CS 2750 Machine Learning Lecture 21

Learning with multiple models Mixture of experts Bagging and Boosting

Milos Hauskrecht

milos@pitt.edu

5329 Sennott Square

Learning with multiple models

We know how to build different classification or regression models from data

- Question:
 - Is it possible to learn and combine multiple (classification/regression) models and improve their predictive performance ?
- Answer: yes
- There are different ways of how to do it...

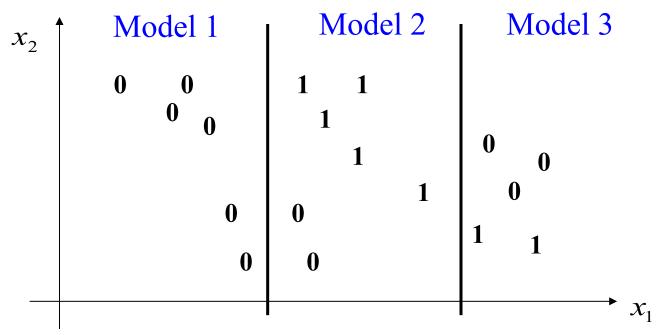
Learning with multiple models

• Question:

- Is it possible to learn and combine multiple (classification/regression) models and improve their predictive performance ?
- There are different ways of how to do it...
- Assume you have models M1, M2, ... Mk
- Approach 1: use different models (classifiers, regressors) to cover the different parts of the input (x) space
- Approach 2: use different models (classifiers, regressors) that cover the complete input (x) space, and combine their predictions

Approach 1

- Recall the decision tree:
 - It partitions the input space to regions
 - Picks the class independently for each partition
- What if we define a more general partitions of the input space and learn models specific to these partitions

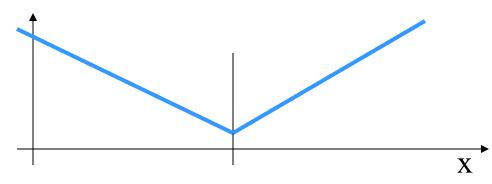


Learning with multiple models: Approach 1

Define a more general partitions of the input space and learn a model specific to these partitions

Example:

• 2 linear functions covering two regions of the input space



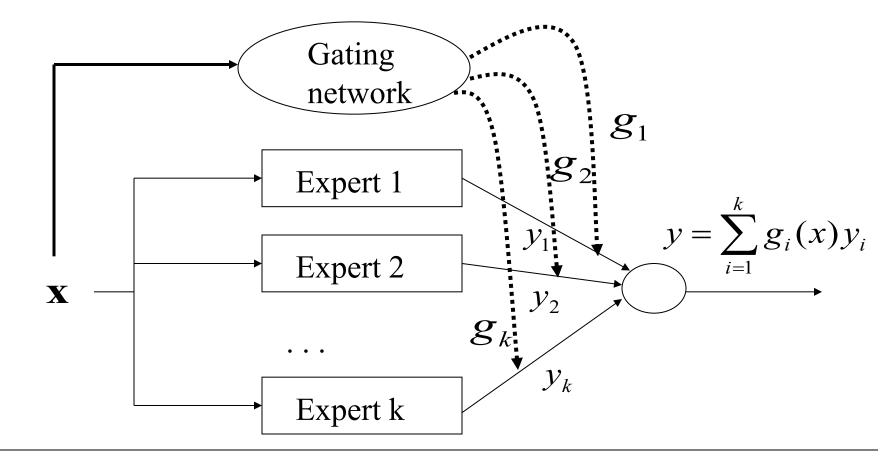
Mixture of expert model:

- Expert = learner (model)
- Different input regions are covered with a different learner/model
- A "soft" switching between learners

Mixture of experts model

• Gating network : decides what expert to use

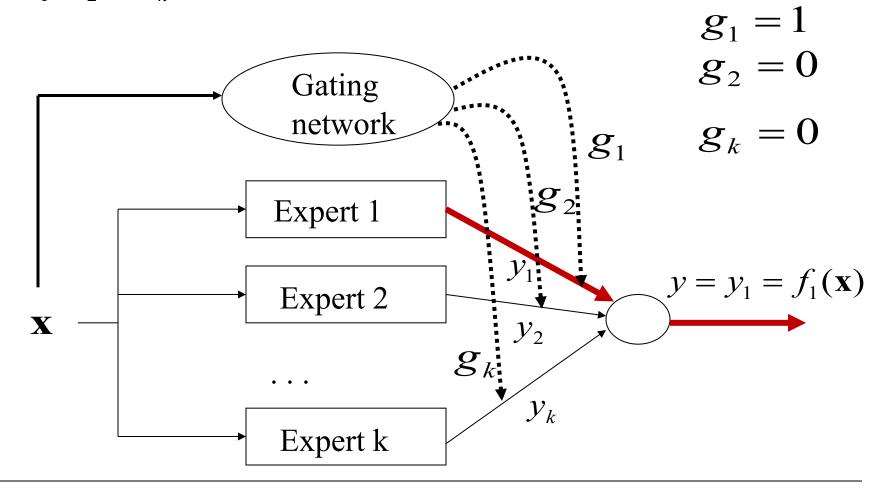
 $g_1, g_2, \dots g_k$ - gating functions



Mixture of experts model

• Gating network : decides what expert to use

 $g_1, g_2, \dots g_k$ - gating functions Assume



• Learning consists of two tasks:

- Learn the parameters of individual expert networks
- Learn the parameters of the gating (switching) network
 - Decides where to make a split
- Assume: gating functions give probabilities

$$0 \le g_1(\mathbf{x}), g_2(\mathbf{x}), \dots g_k(\mathbf{x}) \le 1$$
$$y = \sum_{u=1}^k g_u(\mathbf{x}) f_u(\mathbf{x})$$

$$\sum_{u=1}^{\kappa} g_u(\mathbf{x}) = 1$$

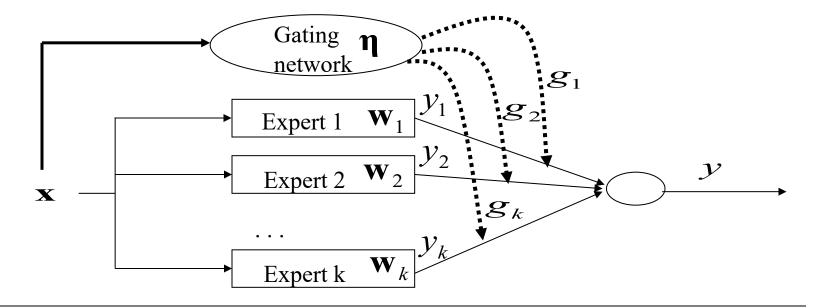
- Based on the probability we partition the space
 partitions belongs to different experts
- How to model the gating network?
 - A multi-class classifier model:
 - softmax model

• Assume we have a set of k linear experts

 $y_i = \mathbf{w}_i^T \mathbf{x} + \varepsilon$ $\varepsilon \sim N(0, \sigma)$ (Note: bias terms are hidden in x)

• Assume a **softmax gating network**

$$g_i(\mathbf{x}) = \frac{\exp(\mathbf{\eta}_i^T \mathbf{x})}{\sum_{u=1}^k \exp(\mathbf{\eta}_u^T \mathbf{x})} \approx p(\omega_i \mid \mathbf{x}, \mathbf{\eta})$$



- Assume we have a set of linear experts $y_i = \mathbf{w}_i^T \mathbf{x} + \varepsilon$ $\varepsilon \sim N(0, \sigma)$ (Note: bias terms are hidden in x)
- Assume a **softmax gating network**

$$g_i(\mathbf{x}) = \frac{\exp(\mathbf{\eta}_i^T \mathbf{x})}{\sum_{u=1}^k \exp(\mathbf{\eta}_u^T \mathbf{x})} \approx p(\omega_i \mid \mathbf{x}, \mathbf{\eta})$$

• Likelihood of y (linear regression – assume errors for different experts are normally distributed with the same variance)

$$P(y \mid \mathbf{x}, \mathbf{W}, \mathbf{\eta}) = \sum_{i=1}^{k} P(\omega_i \mid \mathbf{x}, \mathbf{\eta}) p(y \mid \mathbf{x}, \omega_i, \mathbf{W})$$
$$= \sum_{i=1}^{k} \left[\frac{\exp(\mathbf{\eta}_i^T \mathbf{x})}{\sum_{j=1}^{k} \exp(\mathbf{\eta}_j^T \mathbf{x})} \right] \left[\frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{\left\|y - \mathbf{w}_i^T \mathbf{x}_i\right\|^2}{2\sigma^2}\right) \right]$$

Learning of parameters of expert models:

On-line update rule for parameters \mathbf{w}_i of expert *i*

– If we know the expert that is responsible for \mathbf{x}

$$w_{ij} \leftarrow w_{ij} + \alpha_{ij} (y - \mathbf{w}_i^T \mathbf{x}) x_j$$

– If we do not know the expert

$$w_{ij} \leftarrow w_{ij} + \alpha_{ij} h_i (y - \mathbf{w}_i^T \mathbf{x}) x_j$$

 h_i - responsibility of the *i*th expert for x = a kind of posterior

$$h_{i}(\mathbf{x}, y) = \frac{g_{i}(\mathbf{x})p(y \mid \mathbf{x}, \omega_{i}, \mathbf{W})}{\sum_{u=1}^{k} g_{u}(\mathbf{x})p(y \mid \mathbf{x}, \omega_{u}, \mathbf{W})} = \frac{g_{i}(\mathbf{x})\exp\left(-\frac{1}{2}\left\|y - \mathbf{w}_{i}^{T}\mathbf{x}\right\|^{2}\right)}{\sum_{u=1}^{k} g_{u}(\mathbf{x})\exp\left(-\frac{1}{2}\left\|y - \mathbf{w}_{u}^{T}\mathbf{x}\right\|^{2}\right)}$$

$$g_{i}(\mathbf{x}) \text{ - a prior } \exp(\dots) \text{ - a likelihood}$$

Learning of parameters of the gating/switching network:

• On-line learning of gating network parameters η_i

$$\eta_{ij} \leftarrow \eta_{ij} + \beta_{ij} (h_i(\mathbf{x}, y) - g_i(\mathbf{x})) x_j$$

- The learning with conditional mixtures can be extended to learning of parameters of an **arbitrary expert network**
 - e.g. logistic regression, multilayer neural network

$$\begin{aligned} \theta_{ij} \leftarrow \theta_{ij} + \beta_{ij} \frac{\partial l}{\partial \theta_{ij}} \\ \frac{\partial l}{\partial \theta_{ij}} = \frac{\partial l}{\partial \mu_i} \frac{\partial \mu_i}{\partial \theta_{ij}} = h_i \frac{\partial \mu_i}{\partial \theta_{ij}} \end{aligned}$$

Learning with multiple models: Approach 2

- Approach 2: use multiple models (classifiers, regressors) that cover the complete input (x) space and combine their outputs
- Committee machines:
 - Combine predictions of all models to produce the output
 - Regression: averaging
 - Classification: a majority vote
 - Goal: Improve the accuracy of the 'base' model
- Methods:
 - Bagging (the same base models)
 - Boosting (the same base models)
 - Stacking (different base model) not covered

Bagging (Bootstrap Aggregating)

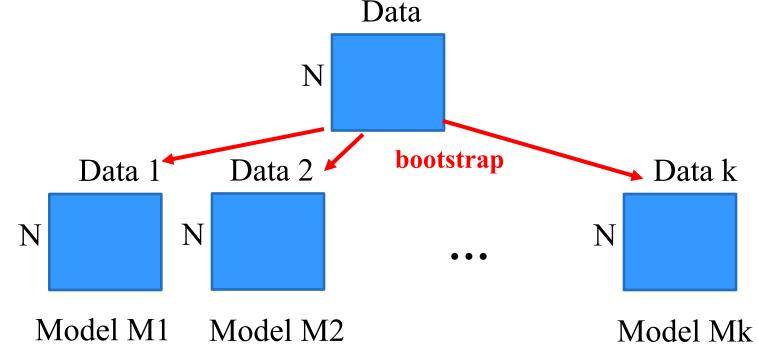
• Given:

- Training set of *N* examples
- A base learning model (e.g. decision tree, neural network, ...)
- Method:
 - Train multiple (k) base models <u>on slightly different datasets</u>
 - Predict (test) by averaging the results of k models
- Goal:
 - Improve the accuracy of one model by using its multiple copies
 - Average of misclassification errors on different data splits gives a better estimate of the predictive ability of a learning method

Bagging algorithm

• Training

- For each model M1, M2, ... Mk
 - Randomly sample with replacement *N* samples from the training set (bootstrap)
 - Train a chosen "base model" (e.g. neural network, decision tree) on the samples



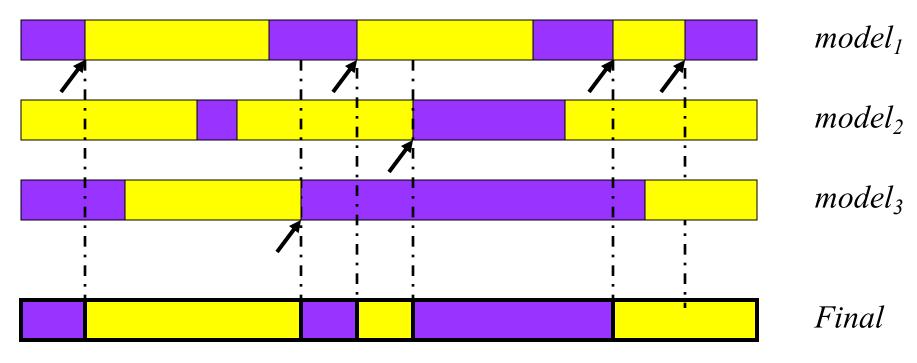
Bagging algorithm

• Training

- For each model M1, M2, ... Mk
 - Randomly sample with replacement *N* samples from the training set
 - Train a chosen "base model" (e.g. a neural network, or a decision tree) on the samples
- Test
 - For each test example
 - Run all base models M1, M2, ... Mk
 - Predict by combining results of all T trained models:
 - Regression: averaging
 - Classification: a majority vote

Class decision via majority voting

Test examples



Class "no"

Analysis of Bagging

- Expected error= Bias+Variance
 - *Expected error* is the expected discrepancy between the estimated and true function

$$E\left[\left(\hat{f}(X) - E[f(X)]\right)^2\right]$$

It decomposes to two terms *Bias* + *Varian*ce

- *Bias* is a squared discrepancy between *averaged* estimated and true function

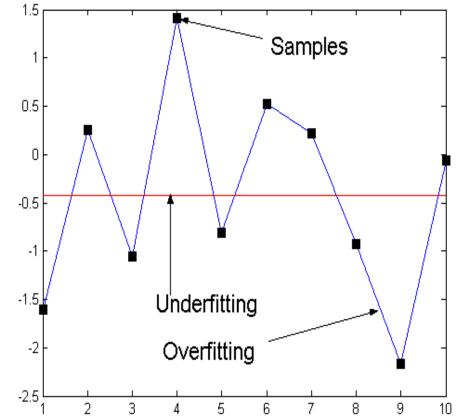
$$\left(E\left[\hat{f}(X)\right]-E\left[f(X)\right]\right)^{2}$$

 Variance is an expected divergence of the estimated function vs. its average value

$$E\left[\left(\hat{f}(X) - E\left[\hat{f}(X)\right]\right)^2\right]$$

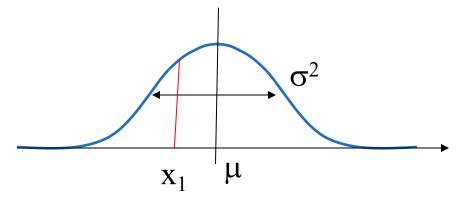
When Bagging works? Under-fitting and over-fitting

- Under-fitting:
 - High bias (models are not accurate)
 - Small variance (smaller influence of examples in the training set)
- Over-fitting:
 - Small bias (models flexible enough to fit well to training data)
 - Large variance (models depend very much on the training set)



Averaging decreases variance

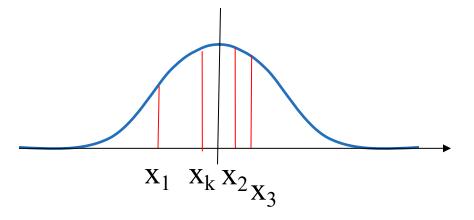
- Example
 - Assume a random variable x with a $N(\mu, \sigma^2)$ distribution



- Case 1: we draw one example/measurement x_1 and use it to estimate the mean $\mu' = x_1$
 - The expected mean of the estimate $E[\mu'] = E[x_1] = \mu$
 - The variance of the mean estimate $Var(\mu') = Var(x_1) = \sigma^2$

Averaging decreases variance

• **Example** Assume a random variable x with a $N(\mu, \sigma^2)$ distribution



- Case 2: a variable x is measured independently K times $(x_1,x_2,...x_k)$ and the mean is estimated as:

$$\mu' = (x_1 + x_2 + \ldots + x_k)/K,$$

- The expected mean of the estimate $E[\mu'] = \mu$
- But, the variance of the mean estimate $Var(\mu')$ is smaller: $Var(\mu') = [Var(x_1)+...Var(x_k)]/K^2 = K\sigma^2/K^2 = \sigma^2/K$

When Bagging works

Relation of the previous example to bagging:

• Bagging is a kind of averaging!

Main property of Bagging (proof omitted)

- Bagging **decreases variance** of the base model without changing the bias!!!
- Why? averaging!
- **Bagging typically helps**
- When applied with an **over-fitted base model**
 - High dependency on actual training data
 - Example: fully grown decision trees

Bagging does not help much when

• Applied to models with a high bias. When the base model is robust to the changes in the training data (due to sampling)

Boosting

• Bagging

- Multiple models covering the complete space, a learner is not biased to any region
- Learners <u>are learned independently</u>

• Boosting

- Every learner covers the complete space
- Learners are biased to regions not predicted well by other learners
- <u>Learners are dependent</u>

Boosting. Theoretical foundations.

- PAC: <u>Probably Approximately Correct framework</u> – (ε,δ) solution
- PAC learning:
 - Learning with a pre-specified error ε and a confidence parameter δ
 - the probability that the misclassification error (ME) is larger than ϵ is smaller than δ

 $P(ME(c) > \varepsilon) \le \delta$

Alternative rewrite:

$$P(Acc(c) > 1 - \varepsilon) > (1 - \delta)$$

- Accuracy (1-ε): Percent of correctly classified samples in test
- Confidence (1- δ): The probability that in one experiment some target accuracy will be achieved

PAC Learnability

Strong (PAC) learnability:

• There exists a learning algorithm that **efficiently** learns the classification with a pre-specified **error and confidence values**

Strong (PAC) learner: A learning algorithm *P* that

- Given an arbitrary:
 - classification error ε (< 1/2), and
 - confidence δ (<1/2)

or in other words:

- classification accuracy $>(1-\varepsilon)$
- confidence probability $> (1 \delta)$
- Outputs a classifier that satisfies this parameters
- Efficiency: runs in time polynomial in $1/\delta$, $1/\epsilon$

– Implies: number of samples N is polynomial in $1/\delta$, $1/\epsilon$

Weak Learner

Weak learner:

- A learning algorithm (learner) *M* that gives **some fixed (not arbitrary !!!!)**:
 - error ε_{o} (<1/2) and
 - confidence δ_o (<1/2)
- Alternatively:
 - a classification accuracy > 0.5
 - with probability > 0.5

and this on an arbitrary distribution of data entries

Weak learnability=Strong (PAC) learnability

- Assume there exists a weak learner
 - it is better that a random guess (> 50 %) with confidence higher than 50 % on any data distribution
- Question:
 - Is the problem also strongly PAC-learnable?
 - Can we generate an algorithm *P* that achieves an arbitrary (ε, δ) accuracy?
- Why is this important?
 - Usual classification methods (decision trees, neural nets), have good, but <u>uncontrollable</u> performances.
 - Can we improve their performance to achieve any prespecified accuracy (confidence)?

Weak=Strong learnability!!!

• Proof due to R. Schapire

An arbitrary (ε, δ) improvement is possible

Idea: combine multiple weak learners together

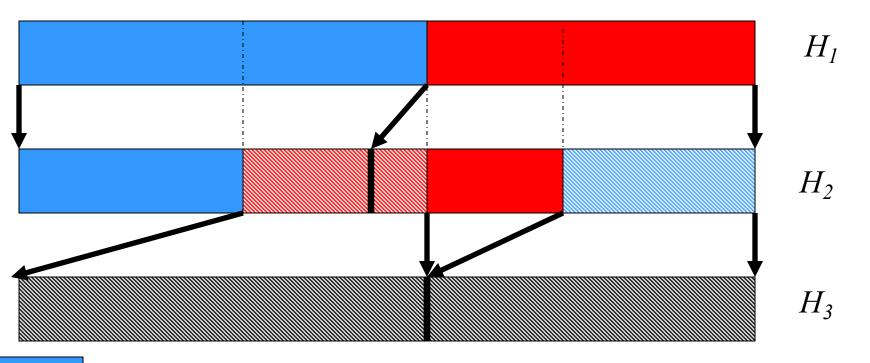
- Weak learner W with confidence δ_0 and maximal error ε_0
- It is possible:
 - To improve (boost) the confidence
 - To improve (boost) the accuracy

by training different weak learners on slightly different datasets

Boosting accuracy Training

Distribution of examples

Learners



Correct classification Wrong classification

 H_1 and H_2 classify differently

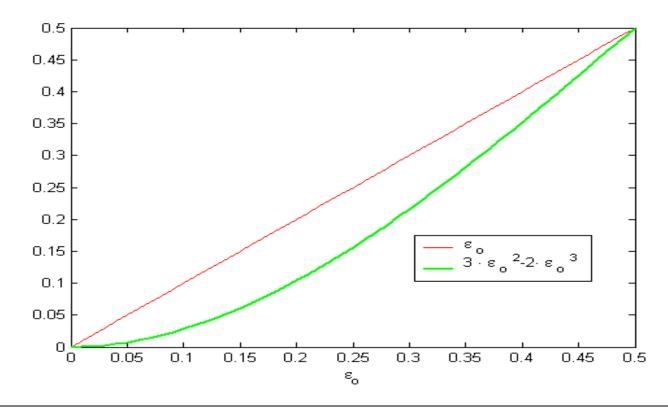
Boosting accuracy

• Training

- Sample randomly from the distribution of examples
- Train hypothesis H_{I} on the sample
- Evaluate accuracy of H_1 on the distribution
- Sample randomly such that for the half of samples $H_{1.}$ provides correct, and for another half, incorrect results; Train hypothesis $H_{2.}$
- Train H_3 on samples from the distribution where H_1 and H_2 classify differently
- Test
 - For each example, decide according to the majority vote of H_1 , H_2 and H_3

Theorem

- If each classifier has an error $< \varepsilon_o$, the final 'voting' classifier has error $< g(\varepsilon_o) = 3 \varepsilon_o^2 2\varepsilon_o^3$
- Accuracy improved !!!!
- Apply recursively to get to the target accuracy !!!



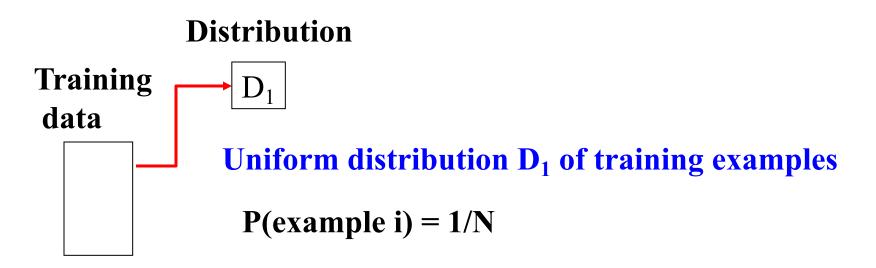
Theoretical Boosting algorithm

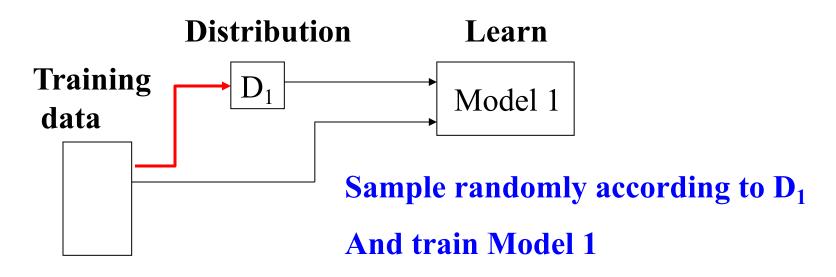
- Similarly to boosting the accuracy we can boost the confidence at some restricted accuracy cost
- The key result: we can improve both the accuracy and confidence
- Problems with the theoretical algorithm
 - A good (better than 50 %) classifier on all distributions and problems
 - We cannot get a good sample from data-distribution
 - The method requires a large training set
- Solution to the sampling problem:
 - Boosting by sampling
 - AdaBoost algorithm and variants

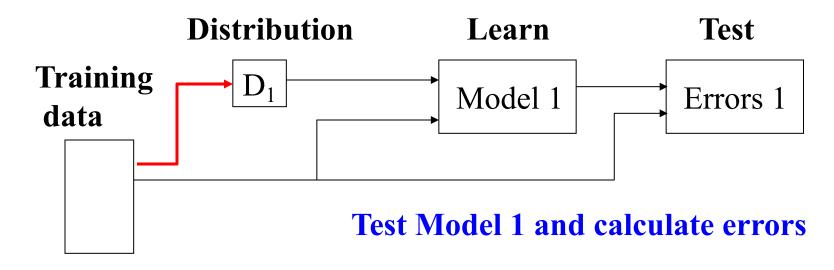
AdaBoost

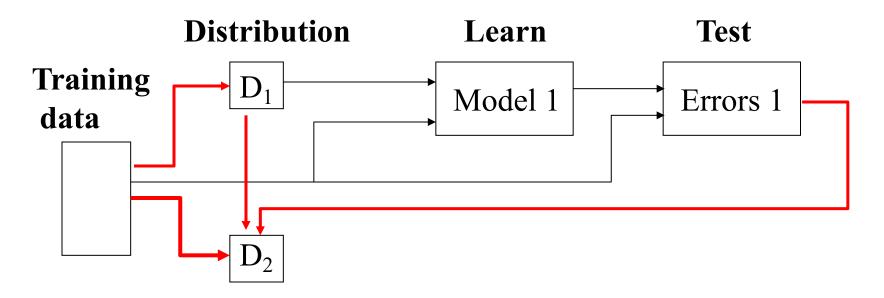
- AdaBoost: boosting by sampling
- **Classification** (Freund, Schapire; 1996)
 - AdaBoost.M1 (two-class problem)
 - AdaBoost.M2 (multiple-class problem)
- **Regression** (Drucker; 1997)

– AdaBoostR

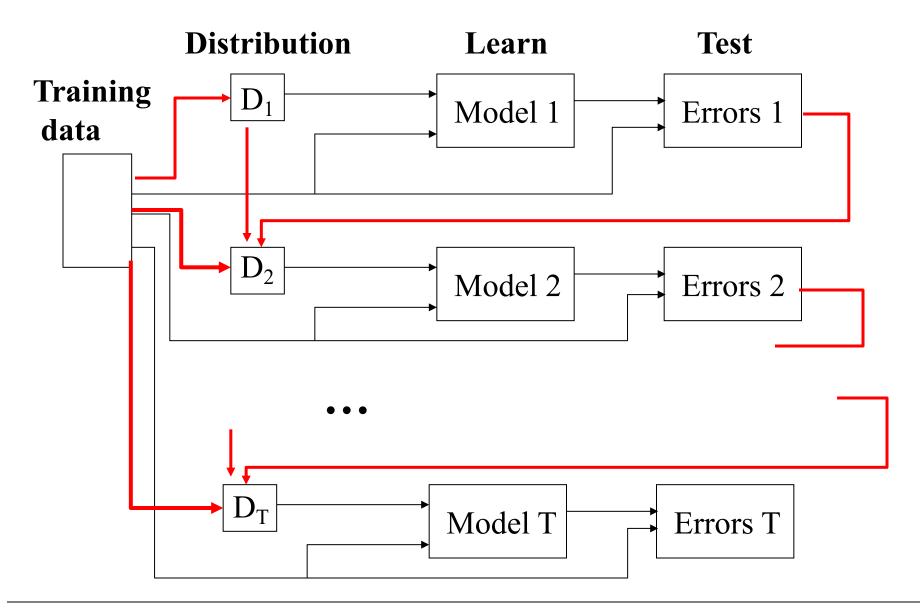








Use errors to recalculate the new distribution on data Give more probability to pick examples with errors



AdaBoost

- Given:
 - A training set of *N* examples (attributes + class label pairs)
 - A "base" learning model (e.g. a decision tree, a neural network)
- Training stage:
 - Train a sequence of T "base" models on T different sampling distributions defined upon the training set (D)
 - A sample distribution D_t for building the model *t* is constructed by modifying the sampling distribution D_{t-1} from the *(t-1)*th step.
 - Examples classified incorrectly in the previous step receive higher weights in the new data (attempts to cover misclassified samples)
- Application (classification) stage:
 - Classify according to the weighted majority of classifiers

AdaBoost algorithm

Training (step t)

• Sampling Distribution D_t

 $D_t(i)$ - a probability that example i from the original training dataset is selected

 $D_1(i) = 1/N$ for the first step (t=1)

- Take K samples from the training set according to D_t
- Train a classifier h_t on the samples
- Calculate the error ε_t of h_t : $\varepsilon_t = \sum D_t(i)$
- Classifier weight: $\beta_t = \varepsilon_t / (1 \varepsilon_t)^{i:h_t(x_i) \neq y_i}$
- New sampling distribution

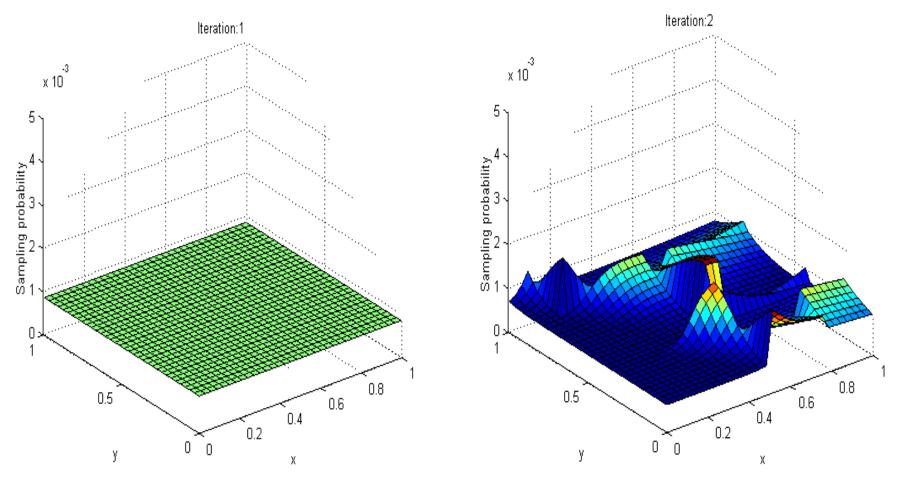
$$D_{t+1}(i) = \frac{D_t(i)}{Z_t} \times \begin{cases} \beta_t & h_t(x_i) = y_i \\ 1 & \text{otherwise} \end{cases}$$

Norm. constant

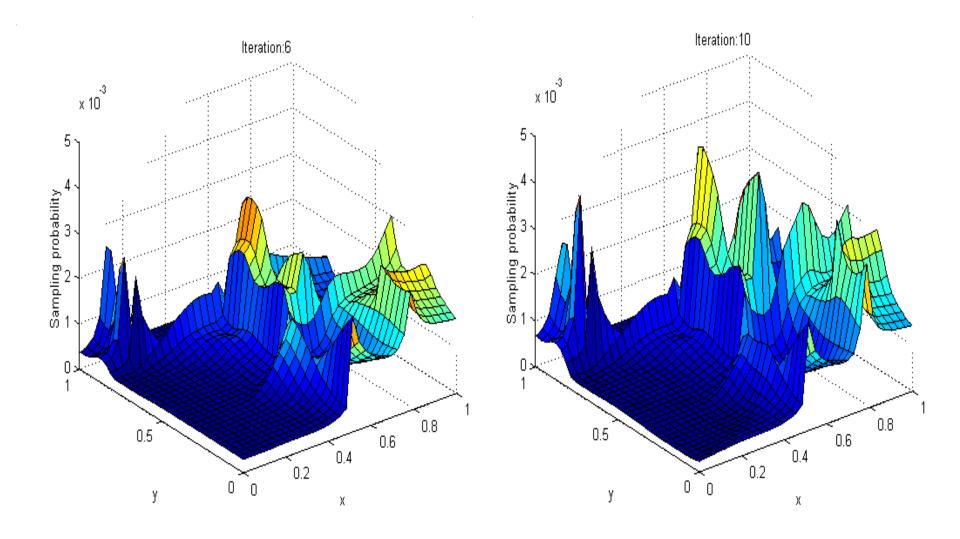
AdaBoost. Sampling Probabilities

Example: - Nonlinearly separable binary classification

- NN used as a week learner



AdaBoost: Sampling Probabilities



AdaBoost classification

- We have T different classifiers h_t
 - weight w_t of the classifier is proportional to its accuracy on the training set

$$w_{t} = \log(1/\beta_{t}) = \log((1-\varepsilon_{t})/\varepsilon_{t})$$
$$\beta_{t} = \varepsilon_{t}/(1-\varepsilon_{t})$$

• Classification:

For every class *j*=0,1

- Compute the sum of weights *w* corresponding to ALL classifiers that predict class *j*;
- Output class that correspond to the maximal sum of weights (weighted majority)

$$h_{final}(\mathbf{x}) = \arg \max_{j} \sum_{t:h_t(x)=j} w_t$$

Two-Class example. Classification.

- Classifier 1 "yes" 0.7
- Classifier 2 "no" 0.3
- Classifier 3 "no" 0.2

• Weighted majority "yes"

0.7 - 0.5 = +0.2

• The final choice is "yes" + 1

What is boosting doing?

- Each classifier specializes on a particular subset of examples
- Algorithm is concentrating on "more and more difficult" examples
- Boosting can:
 - <u>Reduce variance</u> (the same as Bagging)
 - <u>Eliminate the effect of high bias</u> of the weak learner (unlike Bagging)
- Train versus test errors performance:
 - Train errors can be driven close to 0
 - But test errors do not show overfitting
- Proofs and theoretical explanations in **a number of papers**

Boosting. Error performances

