
CS 2750 Machine Learning
Lecture 22

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Reinforcement learning

http://cs.pitt.educ

Reinforcement learning

Basics:

• Learner interacts with the environment
– Receives input with information about the environment (e.g.

from sensors)
– Makes actions that (may) effect the environment
– Receives a reinforcement signal that provides a feedback on

how well it performed

Learner
Input x Output a

Critic

Reinforcement r

Reinforcement learning

Objective: Learn how to act in the environment in order to
maximize the reinforcement signal
• The selection of actions should depend on the input
• A policy maps inputs to actions
• Goal: find the optimal policy that gives the best

expected reinforcements

Example: learn how to play games (AlphaGo)

Learner
Input x Output a

Critic

Reinforcement r

AX ®:p
AX ®:p

Gambling example
• Game: 3 biased coins

– The coin to be tossed is selected randomly from the three
coin options. The agent always sees which coin is going to be
played next. The agent makes a bet on either a head or a tail
with a wage of $1. If after the coin toss, the outcome agrees
with the bet, the agent wins $1, otherwise it looses $1

• RL model:
– Input: X – a coin chosen for the next toss,
– Action: A – choice of head or tail the agent bets on,
– Reinforcements: {1, -1}

• A policy
Example:

AX ®:p
Coin1 head
Coin2 tail
Coin3 head

:p
1
2

3

head
tail

head

:p

1 2 3

Trajectories
• Environment + Agent’s actions in time generate

State, action, reward trajectories
Example: Assume the agent applies the following policy

One possible SAR trajectory:

Coin1 head
Coin2 tail
Coin3 head

:p

Coin2

Tail

-1

Coin1

Head

1

Step0 Step1

Coin2

Tail

1

Step2

Coin1

Head

1

Step k

.. ..
state

action

reward

Measuring the quality of the policy
• The quality of the policy can be measured in terms of the total

rewards received by following the policy
Example: Assume the agent applies the following policy

• The total reward for the policy and one SAR trajectory
= sum of rewards for the trajectory

• But there can be multiple different trajectories the agent
may face

Coin1 head
Coin2 tail
Coin3 head

:p

Run 1

time

Expected rewards
• Expected rewards for AX ®:p

)(
0
å
=

T

t
trE

Run 1

Run 2

Run 3

…

time

time

time

Expectation over many possible reward trajectories
defined by

AX ®:pA good measure of the quality of policy

AX ®:p

Expected discounted rewards
• Expected discounting rewards for
• Discounting with (future value of money)

No discounting:

Discounting

AX ®:p

)(
0
å
=

T

t
t

t rE g

Run 1

time

Expectation over many possible discounted
reward trajectories for AX ®:p

10 <£ g

Run 1

time

Another measure of the quality of policy AX ®:p

RL learning objective
Learning goal: find the optimal policy

That is, the policy that will maximize the future expected
rewards

)(
0
å
=

T

t
t

t rE g

a discount factor = present value of money

AX ®:*p

Coin1 ?
Coin2 ?
Coin3 ?

:*p

10 <£ g

1
2

3

?
?

?

:*p

RL learning: objective functions

• Objective:
Find a policy
That maximizes some combination of future reinforcements

(rewards) received over time
• Valuation models (quantify how good the mapping is):

– Finite horizon models

– Infinite horizon discounted model

– Average reward

)(
0
å
=

T

t
trE

)(
0
å
¥

=t
t

t rE g Discount factor:

)(1lim
0
å
=

¥®

T

t
tT
rE

T

0>TTime horizon:

AX ®:*p

10 <£ g

)(
0
å
=

T

t
t

t rE g Discount factor: 10 <£ g

Agent navigation example

• Agent navigation in the maze:
– 4 moves in compass directions
– Effects of moves are stochastic – we may wind up in other

than intended location with a non-zero probability
– Objective: learn how to reach the goal state in the shortest

expected time

moves

G

Agent navigation example
• The RL model:

– Input: X – a position of an agent
– Actions: A –the next move
– Reinforcements: R

• -1 for each move
• +100 for reaching the goal

– A policy:

• Goal: find the policy maximizing future expected rewards

moves

G

AX ®:p

)(
0
å
¥

=t
t

t rE g

Position 1 right
Position 2 right
…

Position 25 left

:p

10 <£ g

Agent navigation example
State, action reward trajectories
• policy

Pos1

Right

-1

Pos2

Right

-1

Step0 Step1

Pos3

Up

-1

Step2

Pos15

Up

-1

Step k

.. ..
state

action

reward

Position 1 right
Position 2 right
…

Position 25 left

:p
moves

G

1 2 3 4 5

6 7 8 9 10

11 12 3 14 15

16 17 18 19 20

21 22 23 24 25

Effects of actions on the environment
Effect of actions on the environment

– More specifically on the next input x to be seen
Case 1. No effect The distribution over possible x is independent
of past actions. The rewards received depend only on the current
state x and the action a chosen.
• Reinforcement learning with immediate rewards

– 3 coin example
What coin we see next is not affected by our previous
action, hence our action does not effect future rewards

1 2 3

Coin2

Tail

-1

Coin1

Head

1

Step0 Step1

Coin2

Tail

1

Step2

Coin1

Head

1

Step k

.. ..
state

action

reward

X X X X

Effects of actions on the environment
Effect of actions on the environment

– More specifically on the next input x to be seen
Case 2. Actions may effect the environment and next inputs x.
The distribution of x can change due to past actions; the rewards
related to the action can be seen with some delay.
• Learning with delayed rewards

– Agent navigation example; a move action effects next
position, and hence more distant future rewards

Pos1

Right

-1

Pos2

Right

-1

Step0 Step1

Pos3

Up

-1

Step2

Pos15

Up

-1

Step k

.. ..
state

action

reward

RL with immediate rewards
• Game: 3 biased coins

– The coin to be tossed is selected randomly from the three coin
options. The agent always sees which coin is going to be played
next. The agent makes a bet on either a head or a tail with a wage
of $1. If after the coin toss, the outcome agrees with the bet, the
agent wins $1, otherwise it looses $1

• RL model:
– Input: X – a coin chosen for the next toss
– Action: A – head or tail the agent bets on
– Reinforcements: {1, -1} ($1 either won or lost)

• Learning goal: find the optimal policy
maximizing the future expected profits over time

)(
0
å
¥

=t
t

t rE g a discount factor

AX ®:*p

10 <£ g

1 2 3

RL with immediate rewards

• Expected reward
• Immediate reward case:

– Reward depends only on x and the action choice
– The action does not affect the environment and hence future

inputs (states) and future rewards:

)(
0
å
¥

=t
t

t rE g

...)(...)()()()(,2,2
2

1,10,0
0

++++=å
¥

=
akxk

k
axaxax

t
t

t rErErErErE gggg

10 <£ g

x0

a0

rx0,a0

Step0 Step1 Step2 Step k

.. ..

state

action

Reward

X X X Xx1

a1

rx1,a1

x2

a2

rx2,a2

xk

ak

rxk,ak

...)(...)()()(,2,2
2

1,10,0 ++++= akxk
k

axaxax rErErErE ggg

General
Trajectory

RL with immediate rewards
Immediate reward case:
• Reward for input x and the action choice a may vary
• Expected one-step reward for the input x and action a:

– For the coin bet problem it is:

• Expected one step reward for a policy

),|(),|(),(ij
j

iji aParaR xxx wwå=
jw

)(),(,arEaR xx =

AX ®:p

: an outcome of the coin toss x
),|(xij ar w : reward for an outcome and the bet made on x

)())(,()(, xrExR pp xx =

RL with immediate rewards

• Expected reward

• Optimizing the expected reward :

• Optimal strategy: AX ®:*p

),(maxarg)(* aR
a

xx =p

...)(...)()()()(,2,2
2

1,10,0
0

++++=å
¥

=
akxk

k
axaxax

t
t

t rErErErErE gggg
...)(...)()()(,2,2

2
1,10,0 ++++= akxk

k
axaxax rErErErE ggg

...)(max...)(max)(max)(max ,1,10,0
0

+++=å
¥

=
akxk

k
axax

t
t

t rErErErE ggg

...)(max...)(max)(max ,1,10,0 +++= akxk
k

axax rErErE gg

...),(max...),(max),(max 1100
10

+++= kka

k

aa
axRaxRaxR

k

gg

RL with immediate rewards
The optimal choice assumes we know the expected reward

• Then:

Caveats
• We do not know the expected reward

– We need to estimate it using from the
interactions

• We cannot determine the optimal policy if the estimate of
the expected reward is not good
– We need to try also actions that look suboptimal wrt the

current estimates of

),(aR x
),(maxarg)(* aR

a
xx =p

),(aR x
),(~ aR x

),(~ aR x

RL with immediate rewards
• Problem: In the RL framework we do not know

– The expected reward for performing action a at input x
• Solution:

– For each input x try different actions a
– Estimate using the average of observed rewards

– Action choice
– Accuracy of the estimate: statistics (Hoeffding’s bound)

– Number of samples:

å
=

=
axN

i

ax
i

ax

r
N

aR
,

1

,

,

1),(~ x

),(~maxarg)(aR
a

xx =p

() d
e

e £ú
û

ù
ê
ë

é

-
-£³- 2

minmax

,
2

)(
2

exp),(),(~
rr
N

aRaRP axxx

de
1ln

2
)(

2

2
minmax

,
rrN ax

-
³

),(aR x

),(aR x

RL with immediate rewards
• On-line (stochastic approximation)

– An alternative way to estimate
• Idea:

– choose action a for input x and observe a reward
– Update an estimate in every step i

• Convergence property: The approximation converges in the
limit for an appropriate learning rate schedule.

• Assume:
• Then the converge is assured if:

),(aR x

)(iaax
i

ii riaRiaR ,)1()()(),(~))(1(),(~ aa +-¬ -xx

axr ,

- a learning rate

)),((axna - is a learning rate for nth trial of (x,a) pair

¥=å
¥

=

)(
1

i
i

a ¥<å
¥

=

2

1
)(i

i
a1. 2.

RL with immediate rewards
• At any step in time i during the experiment we have estimates of

expected rewards for each (coin, action) pair:

• Assume the next coin to play in step (i+1) is coin 2 and we pick
head as our bet. Then we update using the
observed reward and one of the update strategy above, and keep
the reward estimates for the remaining (coin, action) pairs
unchanged, e.g.

)(),1(~ iheadcoinR
)(),1(~ itailcoinR
)(),2(~ iheadcoinR

)(),2(~ itailcoinR
)(),3(~ iheadcoinR

)(),3(~ itailcoinR

)1(),2(~ +iheadcoinR

)()1(),2(~),2(~ ii tailcoinRtailcoinR =+

Exploration vs. Exploitation in RL

The (learner) actively interacts with the environment via actions:
• At the beginning the learner does not know anything about the

environment
• It gradually gains the experience and learns how to react to the

environment
Dilemma (exploration-exploitation):
• After some number of steps, should I select the best current

choice (exploitation) or try to learn more about the
environment (exploration)?

• Exploitation may involve the selection of a sub-optimal
action and prevent the learning of the optimal choice

• Exploration may spend to much time on trying bad currently
suboptimal actions

Exploration vs. Exploitation
• In the RL framework

– the (learner) actively interacts with the environment and
choses the action to play for the current input x

– Also at any point in time it has an estimate of for
any (input,action) pair

• Dilemma for choosing the action to play for x:
– Should the learner choose the current best choice of action

(exploitation)

– Or choose some other action a which may help to improve
its estimate (exploration)

This dilemma is called exploration/exploitation dilemma
• Different exploration/exploitation strategies exist

),(~ aR x

),(~maxarg)(ˆ aR
Aa

xx
Î

=p

),(~ aR x

Exploration vs. Exploitation
• Epsilon greedy exploration:

– Uses exploration parameter
– Choose the “current” best choice with probability

– All other choices are selected with
a uniform probability

Advantages:
• Simple, easy to implement
Disadvantages:
• Exploration more appropriate at the beginning when we do not

have good estimates of
• Exploitation more appropriate later when we have good estimates

),(~maxarg)(ˆ aR
Aa

xx
Î

=p

e-1

1|| -A
e

10 ££ e

),(~ aR x

Exploration vs. Exploitation
• Boltzman exploration

– The action is chosen randomly but proportionally to its
current expected reward estimate

– Can be tuned with a temperature parameter T to promote
exploration or exploitation

• Probability of choosing action a

• Effect of T:
– For high values of T, p(a | x) is uniformly distributed for

all actions
– For low values of T, p(a | x) of the action with the highest

value of is approaching 1

[]
[]å

Î

=

Aa
TaxR
TaxRap

'
/)',(~exp
/),(~exp)|(x

),(~ aR x

