CS 2750 Machine Learning
Lecture 21

Learning with multiple models
 Mixture of experts
 Bagging and Boosting

Milos Hauskrecht
milos@pitt.edu
5329 Sennott Square

http://pitt.edu

Learning with multiple models

We know how to build different classification or regression
models from data

* Question:

— Is 1t possible to learn and combine multiple
(classification/regression) models and improve their
predictive performance ?

 Answer: yes
e There are different ways of how to do it...

Learning with multiple models

Question:

— Is 1t possible to learn and combine multiple
(classification/regression) models and improve their
predictive performance ?

There are different ways of how to do it...

Assume you have models M1, M2, ... Mk

Approach 1: use different models (classifiers, regressors) to
cover the different parts of the input (x) space

Approach 2: use different models (classifiers, regressors) that
cover the complete input (x) space, and combine their
predictions

Approach 1

e Recall the decision tree:
— It partitions the input space to regions
— Picks the class independently for each partition

 What if we define a more general partitions of the input
space and learn models specific to these partitions

X, t Model 1 Model 2 Model 3
0 0 1 1
0 0 1
1 0 0
1 0
0 0 ;
0 0 1
> xl

Learning with multiple models: Approach 1

Define a more general partitions of the input space and learn
a model specific to these partitions

Example: |

* 2 linear functions covering
two regions of the mput space

Mixture of expert model:
e Expert = learner (model)

 Different mmput regions are covered with a different
learner/model

* A “soft” switching between learners

Mixture of experts model

* Gating network : decides what expert to use

g.,2,,..-g, - gating functions

. Gating 3
network -, %

Expert 1

A 4

k
y=) g, (X)y,
i=1

" Expert 2 \'\’Q :
X] -_:-yz >

Expert k

Mixture of experts model

* Gating network : decides what expert to use

g.,2,,..-g, - gating functions

Assume
g1 = 1
@ g, =0
network .. % % _
Ty 1 & Er = O
* Expert 1
Expert 2
X -

Expert k

Learning mixture of experts

Learning consists of two tasks:
— Learn the parameters of individual expert networks
— Learn the parameters of the gating (switching) network
* Decides where to make a split
Assume: gating functions give probabilities

0<g/(x),g,(x),.g,(x)<1 Zgu(X)ZI
Y= Zgu (x) [, (%)

Based on the probability we partition the space
— partitions belongs to different experts
How to model the gating network?
— A multi-class classifier model:
» softmax model

Learning mixture of experts

« Assume we have a set of k linear experts
y, = WZ.TX +& &~ N(0,0) (Note: bias terms are hidden in x)
* Assume a softmax gating network

T
exp(n, X)
g, (x)=— : = p(@; [x,M)
T
D _exp(n, x)
u=l1
o,
network . =,
" Expertl W, 21y ok
< " Expert 2 W, O Y R

A
s
-

S
(@)
3

Learning mixture of experts

Assume we have a set of linear experts
y, = WZ.TX + & &~ N(0,0) (Note: bias terms are hidden in x)

Assume a softmax gating network

. (x) = P X)
> exp(n,’)

Likelihood of y (linear regression — assume errors for different
experts are normally distributed with the same variance)
k

P(J’|X>Wan):zp(wz |X> ‘I)P(J’|Xaa)zaw)

~ p(@; | X,M)

i=1
T i T 27 |
5| e [1 [e
% 2
i=1 Zexp(anx) _\/27z0‘ 20]
| J=1 _

Learning mixture of experts

Learning of parameters of expert models:
On-line update rule for parameters w of expert:
— If we know the expert that is responsible for x
w, <—w, +a,(y —WI.TX))CJ.
— If we do not know the expert

w. <—w. +a.h(y—w.' X)x
i i g iy j J

h; - responsibility of the ith expert for x = a kind of posterior

2
g.(x)exp(—l/ZHy—w.Tx)
(X X, ®;, W : :
B (X,) = kg,()Py)

Zgu(x)p(y | X, @,, W)) igu (x) exp(—1/2Hy—WuTXH2)
u=1 u=l1

g.,(x) -aprior exp(...) - a likelihood

Learning mixtures of experts

Learning of parameters of the gating/switching network:
* On-line learning of gating network parameters 1.

1y <=1y + B;(h(X, 1) — g, (X)x,

* The learning with conditional mixtures can be extended to
learning of parameters of an arbitrary expert network

— e.g. logistic regression, multilayer neural network

Learning with multiple models: Approach 2

Approach 2: use multiple models (classifiers, regressors) that
cover the complete input (x) space and combine their outputs

Committee machines:
— Combine predictions of all models to produce the output
— Regression: averaging
— Classification: a majority vote
— Goal: Improve the accuracy of the ‘base’ model

Methods:
* Bagging (the same base models)
* Boosting (the same base models)
 Stacking (different base model) not covered

Bagging (Bootstrap Aggregating)

* Given:
— Training set of N examples
— A base learning model (e.g. decision tree, neural network,

)
* Method:
— Train multiple (k) base models on slightly different datasets

— Predict (test) by averaging the results of k models
* Goal:
— Improve the accuracy of one model by using its multiple
copies

— Average of misclassification errors on different data splits
gives a better estimate of the predictive ability of a learning
method

Bagging algorithm

* Training
 For each model M1, M2, ... Mk

* Randomly sample with replacement N samples from the
training set (bootstrap)

 Train a chosen “base model” (e.g. neural network,

decision tree) on the samples
Data

N

Data lm‘/ bootstrap Data k

Model M1 Model M2 Model Mk

Bagging algorithm

* Training
 For each model M1, M2, ... Mk

« Randomly sample with replacement N samples from the
training set

e Train a chosen “base model” (e.g. a neural network, or a
decision tree) on the samples

* Test
— For each test example
* Run all base models M1, M2, ... Mk
 Predict by combining results of all T trained models:
— Regression: averaging
— Classification: a majority vote

Class decision via majority voting

Test examples

m By R
W

] o

o I s

Class “yes”

:
|
|
|
- Class “no”

Analysis of Bagging

* Expected error= Bias+Variance

— Expected error 1s the expected discrepancy between the
estimated and true function

E|(7(x)- ELr(x)])?]

It decomposes to two terms Bias + Variance

— Bias 1s a squared discrepancy between averaged
estimated and true function

(E[7 () ELr(x))

— Variance 1s an expected divergence of the estimated
function vs. its average value

El7(x)-£[7(x))]

When Bagging works?
Under-fitting and over-fitting

* Under-fitting:

— High bias (models are not
accurate)

— Small variance (smaller
influence of examples in the
training set)

* Opver-fitting:
— Small bias (models flexible

enough to fit well to training
data)

— Large variance (models
depend very much on the
training set)

15

05F

o

Samples

1-_‘--.

V

Underfitting
Overfitting

/N

10

Averaging decreases variance

 Example

— Assume a random variable x with a N(u,c?) distribution

AR

x; M

v

— Case 1: we draw one example/measurement x; and use it to
estimate the mean y’ = x

» The expected mean of the estimate E[u’]= E[X;]= 1
 The variance of the mean estimate Var(u’)= Var(x,)=c2

Averaging decreases variance

« Example Assume a random variable x with a N(u,c?) distribution

AN

X1 Xk Xoy

v

— Case 2: a variable x 1s measured independently K times
(X{,X5,...X;) and the mean 1s estimated as:

w=(x;+x,+...+x,.)/K,
* The expected mean of the estimate E[’]=
 But, the variance of the mean estimate Var(u’)is smaller:
Var(n’) = [Var(x,)+...Var(x,) |/ K*=Ko?/ K?= c%/K

When Bagging works

Relation of the previous example to bagging:
* Bagging is a kind of averaging!
Main property of Bagging (proof omitted)

* Bagging decreases variance of the base model without
changing the bias!!!

 Why? averaging!
Bagging typically helps
 When applied with an over-fitted base model
— High dependency on actual training data
— Example: fully grown decision trees
Bagging does not help much when

« Applied to models with a high bias. When the base model 1s
robust to the changes in the training data (due to sampling)

Boosting

* Bagging
— Multiple models covering the complete space, a learner 1s
not biased to any region

— Learners are learned independently

* Boosting
— Every learner covers the complete space

— Learners are biased to regions not predicted well by other
learners

— Learners are dependent

Boosting. Theoretical foundations.

« PAC: Probably Approximately Correct framework
— (&,0) solution
 PAC learning:

— Learning with a pre-specified error € and a confidence
parameter o

— the probability that the misclassification error (ME) 1s
larger than ¢ 1s smaller than o

PME(c)>&)< o
Alternative rewrite:
P(Acc(c)>1—&e)>(1—-0)
e Accuracy (1-€): Percent of correctly classified samples 1n test

* Confidence (1-0): The probability that in one experiment
some target accuracy will be achieved

PAC Learnability

Strong (PAC) learnability:

* There exists a learning algorithm that efficiently learns the
classification with a pre-specified error and confidence values

Strong (PAC) learner: A learning algorithm P that
e Given an arbitrary:

— classification error € (< 1/2), and

— confidence & (<1/2)

or 1n other words:
o classification accuracy > (1-¢)

 confidence probability > (1- 9)
e Outputs a classifier that satisfies this parameters
« Efficiency: runs in time polynomial in 1/ 0, 1/¢
— Implies: number of samples N 1s polynomial in 1/ 9, 1/¢

Weak Learner

Weak learner:
e A learning algorithm (learner) M that gives some fixed (not
arbitrary !!!!):
— error g, (<1/2) and
— confidence o, (<1/2)
e Alternatively:
— a classification accuracy > 0.5
— with probability > 0.5
and this on an arbitrary distribution of data entries

Weak learnability=Strong (PAC) learnability

 Assume there exists a weak learner

— 1t 1s better that a random guess (> 50 %) with confidence
higher than 50 % on any data distribution

* Question:
— Is the problem also strongly PAC-learnable?

— Can we generate an algorithm P that achieves an arbitrary
(g,0) accuracy?

 Why is this important?
— Usual classification methods (decision trees, neural nets),
have good, but uncontrollable performances.

— Can we improve their performance to achieve any pre-
specified accuracy (confidence)?

Weak=Strong learnability!!!

* Proof due to R. Schapire

An arbitrary (g,0) improvement is possible

Idea: combine multiple weak learners together
— Weak learner W with confidence o, and maximal error g,
— It 1s possible:
* To improve (boost) the confidence
e To improve (boost) the accuracy

by training different weak learners on slightly different
datasets

Boosting accuracy

eeeeee

2
4-llll;§§§§i§!!=i€§§§§§§§ h
\\\\\\\\\\\\\\\\\\\\\\\\\\% H

ect classitication
- Wrong classifica
\\ #, and H, clas @dﬂ nily

Boosting accuracy

* Training
— Sample randomly from the distribution of examples
— Train hypothesis H; on the sample
— Evaluate accuracy of H; on the distribution

— Sample randomly such that for the half of samples H;
provides correct, and for another half, incorrect results;
Train hypothesis H,.

— Train H; on samples from the distribution where H; and
H, classity differently

e Test

— For each example, decide according to the majority vote
of H;, H, and H;

Theorem

If each classifier has an error < g, the final ‘voting’
classifier has error < g(g,) =3 g,%- 2¢,°

Accuracy improved !!!!
Apply recursively to get to the target accuracy !!!

0.5
0.45 | - i
0.4} - i
0.35 | - -
03} e -
0.25 | - i

0.2 et -

015 7

0.1 A~ -

0.05 e =

1 1 1 1 1
o 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Theoretical Boosting algorithm

Similarly to boosting the accuracy we can boost the confidence
at some restricted accuracy cost

The key result: we can improve both the accuracy and
confidence

Problems with the theoretical algorithm

— A good (better than 50 %) classifier on all distributions and
problems

— We cannot get a good sample from data-distribution
— The method requires a large training set
Solution to the sampling problem:
— Boosting by sampling
* AdaBoost algorithm and variants

AdaBoost

* AdaBoost: boosting by sampling

e Classification (Freund, Schapire; 1996)
— AdaBoost.M1 (two-class problem)
— AdaBoost.M2 (multiple-class problem)

* Regression (Drucker; 1997)
— AdaBoostR

AdaBoost training

Distribution

Training 1D,
data

Uniform distribution D, of training examples

P(example i) = 1/N

AdaBoost training

Distribution Learn

Trainin > >
a g D,
data >

Model 1

Sample randomly according to D,

And train Model 1

AdaBoost training

Distribution Learn Test

\ 4

Training 1D,
data

Model 1 Errors 1

A 4

Test Model 1 and calculate errors

AdaBoost training

Distribution Learn Test

\ 4

Training 1D,

data
e

Use errors to recalculate the new distribution on data
Give more probability to pick examples with errors

Model 1 Errors 1

A 4

AdaBoost training

Distribution Learn Test

Training 1D,
data

\ 4

Model 1 Errors 1

A 4

Model 2 Errors 2

\ 4

Model T Errors T

A 4

AdaBoost

* Given:
— A training set of N examples (attributes + class label pairs)

— A “base” learning model (e.g. a decision tree, a neural
network)

* Training stage:
— Train a sequence of T “base” models on 7' different sampling
distributions defined upon the training set (D)

— A sample distribution D, for building the model ¢ 1s
constructed by modifying the sampling distribution D, ; from
the (z-1)th step.

« Examples classified incorrectly in the previous step
receive higher weights in the new data (attempts to cover
misclassified samples)

* Application (classification) stage:
— Classify according to the weighted majority of classifiers

AdaBoost algorithm

Training (step t)

Sampling Distribution [,
D, (i) - aprobability that example 1 from the original
training dataset 1s selected

D, (i) =1/ N for the first step (t=1)
Take K samples from the training set according to /),
Train a classifier h, on the samples
Calculate the error &, of h,: g, ZD, (1)
Classifier weight: 3 = & /(1—&,) "
New sampling distribution

b iy=2D {,62 h(x) =y,

\Z_y 1 otherwise

Norm. constant

AdaBoost. Sampling Probabilities

1fication

lass

ly separable binary c

mear

Nonl
- NN used as a week learner

Example

2

lteration

1

lteration

4
- o o~ -~

Aupgeqolsd Bundwe

4.

o o~ ~—

Aungeqolsd Bunduwe

AdaBoost: Sampling Probabilities

lteration:6 Iterationfjﬂﬂ...

ng probability

Sampli

AdaBoost classification

 We have T different classifiers h ,

— weight w, of the classifier 1s proportional to i1ts accuracy on
the training set

w, =log(1/ f,) = log((l — gt)/gt)
£, =& /0—¢g&,)
e Classification:
For every class j=0,1

« Compute the sum of weights w corresponding to ALL
classifiers that predict class j;

e Output class that correspond to the maximal sum of
weights (weighted majority)

hﬁnal (X) — arg maX z Wt

J th,(x)=j

Two-Class example. Classification.

Classifier 1 “yes”
Classifier 2 “no”’
Classifier 3 “no”’

0.7
0.3
0.2

Weighted majority “yes”

The final choice 1s “yes”

0.7 -0.5=+0.2

What is boosting doing?

Each classifier specializes on a particular subset of examples

Algorithm 1s concentrating on “more and more difficult”
examples

Boosting can:

— Reduce variance (the same as Bagging)

— Eliminate the effect of high bias of the weak learner (unlike
Bagging)
Train versus test errors performance:

— Train errors can be driven close to 0
— But test errors do not show overfitting
Proofs and theoretical explanations in a number of papers

0.4,

0.35

0.3

0.25

0.2

0.1

0.05

Boosting.

Error performances

L L
—— Training error
— Test error
— Single-learner error

[e)]5]

16

