
CS 2750 Machine Learning
Lecture 21

Milos Hauskrecht
milos@pitt.edu
5329 Sennott Square

Learning with multiple models
• Mixture of experts
• Bagging and Boosting

http://pitt.edu

Learning with multiple models

We know how to build different classification or regression
models from data
• Question:

– Is it possible to learn and combine multiple
(classification/regression) models and improve their
predictive performance ?

• Answer: yes
• There are different ways of how to do it…

Learning with multiple models

• Question:
– Is it possible to learn and combine multiple

(classification/regression) models and improve their
predictive performance ?

• There are different ways of how to do it…

• Assume you have models M1, M2, … Mk
• Approach 1: use different models (classifiers, regressors) to

cover the different parts of the input (x) space
• Approach 2: use different models (classifiers, regressors) that

cover the complete input (x) space, and combine their
predictions

Approach 1

• Recall the decision tree:
– It partitions the input space to regions
– Picks the class independently for each partition

• What if we define a more general partitions of the input
space and learn models specific to these partitions

1 1
1

0 0

0 0

0
0

01
1 1

0 0
0 0

1

2x

1x

Model 1 Model 2 Model 3

Learning with multiple models: Approach 1

Define a more general partitions of the input space and learn
a model specific to these partitions
Example:
• 2 linear functions covering
two regions of the input space

Mixture of expert model:
• Expert = learner (model)
• Different input regions are covered with a different

learner/model
• A “soft” switching between learners

x

Mixture of experts model
• Gating network : decides what expert to use

Expert 1

Expert 2

Expert k

kg
x

Gating
network

. . .

2g
1g

kggg ,..., 21 - gating functions

i

k

i
i yxgy)(

1
å
=

=

ky

2y

1y

Mixture of experts model
• Gating network : decides what expert to use

Expert 1

Expert 2

Expert k

kg
x

Gating
network

. . .

2g
1g

kggg ,..., 21 - gating functions

)(11 xfyy ==

ky

2y

1y

11 =g
Assume

02 =g

0=kg

Learning mixture of experts
• Learning consists of two tasks:

– Learn the parameters of individual expert networks
– Learn the parameters of the gating (switching) network

• Decides where to make a split
• Assume: gating functions give probabilities

• Based on the probability we partition the space
– partitions belongs to different experts

• How to model the gating network?
– A multi-class classifier model:

• softmax model

1)(),...(),(0 21 ££ xxx kggg å
=

=
k

u
ug

1
1)(x

å
=

=
k

u
uu fgy

1
)()(xx

Learning mixture of experts
• Assume we have a set of k linear experts

• Assume a softmax gating network
e+= xw T

iiy

)|(
)exp(

)exp()(

1

ηx,
xη

xηx ik

u

T
u

T
i

i pg w»=

å
=

(Note: bias terms are hidden in x)),0(~ se N

Expert 1

Expert 2

Expert k

kg
x

Gating
network

y

. . .

2g
1g

1y

ky

2y
1w

2w

kw

η

Learning mixture of experts
• Assume we have a set of linear experts

• Assume a softmax gating network

• Likelihood of y (linear regression – assume errors for different
experts are normally distributed with the same variance)

e+= xw T
iiy

)|(
)exp(

)exp()(

1

ηx,
xη

xηx ik

u

T
u

T
i

i pg w»=

å
=

(Note: bias terms are hidden in x)

),,|(),|(),,|(
1

WxηxηWx i

k

i
i ypPyP wwå

=

=

ú
ú
ú

û

ù

ê
ê
ê

ë

é

÷
÷
÷

ø

ö

ç
ç
ç

è

æ -
-

ú
ú
ú
ú

û

ù

ê
ê
ê
ê

ë

é

=å
å=

=

2

2

1

1

2
exp

2
1

)exp(

)exp(
ssp

i
T
ik

i
k

j

T
j

T
i

y xw

xη

xη

),0(~ se N

Learning mixture of experts
Learning of parameters of expert models:

On-line update rule for parameters of expert i
– If we know the expert that is responsible for x

– If we do not know the expert

iw

j
T
iijijij xyww)(xw-+¬ a

j
T
iiijijij xyhww)(xw-+¬ a

ih - responsibility of the ith expert for x = a kind of posterior

åå
==

÷
ø
öç

è
æ --

÷
ø
öç

è
æ --

== k

u

T
uu

T
ii

k

u
uu

ii
i

yg

yg

ypg

ypgyh

1

2

2

1
2/1exp)(

2/1exp)(

),,|()(

),,|()(),(
xwx

xwx

Wxx

Wxxx
w

w

)(xig - a prior exp(...) - a likelihood

Learning mixtures of experts

Learning of parameters of the gating/switching network:
• On-line learning of gating network parameters

• The learning with conditional mixtures can be extended to
learning of parameters of an arbitrary expert network
– e.g. logistic regression, multilayer neural network

iη

jiiijijij xgyh))(),((xx -+¬ bhh

ij

i
i

ij

i

iij

hll
q
µ

q
µ

µq ¶
¶

=
¶
¶

¶
¶

=
¶
¶

ij
ijijij
l
q

bqq
¶
¶

+¬

Learning with multiple models: Approach 2

• Approach 2: use multiple models (classifiers, regressors) that
cover the complete input (x) space and combine their outputs

• Committee machines:
– Combine predictions of all models to produce the output

– Regression: averaging
– Classification: a majority vote

– Goal: Improve the accuracy of the ‘base’ model

• Methods:
• Bagging (the same base models)
• Boosting (the same base models)
• Stacking (different base model) not covered

Bagging (Bootstrap Aggregating)
• Given:

– Training set of N examples
– A base learning model (e.g. decision tree, neural network,

…)
• Method:

– Train multiple (k) base models on slightly different datasets
– Predict (test) by averaging the results of k models

• Goal:
– Improve the accuracy of one model by using its multiple

copies
– Average of misclassification errors on different data splits

gives a better estimate of the predictive ability of a learning
method

Bagging algorithm
• Training
• For each model M1, M2, … Mk

• Randomly sample with replacement N samples from the
training set (bootstrap)

• Train a chosen “base model” (e.g. neural network,
decision tree) on the samples

Data

N

Data 1

N

Data 2

N

Data k

N

Model M1 Model M2 Model Mk

…

bootstrap

Bagging algorithm

• Training
• For each model M1, M2, … Mk

• Randomly sample with replacement N samples from the
training set

• Train a chosen “base model” (e.g. a neural network, or a
decision tree) on the samples

• Test
– For each test example

• Run all base models M1, M2, … Mk
• Predict by combining results of all T trained models:

– Regression: averaging
– Classification: a majority vote

Class decision via majority voting

Final

Class “yes”

model1

model3

Test examples

Class “no”

model2

• Expected error= Bias+Variance
– Expected error is the expected discrepancy between the

estimated and true function

It decomposes to two terms Bias + Variance
– Bias is a squared discrepancy between averaged

estimated and true function

– Variance is an expected divergence of the estimated
function vs. its average value

Analysis of Bagging

() ()[]()[]2ˆ XfEXfE -

()[] ()[]() 2ˆ XfEXfE -

() ()[]()[]2ˆˆ XfEXfE -

When Bagging works?
Under-fitting and over-fitting

• Under-fitting:
– High bias (models are not

accurate)
– Small variance (smaller

influence of examples in the
training set)

• Over-fitting:
– Small bias (models flexible

enough to fit well to training
data)

– Large variance (models
depend very much on the
training set)

Averaging decreases variance

• Example
– Assume a random variable x with a N(µ,s2) distribution

– Case 1: we draw one example/measurement x1 and use it to
estimate the mean µ’ = x1

• The expected mean of the estimate E[µ’]= E[x1]= µ
• The variance of the mean estimate Var(µ’)= Var(x1)=s2

µ

s2

x1

Averaging decreases variance

• Example Assume a random variable x with a N(µ,s2) distribution

– Case 2: a variable x is measured independently K times
(x1,x2,…xk) and the mean is estimated as:

µ’= (x1+x2+…+xk)/K,
• The expected mean of the estimate E[µ’]= µ
• But, the variance of the mean estimate Var(µ’)is smaller:

Var(µ’) = [Var(x1)+…Var(xk)]/K2=Ks2 / K2 = s2/K

x1 x2xk x3

When Bagging works

Relation of the previous example to bagging:
• Bagging is a kind of averaging!
Main property of Bagging (proof omitted)
• Bagging decreases variance of the base model without

changing the bias!!!
• Why? averaging!
Bagging typically helps
• When applied with an over-fitted base model

– High dependency on actual training data
– Example: fully grown decision trees

Bagging does not help much when
• Applied to models with a high bias. When the base model is

robust to the changes in the training data (due to sampling)

Boosting

• Bagging
– Multiple models covering the complete space, a learner is

not biased to any region
– Learners are learned independently

• Boosting
– Every learner covers the complete space
– Learners are biased to regions not predicted well by other

learners
– Learners are dependent

Boosting. Theoretical foundations.

• PAC: Probably Approximately Correct framework
– (e,d) solution

• PAC learning:
– Learning with a pre-specified error e and a confidence

parameter d
– the probability that the misclassification error (ME) is

larger than e is smaller than d

Alternative rewrite:

• Accuracy (1-e): Percent of correctly classified samples in test
• Confidence (1-d): The probability that in one experiment

some target accuracy will be achieved

de £>))((cMEP

)1()1)((de ->->cAccP

PAC Learnability
Strong (PAC) learnability:
• There exists a learning algorithm that efficiently learns the

classification with a pre-specified error and confidence values
Strong (PAC) learner: A learning algorithm P that
• Given an arbitrary:

– classification error e (< 1/2), and
– confidence d (<1/2)

or in other words:
• classification accuracy > (1-e)
• confidence probability > (1- d)

• Outputs a classifier that satisfies this parameters
• Efficiency: runs in time polynomial in 1/ d, 1/e

– Implies: number of samples N is polynomial in 1/ d, 1/e

Weak Learner

Weak learner:
• A learning algorithm (learner) M that gives some fixed (not

arbitrary !!!!):
– error eo (<1/2) and
– confidence do (<1/2)

• Alternatively:
– a classification accuracy > 0.5
– with probability > 0.5
and this on an arbitrary distribution of data entries

Weak learnability=Strong (PAC) learnability

• Assume there exists a weak learner
– it is better that a random guess (> 50 %) with confidence

higher than 50 % on any data distribution
• Question:

– Is the problem also strongly PAC-learnable?
– Can we generate an algorithm P that achieves an arbitrary

(e,d) accuracy?
• Why is this important?

– Usual classification methods (decision trees, neural nets),
have good, but uncontrollable performances.

– Can we improve their performance to achieve any pre-
specified accuracy (confidence)?

Weak=Strong learnability!!!

• Proof due to R. Schapire
An arbitrary (e,d) improvement is possible

Idea: combine multiple weak learners together
– Weak learner W with confidence do and maximal error eo

– It is possible:
• To improve (boost) the confidence
• To improve (boost) the accuracy

by training different weak learners on slightly different
datasets

Boosting accuracy
Training

Distribution of examples

H1 and H2 classify differently

Correct classification
Wrong classification

H3

H1

H2

Learners

Boosting accuracy

• Training
– Sample randomly from the distribution of examples
– Train hypothesis H1.on the sample
– Evaluate accuracy of H1 on the distribution
– Sample randomly such that for the half of samples H1.

provides correct, and for another half, incorrect results;
Train hypothesis H2.

– Train H3 on samples from the distribution where H1 and
H2 classify differently

• Test
– For each example, decide according to the majority vote

of H1, H2 and H3

Theorem
• If each classifier has an error < eo, the final ‘voting’

classifier has error < g(eo) =3 eo
2- 2eo

3

• Accuracy improved !!!!
• Apply recursively to get to the target accuracy !!!

Theoretical Boosting algorithm

• Similarly to boosting the accuracy we can boost the confidence
at some restricted accuracy cost

• The key result: we can improve both the accuracy and
confidence

• Problems with the theoretical algorithm
– A good (better than 50 %) classifier on all distributions and

problems
– We cannot get a good sample from data-distribution
– The method requires a large training set

• Solution to the sampling problem:
– Boosting by sampling

• AdaBoost algorithm and variants

AdaBoost

• AdaBoost: boosting by sampling

• Classification (Freund, Schapire; 1996)
– AdaBoost.M1 (two-class problem)
– AdaBoost.M2 (multiple-class problem)

• Regression (Drucker; 1997)
– AdaBoostR

AdaBoost training

.Training
data

Distribution

D1

Uniform distribution D1 of training examples

P(example i) = 1/N

AdaBoost training

.Training
data

LearnDistribution

D1 Model 1

Sample randomly according to D1

And train Model 1

AdaBoost training

.Training
data

LearnDistribution Test

D1 Model 1 Errors 1

Test Model 1 and calculate errors

AdaBoost training

.Training
data

LearnDistribution Test

D1 Model 1 Errors 1

D2

Use errors to recalculate the new distribution on data
Give more probability to pick examples with errors

AdaBoost training

.Training
data

LearnDistribution Test

D1 Model 1 Errors 1

D2 Model 2 Errors 2

DT Model T Errors T

…

AdaBoost
• Given:

– A training set of N examples (attributes + class label pairs)
– A “base” learning model (e.g. a decision tree, a neural

network)
• Training stage:

– Train a sequence of T “base” models on T different sampling
distributions defined upon the training set (D)

– A sample distribution Dt for building the model t is
constructed by modifying the sampling distribution Dt-1 from
the (t-1)th step.

• Examples classified incorrectly in the previous step
receive higher weights in the new data (attempts to cover
misclassified samples)

• Application (classification) stage:
– Classify according to the weighted majority of classifiers

AdaBoost algorithm
Training (step t)
• Sampling Distribution

- a probability that example i from the original
training dataset is selected

for the first step (t=1)
• Take K samples from the training set according to
• Train a classifier ht on the samples
• Calculate the error of ht :
• Classifier weight:
• New sampling distribution

)(iDt
tD

NiD /1)(1 =

î
í
ì =

´=+ otherwise1
)()(

)(1
iitt

t

t
t

yxh
Z
iD

iD
b

te å
¹

=
iit yxhi
tt iD

)(:
)(e

tD

)1/(ttt eeb -=

Norm. constant

AdaBoost. Sampling Probabilities
- Nonlinearly separable binary classification
- NN used as a week learner

Example:

AdaBoost: Sampling Probabilities

AdaBoost classification

• We have T different classifiers h t
– weight wt of the classifier is proportional to its accuracy on

the training set

• Classification:
For every class j=0,1

• Compute the sum of weights w corresponding to ALL
classifiers that predict class j;

• Output class that correspond to the maximal sum of
weights (weighted majority)

)1/(ttt eeb -=
()ttttw eeb /)1(log)/1log(-==

å
=

=
jxht
t

j
final

t

wh
)(:

maxarg)(x

• Classifier 1 “yes” 0.7
• Classifier 2 “no” 0.3
• Classifier 3 “no” 0.2

• Weighted majority “yes”

• The final choice is “yes” + 1

Two-Class example. Classification.

0.7 - 0.5 = + 0.2

What is boosting doing?

• Each classifier specializes on a particular subset of examples
• Algorithm is concentrating on “more and more difficult”

examples
• Boosting can:

– Reduce variance (the same as Bagging)
– Eliminate the effect of high bias of the weak learner (unlike

Bagging)
• Train versus test errors performance:

– Train errors can be driven close to 0
– But test errors do not show overfitting

• Proofs and theoretical explanations in a number of papers

Boosting. Error performances

0 2 4 6 8 10 12 14 16
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Training error
Test error
Single-learner error

