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Dimensionality reduction. Motivation.

• ML methods are sensitive to the dimensionality d of data
• Question: Is there a lower dimensional representation of the 

data that captures well its characteristics?
• Objective of dimensionality reduction:

– Find a lower dimensional representation of data 
• Two learning problems: 

– Supervised

– Unsupervised

• Goal: replace                                    
with         of dimensionality d’< < d 
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Dimensionality reduction
• Solutions:

– Selection of a smaller subset of inputs (features) from a 
large set of inputs; train classifier on the reduced input set

– Combination of high dimensional inputs to a smaller set 
of features             ;  train classifier on new features

x …

… …

…

…
…

selection

combination

)(xkf



Task-dependent feature selection
Assume: Classification problem:  

– x – input vector,  y - output
Objective: Find a subset of inputs/features that gives/preserves 

most of the output prediction capabilities 
Selection approaches: 
• Filtering approaches

– Filter out features with small predictive potential
– Done before classification; typically uses univariate analysis

• Wrapper approaches
– Select features that directly optimize the accuracy of the 

multivariate classifier
• Embedded methods

– Feature selection and learning closely tied in the method
– Regularization methods, decision tree methods 



Feature selection through filtering
Assume: 
How to select the features/inputs? 
• Step 1 . For each input        in data calculate                         

reflecting how well       predicts the output y alone
• Step 2. Pick a subset of  inputs with the best scores                       

(or equivalently eliminate/filter the inputs with the worst scores)
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Classification problem:  x – input vector,   y - output 
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Feature scoring for classification
Scores for measuring the differential expression
• T-Test score (Baldi & Long): Based on the test that two 

groups come from the same population
– Null hypothesis: is mean of class 0 = mean of class 1
– Larger t score à the groups are more different  
– Smaller t score à the groups are more similar

Class 0 Class 1



Feature scoring for classification
Scores for measuring the differential expression
• Fisher Score

• AUROC score:  Area under Receiver Operating 
Characteristic curve
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Feature scoring for classification
Scores for measuring the differential expression
• AUROC score:  Area under Receiver Operating 

Characteristic curve
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Feature scoring for classification
• Correlation coefficients

– Measures linear dependences

• Mutual information 
– Measures dependences
– Needs discretized input values
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Feature scoring for classification: dependences
Univariate score assumptions:
• Only one input and its effect on y is incorporated in the score  
• Effects of two features on y are considered to be independent
Correlation based feature selection
• A partial solution to the above problem 
• Idea: good feature subsets contain features that are highly 

correlated with the class but independent of each other
• Assume a set of features S of size d. Then 

• Average correlation between x and class y 
• Average correlation between pairs of xs
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Feature selection: low sample size
Problems: Many inputs and low sample size
• if we have many random features, and not many instances to 

learn from, the features with a good  predictive score may arise 
simply by chance. The probability of this can be quite large. 

• Techniques to address the problem:
– reduce FDR (False discovery rate) and 
– FWER (Family wise error)
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Feature selection: wrappers
Wrapper approach:
• The input/feature selection is driven by the prediction accuracy 

of the classifier (regressor) we actually want to built
Two problems: 
How to judge the quality of a subset of inputs on the model? 
How to find the best subset of inputs out of d inputs efficiently?



Feature selection: wrappers
Wrapper approach:
• The input/feature selection is driven by the prediction accuracy 

of the classifier (regressor) we actually want to built
Two problems: 
How to judge the quality of a subset of inputs on the model? 
• Internal cross-validation (k-fold cross validation)



Internal cross-validation

• Split train set: to internal train and test sets
• Internal train set: train different models (defined e.g. on 

different subsets of features) 
• Internal test set/s: estimate the generalization error and  

select the best model among possible models 
• Internal cross-validation (k-fold): 

– Divide the train data into m equal partitions (of size N/k)
– Hold out one partition for validation, train the classifiers on 

the rest of data
– Repeat such that every partition is held out once
– The estimate of the generalization error of the learner is the 

mean of errors of on all partitions



Internal train and test
Internal train and test splitting.  Hold some data out of the 
training set (called validation set) to decide on the model first, 
than train the picked model

Dataset

Internal 
Training set

Testing setTraining set

Internal 
Testing set

Model
candidates

M1

M2

Learn M1*

Learn M2*

Test M1*

Test M2*
compare



Cross-validation (k-fold)
• Divide data into k  

disjoint groups, 
validate on k-th
group/train on the rest

• Typically 5-fold cross-
validation

Internal k-fold cross-validation

Classify/Evaluate

test = ith group, Train on the rest

Training Data

TestTrain

Split into k groups 
of equal size

Learning

Average Stats

TestTestTrainTrain



Cross-validation (k-fold)
• Divide data into k disjoint groups, 
• For every group i, test on i-th group and train on the rest
• Gives k models and k test results

Example: k=5 (5-fold crossvalidation)

Evaluation of models using k-fold cross-
validation

1

2

3
4
5

Data K groups K train and test sets

12 4 53

21 4 53

31 4 52

41 3 52
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Average test results
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Feature selection: wrappers
Wrapper approach:
• The input/feature selection is driven by the prediction accuracy 

of the classifier (regressor) we actually want to built
Two problems: 
How to judge the quality of a subset of inputs on the model? 
• Internal cross-validation (k-fold cross validation)
How to find the best subset of inputs out of d inputs efficiently?

d inputs



Feature selection: wrappers
Wrapper approach:
• The input/feature selection is driven by the prediction accuracy 

of the classifier (regressor) we actually want to built
Two problems: 
How to judge the quality of a subset of inputs on the model? 
• Internal cross-validation (k-fold cross validation)
How to find the best subset of inputs out of d inputs efficiently?

d inputs
For d inputs/features there 
are 2d different input subsets
to evaluate and compare

?



Feature selection: wrappers
How to find the appropriate feature subset S efficiently?
• For d inputs/features there are 2d different feature subsets

• Solution : Greedy search in the space of classifiers
– Option 1: Build the set incrementally 

• Add features one by one. Add features that improve  the 
quality of the model the most

– Option 2: Gradually remove features 
• Remove features that effect the accuracy the least

• Model quality: 
– Internal cross-validation (k-fold cross validation)



Feature selection: wrappers
Greedy selection
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Feature selection: wrappers
Stopping criterion:
• Compare:

– The best score at the previous level k-1
– The best score at the current level k

• Stop when there is a decrease in performance on the set of 
features at level k 



Embedded methods
Feature selection + model learning done jointly
• Examples of embedded methods:

– Regularized models
• Models of higher complexity are explicitly penalized 

leading to ‘virtual’ removal of inputs from the model
• Covers:

– Regularized logistic/linear regression
– Support vector machines

» Optimization of margins penalizes nonzero weights

– CART/Decision trees
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Unsupervised dimensionality reduction

• Is there a lower dimensional representation of the data 
that captures well its characteristics?

• Assume:
– We have data                                    such that 

– Assume  the dimension d of the data point x is very large
– We want to analyze x, there is no class label y

• Our goal:
– Find a lower dimensional representation of data of 

dimension d’ < d

}{ N21 x,..,x,x=D
),..,,( 21 d

iiii xxx=x



Principal component analysis (PCA)

Objective: We want to replace a high-dimensional input vector 
with a lower dimension vector (obtained by combining inputs)

– Different from the feature subset selection !!!
PCA:
• A linear transformation of the d dimensional input x to the M 

dimensional feature vector z such that                 

• Many different transformations exists, which one to pick? 
• PCA –selects the linear transformation for which the retained 

variance is maximal
• Or, equivalently it is the linear transformation for which the 

sum of squares reconstruction cost is minimized
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PCA: example
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PCA
Projections to different axis



PCA
• PCA projection to the 2 dimensional space



PCA
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• PCA projection to the 2 dimensional space



Principal component analysis (PCA)
• PCA:

– linear transformation of a d dimensional input x to M 
dimensional vector z such that               under which the 
retained variance is maximal. Remember: no y is needed

• Fact:
– A vector x can be represented using a set of orthonormal 

vectors u (basis vectors)

– Leads to transformation of coordinates  (from x to z using 
u’s)

dM <

i

d

i
iz ux å

=

=
1

xu T
iiz = Uxz =

ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê

ë

é

=

T
d

T

T

u

u
u

U
..
2

1



Principal component analysis (PCA)

• Fact:  A vector x can be represented using a set of orthonormal 
vectors u (basis vectors)

– Leads to transformation of coordinates  
(from x to z using u’s)
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(1,0,0); (0,1,0); (0,0,1) New bases: u1 , u2 , u3
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PCA
• Idea: represent d-dimensional      with an M-dimensional 

formed by subset of  zi coordinates for the bases defined by U .   

• Goal: We want to find: 
(1) Basis vectors U and (2) their subset of size M

• This effectively replaces          with its approximation
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PCA

• Goal: We want to find: 
Basis vectors U and a their subset of size M to keep

• How to choose the best set of basis vectors?
– We want the subset that gives the best approximation of 

data x in the dataset on average (we use least squares fit)
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PCA

• Differentiate the error function with regard to all         and 
set equal to 0 we get:

• Then we can rewrite:

• The error function is optimized when basis vectors satisfy: 

The best M basis vectors: discard  vectors with d-M smallest 
eigenvalues (or keep vectors with M largest eigenvalues)

Eigenvector         – is called a principal component
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PCA

• Once eigenvectors       with largest eigenvalues are identified, 
they are used  to transform the original d-dimensional data to 
M dimensions

• To find the “true” dimensionality of the data d’ we can just 
look at eigenvalues that contribute the most (small eigenvalues 
are disregarded)

• Problem: PCA is a linear method. The “true” dimensionality 
can be overestimated. There can be non-linear correlations.

• Modifications for nonlinearities: kernel PCA

iu

1u
2u

x

1x

2x



Dimensionality reduction with neural nets
• PCA is  limited to linear dimensionality reduction
• To do non-linear reductions we can use neural nets
• Auto-associative (or auto-encoder) network: a neural 

network with the same inputs and outputs ( x )  

• The middle layer corresponds to the reduced dimensions
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Dimensionality reduction with neural nets

• Error criterion:

• Error measure tries to recover the original data through limited 
number of dimensions in the middle layer 

• Non-linearities modeled through 
intermediate layers between 
the middle layer and input/output

• If no intermediate layers are used 
the model replicates PCA 
optimization through learning
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Latent variable models

Observed variables  x:  real valued vars 
Dimensionality d

Latent variables (s):     Dimensionality k

Dimensionality 
reduction
via inference

• Learning using unsupervised learning
• Dimensionality reduction via inference 



Cooperative vector quantizer

Model:
Latent var si:

~ Bernoulli distribution
parameter: pi
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…
s:  k binary vars

Observable variables x: 
~ Normal distribution 

parameters: W, S
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