

Data biases

Example: Assume you want to build an ML program for predicting the stock behavior and for choosing your investment strategy

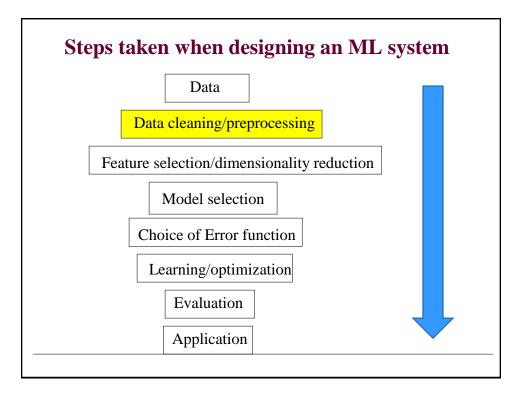
Data extraction:

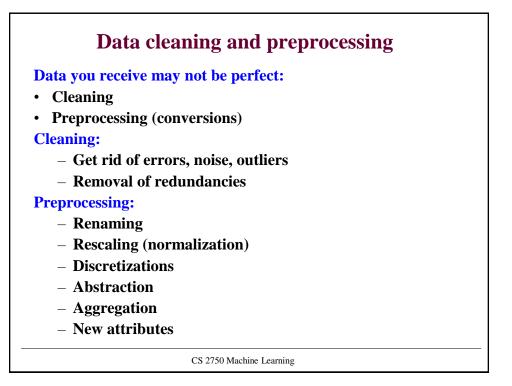
- pick companies that are traded on the stock market on January 2017
- Go back 30 years and extract all the data for these companies
- Use the data to build an ML model supporting your future investments

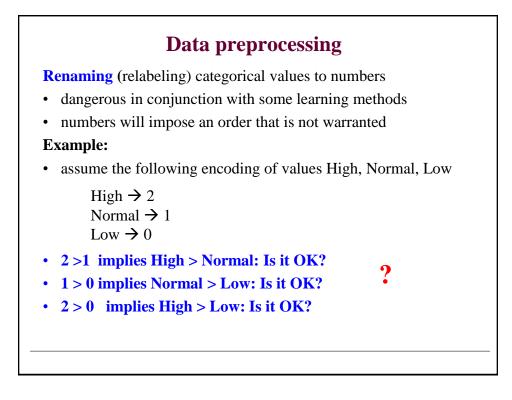
Question:

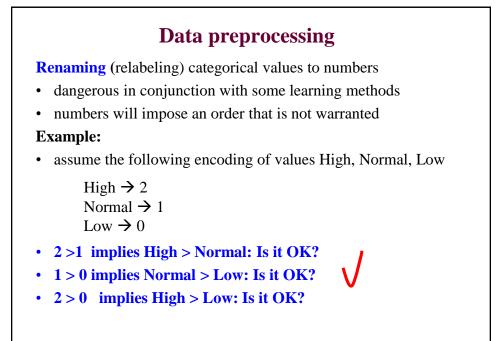
- Would you trust the model?
- Are there any biases in the data?

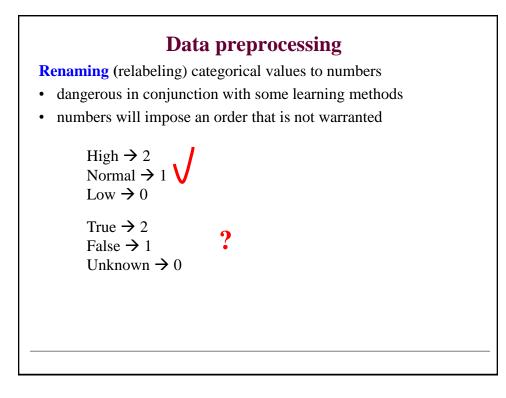
CS 2750 Machine Learning

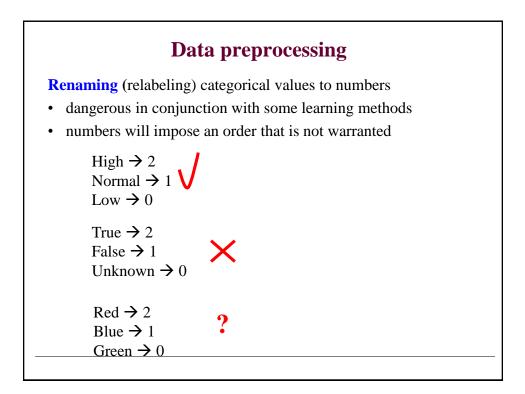


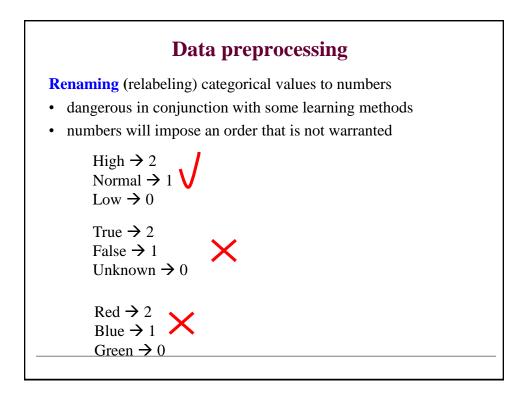










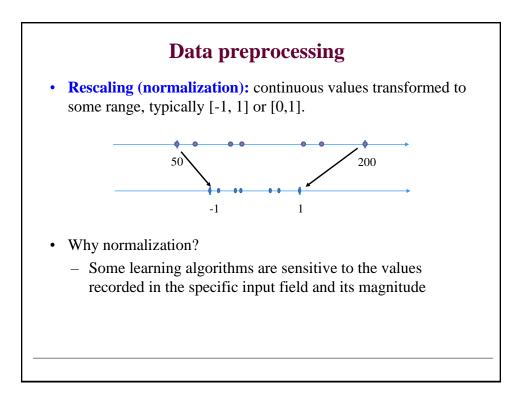


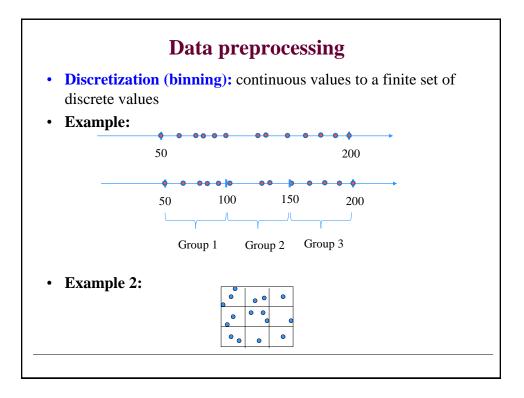
Data preprocessing

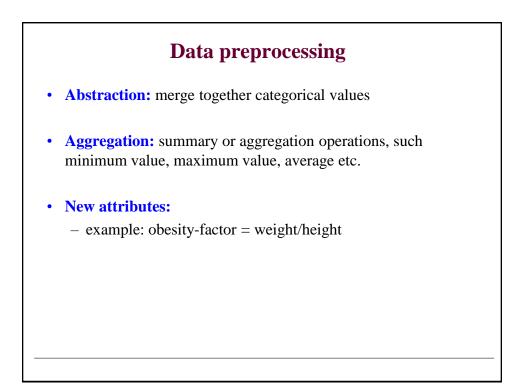
Renaming (relabeling) categorical values to numbers **Problem:** How to safely represent the different categories as numbers when no order exists?

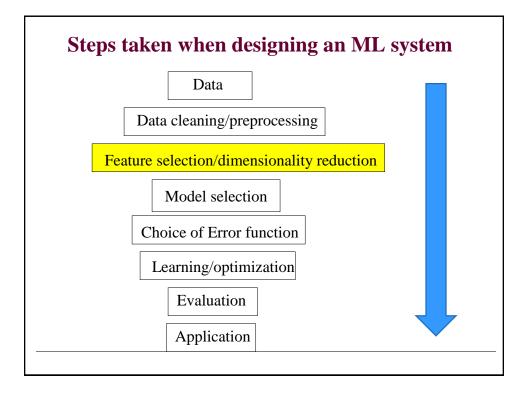
Solution:

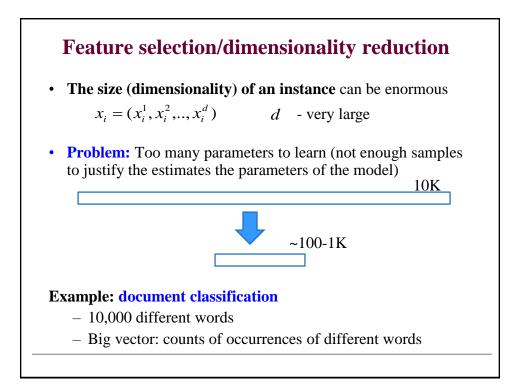
- Use indicator vector (or one-hot) representation.
- Example: Red, Blue, Green colors
 - 3 categories \rightarrow use a vector of size 3 with binary values
 - Encoding:
 - **Red:** (1,0,0);
 - **Blue:** (0,1,0);
 - Green: (0,0,1)

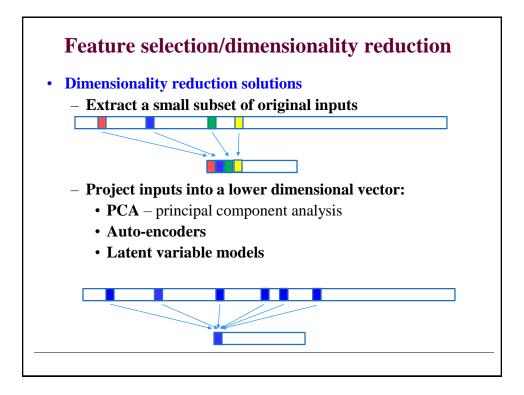


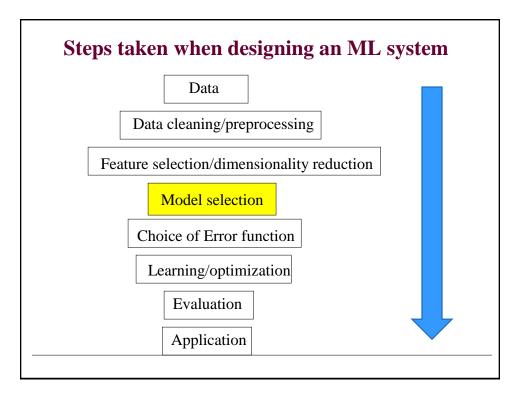












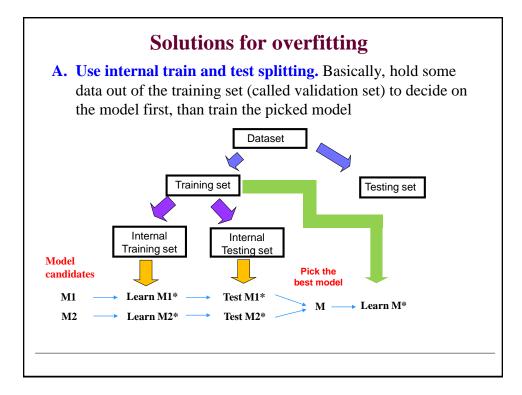
Model selection

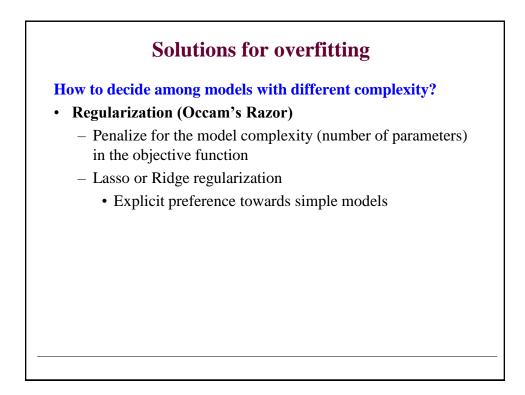
• What is the right model to learn?

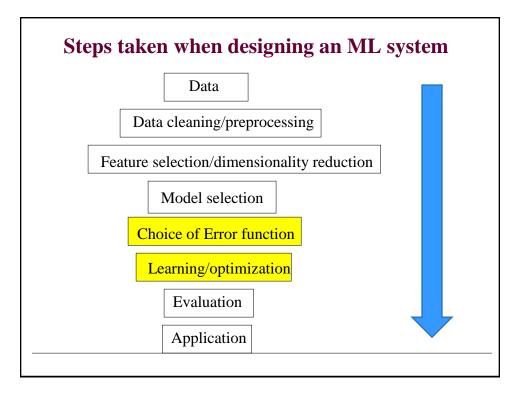
- A prior knowledge helps a lot, but still a lot of guessing
- Initial data analysis and visualization
 - We can make a good guess about the form of the distribution, shape of the function by looking at data
- Independences and correlations

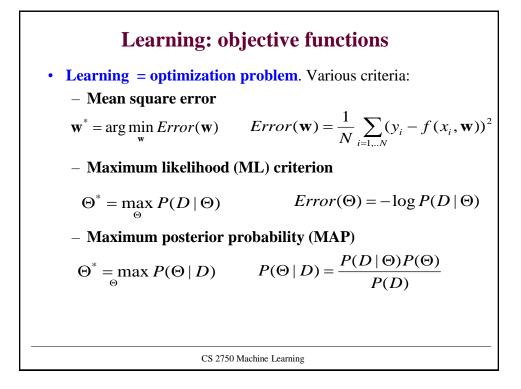
• Overfitting problem

- Take into account the **bias and variance** of error estimates
- Simpler (more biased) model parameters can be estimated more reliably (smaller variance of estimates)
- Complex model with many parameters parameter estimates are less reliable (large variance of the estimate)

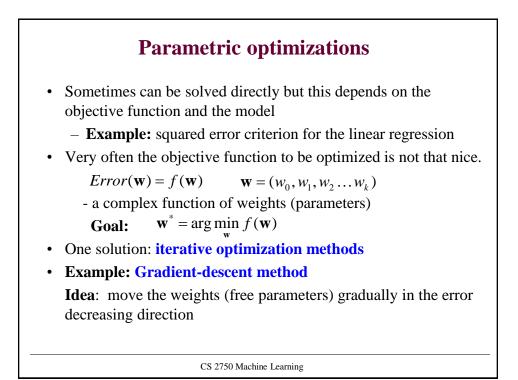


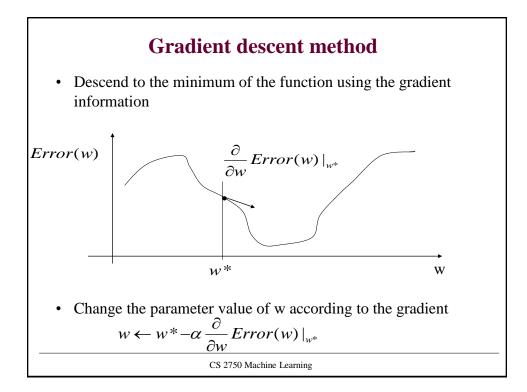


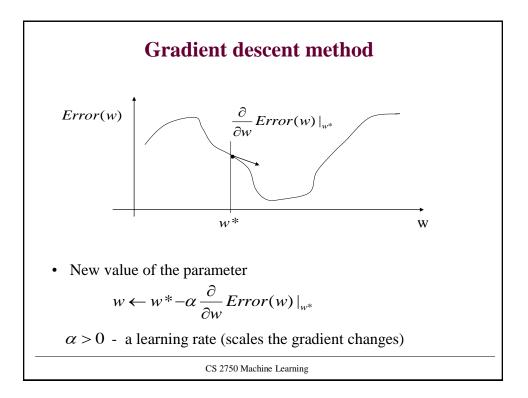


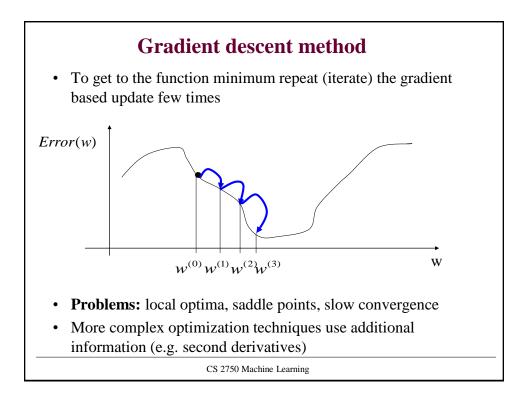


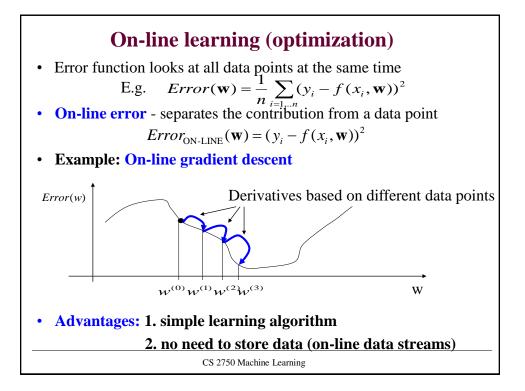
Learning
Learning = optimization problem
• Optimization problems can be hard to solve. Right choice of a model and an error function makes a difference.
Parameter optimizations
 Gradient descent, Conjugate gradient
Newton-Rhapson
Levenberg-Marquard
Some can be carried on-line on a sample by sample basis
Combinatorial optimizations (over discrete spaces):
• Hill-climbing
Simulated-annealing
Genetic algorithms
CS 2750 Machine Learning

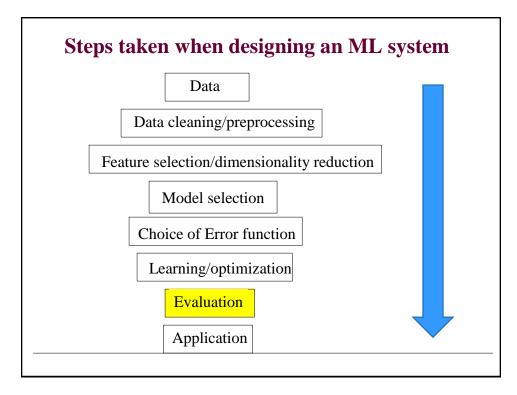


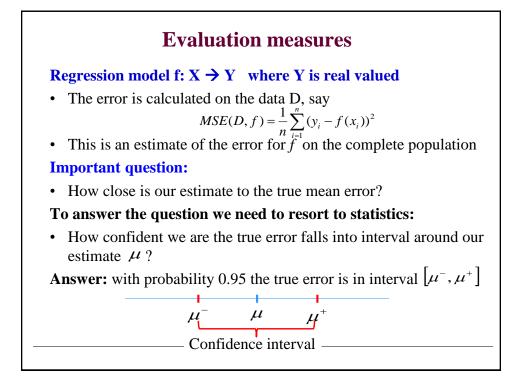


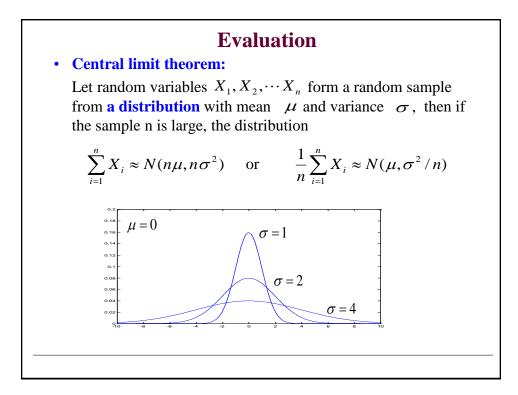


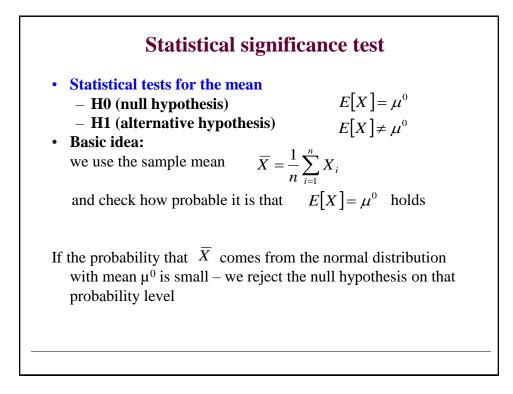


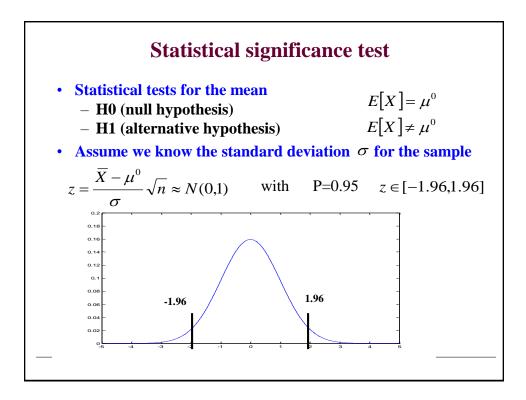


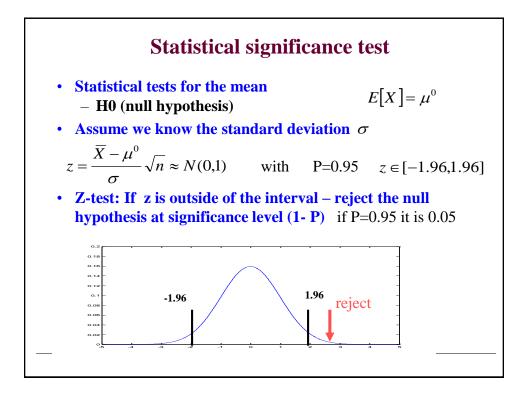


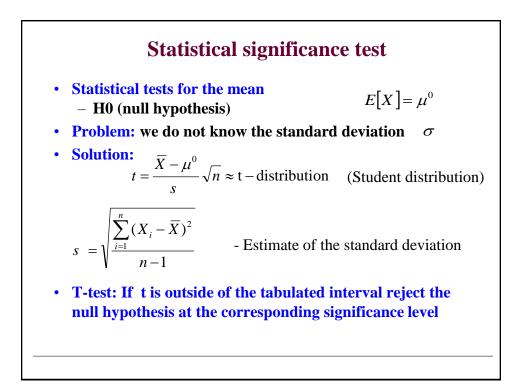


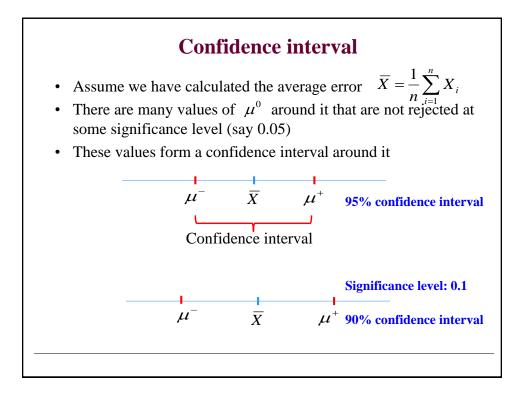












Statistical tests The statistical tests lets us answer: 1. The probability with which the true error falls into the interval around our estimate, say : $MSE(D, f) = \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$ 2. Compare two models M1 and M2 and determine based on the error on the data entries the probability with which model M1 is different (or better) than M2: $MSE(D, f_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i - f_1(x_i))^2 \qquad MSE(D, f_2) = \frac{1}{n} \sum_{i=1}^{n} (y_i - f_2(x_i))^2$ Trick: $MSE(D, f_1) - MSE(D, f_2) = \frac{1}{n} \sum_{i=1}^{n} (y_i - f_1(x_i))^2 - \frac{1}{n} \sum_{i=1}^{n} (y_i - f_2(x_i))^2$

