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Reinforcement learning

Basics: 

• Learner interacts with the environment
– Receives input with information about the environment (e.g. 

from sensors)
– Makes actions that (may) effect the environment
– Receives a reinforcement signal that provides a feedback on 

how well it performed
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Reinforcement learning

Objective:  Learn how to act in the environment in order to 
maximize the reinforcement signal 
• The selection of actions should depend on the input
• A policy                          maps inputs to actions
• Goal: find the optimal policy                        that gives the best 

expected reinforcements

Example: learn how to play games (AlphaGo)
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Gambling example
• Game: 3 biased coins

– The coin to be tossed is selected randomly from the three 
coin options. The agent always sees which coin is going to be 
played next. The agent makes a bet on either a head or a tail 
with a wage of $1. If after the coin toss, the outcome agrees 
with the bet, the agent wins $1, otherwise it looses $1

• RL model:
– Input: X – a coin chosen for the next toss, 
– Action: A – choice of head or tail the agent bets on, 
– Reinforcements: {1, -1}

• A policy
Example:
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Trajectories
• Environment + Agent’s actions in time generate 

State, action, reward trajectories
Example: Assume the agent applies the following policy

One possible SAR trajectory: 

Coin1      head
Coin2      tail
Coin3      head
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Measuring the quality of the policy
• The quality of the policy can be measured in terms of the total 

rewards received by following the policy
Example: Assume the agent applies the following policy

• The total reward for the policy and one SAR trajectory 
= sum of rewards for the trajectory

• But there can be multiple different trajectories the agent 
may face 

Coin1      head
Coin2      tail
Coin3      head
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Expected rewards
• Expected rewards for AX ®:p
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Expected discounted rewards
• Expected discounting rewards for 
• Discounting with (future value of money)

No discounting:

Discounting

AX ®:p
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RL learning objective
Learning goal: find the optimal policy 

That is, the policy that will maximize the future expected 
rewards
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RL learning: objective functions

• Objective:
Find a policy 
That maximizes some combination of future reinforcements 

(rewards) received over time
• Valuation models (quantify how good the mapping is):

– Finite horizon models

– Infinite horizon discounted model

– Average reward
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Agent navigation example

• Agent navigation in the maze:
– 4 moves in compass directions
– Effects of moves are stochastic – we may wind up in other 

than intended location with a non-zero probability
– Objective: learn how to reach the goal state in the shortest 

expected time

moves
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Agent navigation example
• The RL model:

– Input: X – a position of an agent
– Actions: A –the next move
– Reinforcements: R

• -1 for each move
• +100 for reaching the goal

– A policy:

• Goal: find the policy maximizing future expected rewards

moves

G

AX ®:p

)(
0
å
¥

=t
t

t rE g

Position 1         right
Position 2         right
…

Position 25        left

:p

10 <£ g



Agent navigation example
State, action reward trajectories
• policy

Pos1

Right

-1

Pos2

Right

-1

Step0 Step1 

Pos3

Up

-1

Step2 

Pos15

Up

-1

Step k 

.. ..
state

action

reward

Position 1         right
Position 2         right
…

Position 25        left

:p
moves

G

1 2 3 4 5

6 7 8 9 10

11 12 3 14 15

16 17 18 19 20

21 22 23 24 25



Effects of actions on the environment
Effect of actions on the environment

– More specifically on the next input x to be seen
Case 1. No effect The distribution over possible x is independent 
of past actions. The rewards received depend only on the current 
state x and the action a chosen. 
• Reinforcement learning with immediate rewards

– 3 coin example
What coin we see next is not affected by our previous 
action, hence our action does not effect future rewards
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Effects of actions on the environment
Effect of actions on the environment

– More specifically on the next input x to be seen 
Case 2. Actions may effect the environment and next inputs x. 
The distribution of x can change due to past actions; the rewards 
related to the action can be seen with some delay.
• Learning with delayed rewards

– Agent navigation example;  a move action effects next 
position, and hence more distant future rewards
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RL with immediate rewards
• Game: 3 biased coins

– The coin to be tossed is selected randomly from the three coin 
options. The agent always sees which coin is going to be played 
next. The agent makes a bet on either a head or a tail with a wage 
of $1. If after the coin toss, the outcome agrees with the bet, the 
agent wins $1, otherwise it looses $1

• RL model:
– Input: X – a coin chosen for the next toss 
– Action: A – head or tail  the agent bets on 
– Reinforcements: {1, -1}    ($1 either won or lost)

• Learning goal: find the optimal policy 
maximizing the future expected profits over time
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RL with immediate rewards

• Expected reward
• Immediate reward case:

– Reward depends only on x and the action choice 
– The action does not affect the environment and hence future 

inputs (states) and future rewards:  
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RL with immediate rewards
Immediate reward case:
• Reward for input x and the action choice a may vary
• Expected one-step reward for the input x and action a:

– For the coin bet problem it is:

• Expected one step reward for a policy
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RL with immediate rewards

• Expected reward

• Optimizing the  expected reward                           :

• Optimal strategy: AX ®:*p
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RL with immediate rewards
The optimal choice assumes we know the expected reward

• Then:

Caveats
• We do not know the expected reward 

– We need to estimate it using                  from the 
interactions

• We cannot determine the optimal policy if the estimate of 
the expected reward is not good
– We need to try also actions that look suboptimal wrt the 

current estimates of 
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RL with immediate rewards
• Problem: In the RL framework we do not know

– The expected reward for performing action a at input x
• Solution:

– For each input x try different actions a
– Estimate                  using the average of observed rewards

– Action choice
– Accuracy of the estimate: statistics (Hoeffding’s bound)

– Number of samples:
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RL with immediate rewards
• On-line (stochastic approximation) 

– An alternative way to estimate
• Idea:

– choose action a for input x and observe a reward
– Update an estimate in every step i

• Convergence property: The approximation converges in the 
limit for an appropriate learning rate schedule. 

• Assume:
• Then the converge is assured if:   
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RL with immediate rewards
• At any step in time i during the experiment we have estimates of 

expected rewards for each (coin, action) pair: 

• Assume the next coin to play in step (i+1) is coin 2 and we pick 
head as our bet. Then we update                                       using the 
observed reward and one of the update strategy above, and keep 
the reward estimates for the remaining (coin, action) pairs 
unchanged, e.g.    
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Exploration vs. Exploitation in RL 

The (learner) actively interacts with the environment via actions:
• At the beginning the learner does not know anything about the 

environment
• It gradually gains the experience and learns how to react to the 

environment
Dilemma (exploration-exploitation):
• After some number of  steps, should I select the best current 

choice (exploitation) or try to learn more about the 
environment (exploration)?

• Exploitation may involve the selection of  a sub-optimal 
action and prevent the learning of the optimal choice

• Exploration may spend to much time on trying bad currently 
suboptimal actions



Exploration vs. Exploitation 
• In the RL framework

– the (learner) actively interacts with the environment and 
choses the action to play for the current input x

– Also at any point in time it has an estimate of                for 
any (input,action) pair

• Dilemma for choosing the action to play for x: 
– Should the learner choose the current best choice of action 

(exploitation)

– Or choose some other action a which may help to improve 
its                estimate (exploration)

This dilemma is called exploration/exploitation dilemma
• Different exploration/exploitation strategies exist
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Exploration vs. Exploitation 
• Epsilon greedy exploration:  

– Uses exploration parameter 
– Choose the “current” best choice with probability 

– All other choices are selected with
a uniform probability

Advantages: 
• Simple, easy to implement
Disadvantages: 
• Exploration more appropriate at the beginning when we do not 

have good estimates  of 
• Exploitation more appropriate later when we have good estimates
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Exploration vs. Exploitation 
• Boltzman exploration

– The action is chosen randomly but proportionally to its 
current expected reward estimate

– Can be tuned with a temperature parameter T to promote 
exploration or exploitation

• Probability of choosing action a

• Effect of T: 
– For high values of  T,  p(a | x) is uniformly distributed for 

all actions
– For low values of T,  p(a | x) of the action with the highest 

value of                  is approaching 1    
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