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Learning with multiple models

We know how to build different classification or regression 
models from data
• Question: 

– Is it possible to learn and combine multiple 
(classification/regression) models and improve their 
predictive performance ? 

• Answer: yes
• There are different ways of how to do it… 



Learning with multiple models

• Question: 
– Is it possible to learn and combine multiple 

(classification/regression) models and improve their 
predictive performance ? 

• There are different ways of how to do it… 

• Assume you have models M1, M2, … Mk
• Approach 1: use different models (classifiers, regressors) to 

cover the different parts of the input (x) space
• Approach 2: use different models (classifiers, regressors) that 

cover the complete input (x) space, and combine their 
predictions



Approach 1

• Recall the decision tree: 
– It partitions the input space to regions
– Picks the class independently for each partition 

• What if we define a more general partitions of the input 
space and learn models specific to these partitions
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Learning with multiple models: Approach 1

Define a more general partitions of the input space and learn 
a model specific to these partitions
Example: 
• 2 linear functions covering
two regions of the input space

Mixture of expert model:
• Expert = learner (model)
• Different input regions are covered with a different 

learner/model
• A “soft” switching between learners
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Mixture of experts model
• Gating network : decides what expert to use
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Mixture of experts model
• Gating network : decides what expert to use
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Learning mixture of experts
• Learning consists of two tasks:

– Learn the parameters of individual expert networks
– Learn the parameters of the gating (switching) network

• Decides where to make a split
• Assume: gating functions give probabilities

• Based on the probability we partition the space
– partitions belongs to different experts 

• How to model the gating network? 
– A multi-class classifier model:

• softmax model
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Learning mixture of experts
• Assume we have a set of k linear experts

• Assume a softmax gating network
e+= xw T

iiy

)|(
)exp(

)exp()(

1

ηx,
xη

xηx ik

u

T
u

T
i

i pg w»=

å
=

(Note: bias terms are hidden in x)),0(~ se N

Expert 1

Expert 2

Expert k

kg
x

Gating
network

y

. . .

2g
1g

1y

ky

2y
1w

2w

kw

η



Learning mixture of experts
• Assume we have a set of linear experts

• Assume a softmax gating network

• Likelihood of  y (linear regression – assume errors for different 
experts are normally distributed with the same variance)
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Learning mixture of experts
Learning of parameters of expert models: 

On-line update rule for parameters        of expert i
– If we know the expert that is responsible for x

– If we do not know the expert
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Learning mixtures of experts

Learning of parameters of the gating/switching network:
• On-line learning of gating network  parameters

• The learning with conditional mixtures can be extended to 
learning of parameters of an arbitrary expert network
– e.g. logistic regression, multilayer neural network
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Learning with multiple models: Approach 2

• Approach 2: use multiple models (classifiers, regressors) that 
cover the complete input (x) space and combine their outputs

• Committee machines:
– Combine predictions of all models to produce the output

– Regression: averaging
– Classification: a majority vote

– Goal: Improve the accuracy of the ‘base’ model

• Methods:
• Bagging ( the same base models)
• Boosting (the same base models)
• Stacking (different base model) not covered



Bagging (Bootstrap Aggregating)
• Given:

– Training set of N examples
– A base learning model (e.g. decision tree, neural network, 

…)
• Method:

– Train multiple (k) base models on slightly different datasets 
– Predict (test) by averaging the results of k models 

• Goal:
– Improve the accuracy of  one model by using its multiple 

copies
– Average of misclassification errors on different data splits 

gives a better estimate of the predictive ability of a learning 
method



Bagging algorithm
• Training
• For each model M1, M2, … Mk

• Randomly sample with replacement N samples from the 
training set (bootstrap)

• Train a chosen “base model” (e.g. neural network, 
decision tree) on the samples

Data 
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Bagging algorithm

• Training
• For each model M1, M2, … Mk

• Randomly sample with replacement N samples from the 
training set

• Train a chosen “base model” (e.g. a neural network, or a 
decision tree) on the samples

• Test
– For each test example

• Run all base models M1, M2, … Mk
• Predict by combining results of all T trained models:

– Regression: averaging
– Classification: a majority vote



Class decision via majority voting
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• Expected error= Bias+Variance
– Expected error is the expected discrepancy between the 

estimated and true function

It decomposes to two terms Bias + Variance
– Bias is a squared discrepancy between averaged

estimated and true function

– Variance is an expected divergence of the estimated 
function vs. its average value

Analysis of Bagging
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When Bagging works?
Under-fitting and over-fitting

• Under-fitting:
– High bias (models are not 

accurate)
– Small variance  (smaller 

influence of examples in the 
training set)

• Over-fitting:
– Small bias (models flexible 

enough to fit well to training 
data)

– Large variance (models 
depend very much on the 
training set)



Averaging decreases variance

• Example
– Assume a random variable x with a N(µ,s2) distribution

– Case 1: we draw one example/measurement x1 and use it to 
estimate the mean µ’ = x1

• The expected mean of the estimate E[µ’]= E[x1]= µ
• The variance of the mean estimate Var(µ’)= Var(x1)=s2

µ

s2

x1



Averaging decreases variance

• Example Assume a random variable x with a N(µ,s2) distribution

– Case 2: a variable x is measured independently K times 
(x1,x2,…xk) and the mean is estimated as: 

µ’= (x1+x2+…+xk)/K, 
• The expected mean of the estimate E[µ’]= µ
• But, the variance of the mean estimate Var(µ’)is smaller:

Var(µ’) = [Var(x1)+…Var(xk)]/K2=Ks2 / K2 = s2/K

x1 x2xk x3



When Bagging works 

Relation of the previous example to bagging: 
• Bagging is a kind of averaging! 
Main property of Bagging (proof omitted)
• Bagging decreases variance of the base model without 

changing the bias!!!
• Why? averaging!
Bagging typically helps
• When applied with an over-fitted base model

– High dependency on actual training data
– Example: fully grown decision trees

Bagging does not help much when
• Applied to models with a high bias. When the base model is 

robust to the changes in the training data (due to sampling)



Boosting 

• Bagging
– Multiple models covering the complete space, a learner is 

not biased to any region
– Learners are learned independently

• Boosting
– Every learner covers the complete space
– Learners are biased to regions not predicted well by other 

learners
– Learners are dependent 



Boosting. Theoretical foundations.

• PAC:  Probably Approximately Correct framework
– (e,d) solution

• PAC learning:
– Learning   with  a pre-specified error  e and  a confidence 

parameter d
– the probability that the misclassification error (ME) is 

larger than e is smaller than d

Alternative rewrite:

• Accuracy (1-e ): Percent of correctly classified samples in test
• Confidence (1-d ): The probability that in one experiment 

some target accuracy will be achieved
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PAC Learnability
Strong (PAC) learnability:
• There exists a learning algorithm that efficiently learns the 

classification with a pre-specified error and confidence values
Strong (PAC) learner:  A learning algorithm P that
• Given an arbitrary: 

– classification error e (< 1/2), and
– confidence d (<1/2)

or in other words: 
• classification accuracy   > (1-e) 
• confidence probability  > (1- d)

• Outputs a classifier that satisfies this parameters
• Efficiency: runs in time polynomial in 1/ d, 1/e

– Implies: number of samples N is polynomial in 1/ d, 1/e



Weak Learner

Weak learner:
• A learning algorithm (learner) M that gives some fixed (not 

arbitrary !!!!): 
– error eo (<1/2) and
– confidence do (<1/2)

• Alternatively: 
– a classification accuracy  > 0.5
– with probability > 0.5
and this on an arbitrary distribution of data entries



Weak learnability=Strong (PAC) learnability

• Assume there exists a weak learner
– it is better that a random guess (> 50 %) with confidence 

higher than 50 % on any data distribution
• Question:

– Is the problem also strongly PAC-learnable?
– Can we generate an algorithm P that achieves an arbitrary 

(e,d) accuracy?
• Why is this important?

– Usual classification methods (decision trees, neural nets), 
have good, but uncontrollable performances. 

– Can we improve their performance to achieve any pre-
specified accuracy (confidence)?



Weak=Strong learnability!!!

• Proof due to R. Schapire
An arbitrary (e,d) improvement is possible

Idea: combine multiple weak learners together
– Weak learner W with confidence do and maximal  error eo

– It is possible:
• To improve (boost) the confidence
• To improve (boost) the accuracy

by training different weak learners on slightly different 
datasets



Boosting accuracy
Training

Distribution of examples

H1 and H2 classify differently

Correct classification
Wrong classification
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Boosting accuracy

• Training
– Sample randomly from the distribution of examples 
– Train hypothesis H1.on the sample
– Evaluate accuracy of H1 on the distribution
– Sample randomly such that for the half of samples H1. 

provides correct, and for another half, incorrect results; 
Train hypothesis H2.

– Train H3 on samples from the distribution where H1 and 
H2 classify differently

• Test
– For each example, decide according to the majority vote 

of H1, H2 and H3



Theorem
• If each classifier has an error < eo, the final ‘voting’ 

classifier has error  <   g(eo) =3 eo
2- 2eo

3

• Accuracy improved !!!!
• Apply recursively to get to the target accuracy !!!



Theoretical Boosting algorithm

• Similarly to boosting the accuracy we can boost the confidence  
at some restricted accuracy cost

• The key result: we can improve both the accuracy and 
confidence

• Problems with the theoretical algorithm
– A good (better than 50 %) classifier on all distributions and 

problems
– We cannot get a good  sample from data-distribution
– The method requires a large training set

• Solution to the sampling problem:
– Boosting by sampling 

• AdaBoost algorithm and variants



AdaBoost

• AdaBoost: boosting by sampling

• Classification (Freund, Schapire; 1996)
– AdaBoost.M1  (two-class problem)
– AdaBoost.M2  (multiple-class problem)

• Regression (Drucker; 1997)
– AdaBoostR



AdaBoost training

.Training
data

Distribution

D1

Uniform distribution D1 of training examples

P(example i) = 1/N



AdaBoost training

.Training
data

LearnDistribution

D1 Model 1

Sample randomly according to D1

And train Model 1



AdaBoost training

.Training
data

LearnDistribution Test

D1 Model 1 Errors 1

Test Model 1 and calculate errors



AdaBoost training

.Training
data

LearnDistribution Test

D1 Model 1 Errors 1

D2

Use errors to recalculate the new distribution on data
Give more probability to pick examples with errors



AdaBoost training

.Training
data

LearnDistribution Test

D1 Model 1 Errors 1

D2 Model 2 Errors 2

DT Model T Errors T

…



AdaBoost
• Given:

– A training set of N examples (attributes + class label pairs)
– A “base” learning model  (e.g.  a decision tree, a neural 

network)
• Training stage:

– Train a sequence of  T “base” models on T different sampling 
distributions defined upon the training set (D)

– A sample distribution Dt for building the model t is 
constructed  by modifying the sampling distribution Dt-1 from 
the (t-1)th step. 

• Examples classified incorrectly in the previous step 
receive higher weights in the new data (attempts to cover 
misclassified samples) 

• Application (classification) stage:
– Classify according to the weighted majority of classifiers



AdaBoost algorithm
Training (step t)
• Sampling Distribution 

- a probability that example i from the original 
training dataset is selected           

for the first step (t=1)
• Take K samples from the training set according to  
• Train a classifier ht on the samples
• Calculate the error        of  ht :
• Classifier weight: 
• New sampling distribution
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AdaBoost. Sampling Probabilities
- Nonlinearly separable binary classification
- NN used as a week learner

Example:



AdaBoost: Sampling Probabilities



AdaBoost classification 

• We have T different classifiers h t
– weight wt of the classifier is proportional to its accuracy on 

the training set

• Classification:
For every class j=0,1

• Compute the sum of weights w corresponding to ALL 
classifiers that predict class j;

• Output class that correspond to the maximal sum of 
weights (weighted majority)
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• Classifier 1            “yes”          0.7
• Classifier 2            “no”                      0.3
• Classifier 3            “no”                      0.2

• Weighted majority   “yes”

• The final choice is “yes”    +  1

Two-Class example. Classification.

0.7  - 0.5 =  + 0.2



What is boosting doing?

• Each classifier specializes on a particular subset of examples
• Algorithm is concentrating on “more and more difficult” 

examples
• Boosting can:

– Reduce variance (the same as Bagging)
– Eliminate the effect of high bias of the weak learner (unlike 

Bagging)
• Train versus test errors performance:

– Train errors can be driven close to 0
– But test errors do not show overfitting

• Proofs and theoretical explanations in a number of papers



Boosting. Error performances

0 2 4 6 8 10 12 14 16
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Training error
Test error
Single-learner error


