
CS 2750 Machine Learning
Lecture 23

Milos Hauskrecht
milos@pitt.edu
5329 Sennott Square

Reinforcement learning II

http://pitt.edu

Reinforcement learning

Objective: Learn how to act in the environment in order to
maximize the reinforcement signal
• The selection of actions should depend on the input
• A policy maps inputs to actions
• Goal: find the optimal policy that gives the best

expected reinforcements

Example: learn how to play games (AlphaGo)

Learner
Input x Output a

Critic

Reinforcement r

AX ®:p
AX ®:p

Gambling example
• Game: 3 biased coins

– The coin to be tossed is selected randomly from the three
coin options. The agent always sees which coin is going to be
played next. The agent makes a bet on either a head or a tail
with a wage of $1. If after the coin toss, the outcome agrees
with the bet, the agent wins $1, otherwise it looses $1

• RL model:
– Input: X – a coin chosen for the next toss,
– Action: A – choice of head or tail the agent bets on,
– Reinforcements: {1, -1}

• A policy Example: AX ®:p 1
2

3

head
tail

head

:p

1 2 3

Gambling example
RL model:
• Input: X – a coin chosen for the next toss,
• Action: A – choice of head or tail the agent bets on,
• Reinforcements: {1, -1}
• A policy

State, action, reward trajectories

Coin1 head
Coin2 tail
Coin3 head

:p

Coin2

Tail

-1

Coin1

Head

1

Step0 Step1

Coin2

Tail

1

Step2

Coin1

Head

1

Step k

.. ..
state

action

reward

Gambling example
Learning goal: find the optimal policy

that maximizes future expected rewards

)(
0
å
=

T

t
t

t rE g

a discount factor = present value of money

AX ®:*p

Coin1 ?
Coin2 ?
Coin3 ?

:*p

10 <£ g

1
2

3

?
?

?

:*p

Agent navigation example

• Agent navigation in the maze:
– 4 moves in compass directions
– Effects of moves are stochastic – we may wind up in other

than intended location with a non-zero probability
– Objective: learn how to reach the goal state in the shortest

expected time

moves

G

Agent navigation example
• The RL model:

– Input: X – a position of an agent
– Output: A –the next move
– Reinforcements: R

• -1 for each move
• +100 for reaching the goal

– A policy:

• Goal: find the policy maximizing future expected rewards

moves

G

AX ®:p

)(
0
å
¥

=t
t

t rE g

Position 1 right
Position 2 right
…

Position 25 left

:p

10 <£ g

Agent navigation example
State, action reward trajectories
• policy

Pos1

Right

-1

Pos2

Right

-1

Step0 Step1

Pos3

Up

-1

Step2

Pos15

Up

-1

Step k

.. ..
state

action

reward

Position 1 right
Position 2 right
…

Position 25 left

:p
moves

G

1 2 3 4 5

6 7 8 9 10

11 12 3 14 15

16 17 18 19 20

21 22 23 24 25

RL with immediate rewards

• Expected reward

• Immediate reward case:
– Reward depends only on x and the action choice
– The action does not affect the environment and hence future

inputs (states) and future rewards:

– Expected one step reward for input x (coin to play next) and
the choice a :

)(
0
å
¥

=t
t

t rE g

),(aR x

...)()()()(2
2

10
0

+++=å
¥

=

rErErErE
t

t
t ggg

...,, 210 rrr Rewards for every step of the game

10 <£ g

RL with immediate rewards

• Expected reward

• Optimal strategy:

: Expected one step reward for input x (coin to play
next) and the choice a

...)()()()(2
2

10
0

+++=å
¥

=

rErErErE
t

t
t ggg

AX ®:*p

),(maxarg)(* aR
a

xx =p

),(aR x

RL with immediate rewards
The optimal choice assumes we know the expected reward

• Then:

Caveats
• We do not know the expected reward

– We need to estimate it using from interaction
• We cannot determine the optimal policy if the estimate of

the expected reward is not good
– We need to try also actions that look suboptimal wrt the

current estimates of

),(aR x
),(maxarg)(* aR

a
xx =p

),(aR x
),(~ aR x

),(~ aR x

Estimating R(x,a)
• Solution 1:

– For each input x try different actions a
– Estimate using the average of observed rewards

• Solution 2: online approximation
• Updates an estimate after performing action a in x and

observing the reward

å
=

=
axN

i

ax
i

ax

r
N

aR
,

1

,

,

1),(~ x

),(aR x

)(ia

ax
i

ii riaRiaR ,)1()()(),(~))(1(),(~ aa +-¬ -xx

- a learning rate

axr ,

RL with immediate rewards
• At any step in time i during the experiment we have estimates of

expected rewards for each (coin, action) pair:

• Assume the next coin to play in step (i+1) is coin 2 and we pick
head as our bet. Then we update using the
observed reward and one of the update strategy above, and keep
the reward estimates for the remaining (coin, action) pairs
unchanged, e.g.

)(),1(~ iheadcoinR
)(),1(~ itailcoinR
)(),2(~ iheadcoinR

)(),2(~ itailcoinR
)(),3(~ iheadcoinR

)(),3(~ itailcoinR

)1(),2(~ +iheadcoinR

)()1(),2(~),2(~ ii tailcoinRtailcoinR =+

Exploration vs. Exploitation
• Espsilon greedy exploration:

– Uses exploration parameter
– Choose the “current” best choice with probability

– All other choices are selected with
a uniform probability

Advantages:
• Simple, easy to implement
Disadvantages:
• Exploration more appropriate at the beginning when we do not

have good estimates of
• Exploitation more appropriate later when we have good estimates

),(~maxarg)(ˆ aR
Aa

xx
Î

=p

e-1

1|| -A
e

10 ££ e

),(~ aR x

Exploration vs. Exploitation
• Boltzman exploration

– The action is chosen randomly but proportionally to its
current expected reward estimate

– Can be tuned with a temperature parameter T to promote
exploration or exploitation

• Probability of choosing action a

• Effect of T:
– For high values of T, p(a | x) is uniformly distributed for

all actions
– For low values of T, p(a | x) of the action with the highest

value of is approaching 1

[]
[]å

Î

=

Aa
TaxR
TaxRap

'
/)',(~exp
/),(~exp)|(x

),(~ aR x

RL with delayed rewards
A more general reinforcement learning model
• Agent navigation in the Maze:

– 4 moves in compass directions
– Effects of moves are stochastic – we may wind up in other

than intended location with non-zero probability
– Objective: reach the goal state in the shortest time

moves

G

Agent navigation example
State, action reward trajectories
• policy

Pos1

Right

-1

Pos2

Right

-1

Step0 Step1

Pos3

Up

-1

Step2

Pos15

Up

-1

Step k

.. ..
state

action

reward

Position 1 right
Position 2 right
…

Position 25 left

:p
moves

G

1 2 3 4 5

6 7 8 9 10

11 12 3 14 15

16 17 18 19 20

21 22 23 24 25

Learning with delayed rewards
• Actions, in addition to immediate rewards affect the next state

of the environment and thus indirectly also future rewards
• We need a model to represent environment changes
• The model we use is called Markov decision process (MDP)

– Frequently used in AI, OR, control theory
– Markov assumption: next state depends on the previous

state and action, and not states (actions) in the past

statet-1

actiont-1

reward t-1

statet

Markov decision process

Formal definition:

• A set of states locations of a robot
• A set of actions move actions
• Transition model

• Reward model

),,,(RTAS

S
A

]1,0[®´´ SAS

Â®´´ SAS

statet-1

actiont-1

reward t-1

statet

where can I get
with different moves
reward/cost
for a transition

4-tuple

)(X

Markov decision process

Formal definition:
Transition model T: For each action define a probability of

reaching the next state from the current state
Example: 3 states

),,,(RTAS

statet-1

actiont-1

reward t-1

statet

4-tuple

0.2 0.4 0.4
0.1 0.5 0.4
0.3 0.5 0.2

Current state

Next state

1
2
3

1 2 3

Markov decision process

Formal definition:
Reward model R: For each action define a reward associated

with the transition
Example: 3 states

),,,(RTAS

statet-1

actiont-1

reward t-1

statet

4-tuple

-1 2 0
4 3 -2
2 1 3

Current state

Next state

1
2
3

1 2 3

MDP problem
• We want to find the best policy
• Value function (V) for a policy, quantifies the goodness of

a policy through, e.g. infinite horizon, discounted model

1. combines future rewards over a trajectory
2. combines rewards for multiple trajectories (through

expectation-based measures)

G G

AS®:*p

)(
0
å
¥

=t
t

t rE g

It:

Value of a policy for MDP

• Assume a fixed policy
• How to compute the value of a policy under infinite horizon

discounted model?

– For a finite state space– we get a set of linear equations

AS®:p

å
Î

+=
Ss

sVsssPssRsV
'

)'())(,|'())(,()(pp pgp

expected one step
reward for the first action

expected discounted reward for following
the policy for the rest of the steps

A fixed point equation:

Uvrv += rUIv 1)(--=

Optimal policy

• The value of the optimal policy

• The optimal policy:

V s R s a P s s a V s
a A s S

* *

'
() max (,) (' | ,) (')= +

é

ë
ê

ù

û
úÎ Î

åg

expected one step
reward for the first action

expected discounted reward for following
the opt. policy for the rest of the steps

p g* *

'
() argmax (,) (' | ,) (')s R s a P s s a V s

a A s S
= +

é

ë
ê

ù

û
ú

Î Î
å

p *:S A®

))(()(** sHVsV =

Value function mapping form:

Computing optimal policy

Dynamic programming: Value iteration:
– computes the optimal value function first then the policy
– iterative approximation
– converges to the optimal value function

Value iteration ()
initialize ;; V is vector of values for all states
repeat

set
set

until
output

V

VV'¬
'HVV¬

e£-
¥

VV'

e

ú
û

ù
ê
ë

é
+= å

ÎÎ SsAa
sVassPasRs

'

*)'(),|'(),(maxarg)(gp

Reinforcement learning of optimal policies

• In the RL framework we do not know the MDP model !!!
• Goal: learn the optimal policy

• Two basic approaches:
– Model based learning

• Learn the MDP model (probabilities, rewards) first
• Solve the MDP afterwards

– Model-free learning
• Learn how to act directly
• No need to learn the parameters of the MDP

– A number of clones of the two in the literature

AS®:*p

Model-based learning
• We need to learn transition probabilities and rewards
• Learning of probabilities

– ML parameter estimates
– Use counts

• Learning rewards
– Similar to learning with immediate rewards

• Problem: changes in the probabilities and reward
estimates would require us to solve an MDP from scratch !
(after every action and reward seen)

as

sas

N
N

assP
,

',,),|'(~ = ',,
'

, sas
Ss

as NN å
Î

=

å
=

=
asN

i

as
i

as

r
N

asR
,

1

,

,

1),(~ or the online solution

Model free learning

• Motivation: value function update (value iteration):

• Let

• Then

• Note that the update can be defined purely in terms of Q-
functions

ú
û

ù
ê
ë

é
+¬ å

ÎÎ SsAa
sVassPasRsV

'

**)'(),|'(),(max)(g

å
Î

+=
Ss

sVassPasRasQ
'

*)'(),|'(),(),(g

),(max)(* asQsV
AaÎ

¬

å
Î

+¬
Ss a

asQassPasRasQ
' '

)','(max),|'(),(),(g

Q-learning

• Q-learning uses the Q-value update idea
– But relies on a stochastic (on-line, sample by sample) update

is replaced with

å
Î

+¬
Ss a

asQassPasRasQ
' '

)','(max),|'(),(),(g

())','(ˆmax),(),(ˆ)1(),(ˆ
'

asQasrasQasQ
a

gaa ++-¬

),(asr

's

- reward received from the environment after
performing an action a in state s

- new state reached after action a

a - learning rate, a function of asN ,

- a number of times a has been executed at s

Q-function updates in Q-learning
• At any step in time i during the experiment we have estimates of

Q functions for each (state, action) pair:

• Assume the current state is position 1 and we pick up action to be
performed next.

• After we observe the reward, we update , and
keep the Q function estimates for the remaining (state, action)
pairs unchanged.

)(),1(~ iuppositionQ
)(),1(~ ileftpositionQ
)(),1(~ irightpositionQ
)(),1(~ idownpositionQ

)(),2(~ iuppositionQ
…

),1(~ uppositionQ

Q-learning

The on-line update rule is applied repeatedly during the direct
interaction with an environment

Q-learning
initialize Q(s,a) =0 for all s,a pairs
observe current state s
repeat

select action a ; use some exploration/exploitation schedule
receive reward r
observe next state s’
update
set s to s’

end repeat

())','(max),()1(),(
'

asQrasQasQ
a

gaa ++-¬

Q-learning convergence

The Q-learning is guaranteed to converge to the optimal Q-
values under the following conditions:

• Every state is visited and every action in that state is tried
infinite number of times
– This is assured via exploration/exploitation schedule

• The sequence of learning rates for each Q(s,a) satisfies:

)),((asna - is the learning rate for the nth trial of (s,a)

¥=å
¥

=

)(
1

i
i

a ¥<å
¥

=

2

1
)(i

i
a1. 2.

RL with delayed rewards
The optimal choice
• much like what we had for the immediate rewards

RL Learning
• Instead of exact values of we use

• Since we have only estimates of
– We need to try also actions that look suboptimal wrt the

current estimates
– Exploration/exploitation strategies

• Epsilon greedy exploration
• Boltzman exploration

),(maxarg)(* asQ
a

=sp

),(aQ s

),(maxarg)(* aR
a

xx =p

),(ˆ aQ s

())','(ˆmax),(),(ˆ)1(),(ˆ
'

asQasrasQasQ
a

gaa ++-¬

),(ˆ aQ s

Q-learning speed-ups
• The basic Q-learning rule updates may propagate distant

(delayed) rewards very slowly

• Goal: a high reward state
• To make the correct decision we need all Q-values for the

current position to be good
• Problem:

– in each run we back-propagate values only ‘one-step’ back.
It takes multiple trials to back-propagate values multiple
steps.

G

Example:

Q-learning speed-ups
• Remedy: Backup values for a larger number of steps

å
¥

=
+++ =+++=

0
2

2
1 ...

i
it

i
tttt rrrrq ggg

Rewards from applying the policy

We can substitute (immediate rewards with n-step rewards):

)','(max
'

1

0
asQrq nta

n
n

i
it

in
t +

+

=
+ +=å gg

()),(),(),(1 asQqasQasQ nt
n
tntnt ++++ -+¬ a

Postpone the update for n steps and update with a longer
trajectory rewards

Problems: - larger variance
- exploration/exploitation switching
- wait n steps to update

Q-learning speed-ups

• One step vs. n-step backup

- larger variance
- exploration/exploitation switching
- wait n steps to update

GG

Problems with n-step backups:

Q-learning speed-ups

• Temporal difference: TD(λ) method
– Remedy of the wait n-steps problem
– Partial back-up after every simulation step

• Similar idea: weather forecast adjustment

G

Implemented with eligibility traces

RL successes

• Reinforcement learning is relatively simple
– On-line techniques can track non-stationary environments

and adapt to its changes

• Successful applications:
– Deep Mind’s AlphaGo (Alpha Zero)
– TD Gammon – learned to play backgammon on the

championship level
– Elevator control
– Dynamic channel allocation in mobile telephony
– Robot navigation in the environment

