

$$
\theta_{\text{MAP}} = \frac{N_1 + \alpha_1 - 1}{N - 2} = \frac{N_1 + \alpha_1 - 1}{N_1 + N_2 + \alpha_1 + \alpha_2 - 2} = \frac{19}{33}
$$

MAP estimate example

• Note that the prior and data fit (data likelihood) are combined
• The MAP can be biased with large prior counts
• It is hard to overturn it with a smaller sample size
• Data:

 H H T T H H T H T T H T H T H H H H T H H H H T

 – Heads: 15
 – Tails: 10
• Assume $p(\theta \mid \xi) = \text{Beta}(\theta \mid 5,5)$

$$
\theta_{\text{MAP}} = \frac{19}{33}
$$

• Assume $p(\theta \mid \xi) = \text{Beta}(\theta \mid 5,20)$

$$
\theta_{\text{MAP}} = \frac{19}{48}
$$
Bayesian framework

- **Predictive probability of an outcome** $x = 1$ in the next trial $P(x = 1 | D, \xi)$

 Posterior density

 $$P(x = 1 | D, \xi) = \int_0^1 P(x = 1 | \theta, \xi) p(\theta | D, \xi) d\theta$$

 $$= \int_0^1 \theta p(\theta | D, \xi) d\theta = E(\theta)$$

- **Equivalent to the expected value of the parameter**
 - expectation is taken with respect to the posterior distribution

 $$p(\theta | D, \xi) = \text{Beta}(\theta \mid \alpha_1 + N_1, \alpha_2 + N_2)$$

Expected value of the parameter

How to calculate the expected value of Beta?

$$E(\theta) = \int_0^1 \theta \text{Beta}(\theta \mid \eta_1, \eta_2) d\theta = \int_0^1 \theta \frac{\Gamma(\eta_1 + \eta_2)}{\Gamma(\eta_1) \Gamma(\eta_2)} \theta^{\eta_1-1} (1-\theta)^{\eta_2-1} d\theta$$

$$= \frac{\Gamma(\eta_1 + \eta_2)}{\Gamma(\eta_1) \Gamma(\eta_2)} \int_0^1 \theta \eta_1 (1-\theta) \eta_2 d\theta$$

$$= \frac{\Gamma(\eta_1 + \eta_2)}{\Gamma(\eta_1) \Gamma(\eta_2)} \frac{\Gamma(\eta_1 + 1) \Gamma(\eta_2)}{\Gamma(\eta_1 + \eta_2 + 1)} \int_0^1 \text{Beta}(\eta_1 + 1, \eta_2) d\theta$$

$$= \frac{\eta_1}{\eta_1 + \eta_2}$$

Note: $\Gamma(\alpha + 1) = \alpha \Gamma(\alpha)$ for integer values of α
Expected value of the parameter

• Substituting the results for the posterior:
 \[p(\theta \mid D, \xi) = Beta(\theta \mid \alpha_1 + N_1, \alpha_2 + N_2) \]

• We get
 \[E(\theta) = \frac{\alpha_1 + N_1}{\alpha_1 + N_1 + \alpha_2 + N_2} \]

• Note that the mean of the posterior is yet another “reasonable” parameter choice:
 \[\hat{\theta} = E(\theta) \]

\[\Theta_{EV} = E_{p(\theta \mid D, \xi)}(\Theta) = \int \Theta p(\Theta \mid D, \xi) d\Theta \]