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CS 2750  Machine Learning

Milos Hauskrecht

milos@cs.pitt.edu

5329 Sennott Square, x4-8845

people.cs.pitt.edu/~milos/courses/cs2750-Spring2020/

Lecture 2

Designing a learning system

Learning: first look

• Assume we see examples of pairs (x , y) in D and we want to 

learn the mapping                      to predict y for some future x

• We get the data D - what should we do?
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Learning: first look

• Problem: many possible functions                      exists for 

representing the mapping between x and y                      

• Which one to choose?  Many examples still unseen!

YXf :
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Learning: first look

• Solution: make an assumption about the model, say,
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Learning: first look

• Choosing a parametric model or a set of models is not enough 

Still too many functions

– One for every pair of parameters a, b
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Learning: first look

• We want the best set of model parameters

– reduce the misfit between the model M and observed data D

– Or, (in other words) explain the data the best

• How to measure the misfit?
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Learning: first look

• We want the best set of model parameters

– reduce the misfit between the model M and observed data D

– Or, (in other words) explain the data the best

• How to measure the misfit?
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The difference in observed 

value of y and model prediction

Learning: first look

• We want the best set of model parameters

– reduce the misfit between the model M and observed data D

– Or, (in other words) explain the data the best

• How to measure the misfit?
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Learning: first look

• We want the best set of model parameters

– reduce the misfit between the model M and observed data D

– Or, (in other words) explain the data the best

• How to measure the misfit?

Objective function:

• Error function: Measures the misfit between D and M

• Examples of error functions:

– Average Square Error

– Average Absolute Error
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Learning: first look

• Linear regression problem

– Minimizes the squared error function for the linear model 
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Learning: first look

• Application: A new example x with unknown value y is 

checked against the model, and y is calculated
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x

• Data D: pairs (x , y) where y is a class label: 

y examples: patient will be readmitted or no, 

has disease (case) or no (control)

Supervised learning: Classification
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Supervised learning: Classification

• Find a model f: X  R, say                                       that defines 

a decision boundary f (x) = 0 that separates well the two classes

– Note that some examples are not correctly classified
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f (x) = 0

Supervised learning: Classification

• A new example x with unknown class label is checked against 

the model, the class label is assigned 
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CS 2750 Machine Learning

Learning: first look

1. Data:

2. Model selection:

– Select a model or a set of models (with parameters)

E.g.

3. Choose the objective function

– Squared error

4. Learning:

• Find the set of parameters optimizing the error function

– The model and parameters with the smallest error 

5.  Application

– Apply the learned model to new data 

– E.g. predict ys for new inputs x using learned
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Learning: first look

1. Data:

2. Model selection:

– Select a model or a set of models (with parameters)

E.g.

3. Choose the objective (error) function

– Squared error

4. Learning:

• Find the set of parameters (a,b) optimizing the error 
function

5.  Application

– Apply the learned model to new data 

– E.g. predict ys for the new input x
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Learning: first look

1. Data:

2. Model selection:

– Select a model or a set of models (with parameters)

E.g.

3. Choose the objective (error) function

– Squared error

4. Learning:

• Find the set of parameters (a,b) optimizing the error 
function

5.  Application

– Apply the learned model to new data 

– E.g. predict ys for the new input x
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Learning: first look

1. Data:

2. Model selection:

– Select a model or a set of models (with parameters)

E.g.

3. Choose the objective (error) function

– Squared error

4. Learning:

• Find the set of parameters (a,b) optimizing the error 
function

5.  Application

– Apply the learned model to new data 

– E.g. predict ys for the new input x
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Learning: first look

1. Data:

2. Model selection:

– Select a model or a set of models (with parameters)

E.g.

3. Choose the objective (error) function

– Squared error

4. Learning:

• Find the set of parameters (a,b) optimizing the error 
function

5.  Application

– Apply the learned model to new data 

– E.g. predict ys for the new input x
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Learning: first look

1. Data:

2. Model selection:

– Select a model or a set of models (with parameters)

E.g.

3. Choose the objective (error) function

– Squared error

4. Learning:

• Find the set of parameters (a,b) optimizing the error 
function

5.  Application

– Apply the learned model to new data 

– E.g. predict ys for the new input x
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Learning: first look

1. Data:

2. Model selection:

– Select a model or a set of models (with parameters)

E.g.

3. Choose the objective (error) function

– Squared error

4. Learning:

• Find the set of parameters (a,b) optimizing the error 
function

5.  Application

– Apply the learned model to new data

Looks straightforward, but there are  problems ….

–
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Learning: generalization error

We fit the model based on past examples observed in D

Training data: Data used to fit the parameters of the model

Training error:

Problem: Ultimately we are interested in learning the mapping 

that performs well on the whole population of examples

True (generalization) error (over the whole population):

Training error tries to approximate the true error !!!!

Does a good training error imply a good generalization error ?
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Overfitting

• Assume we have a set of 10 points and we consider 

polynomial functions as our possible models

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-8

-6

-4

-2

0

2

4

6

8

10

Overfitting

• Fitting a linear function with the square error

• Error is nonzero. Why?
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Overfitting

• Fitting a linear function with the square error

• Error is nonzero: 
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Overfitting

Assume in addition to a linear model:

also: 

Which model would give us a smaller error for the least squares fit?
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Overfitting

• Linear vs. cubic polynomial

• Higher order polynomial leads to a better fit, smaller error 
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Overfitting

• Is it always good to minimize the error of the observed data?
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Overfitting

• For 10 data points, the degree 9 polynomial gives a perfect fit 

(Lagrange interpolation).  Error is zero.

• Is it always good to minimize the training error?  
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Overfitting

• For 10 data points, degree 9 polynomial gives a perfect fit 

(Lagrange interpolation).  Error is zero.

• Is it always good to minimize the training error?  NO !!

• More important: How do we perform on the unseen data?
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Overfitting

Situation when the training error is low and the generalization 

error is high. Causes of the phenomenon:

• Model with a large number of parameters (degrees of freedom)

• Small data size (as compared to the complexity of the model)
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How to evaluate the learner’s performance?

• Generalization error is the true error for the population of 

examples we would like to optimize

• But it cannot be computed exactly

• Sample mean only approximates the true mean

• Optimizing the training error can lead to the overfit, i.e.  

training error may not reflect properly the generalization error

• So how to assess the generalization error? 
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• Generalization error is the true error for the population of 

examples we would like to optimize

• Sample mean only approximates it

• Two ways to assess the generalization error is:

– Theoretical: Law of Large numbers

• statistical bounds on the difference between true and 

sample mean errors

– Practical: Use a separate data set with m data samples to 

test the model

• (Average) test error
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How to evaluate the learner’s performance?

Split available data D into two disjoint sets:

• training set Dtrain

• testing set Dtest

Also called: Simple holdout method

– Typically 2/3 training and 1/3 testing

Evaluation of the generalization performance

Learn (fit)

Dataset

Training set Testing set

Evaluate

Predictive

model

Optimize 

train error Calculate 

test error
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Testing of models: regression 

Learn on the 

training set
The model

Evaluate on 

the test set

Data set

Training set Test set
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Testing of models: classification 

Learn on the 

training set
The model

Evaluate on 

the test set

case case
control control

Data set

Training set Test set
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Assessment of the generalization performance of the model:

Basic rule: 

• Never ever touch the test data during the learning/model 

building process 

• Test data should be used for the final evaluation only

Assessment of model performance

Evaluation measures

Easiest way to evaluate the model: 

• Error function used in the optimization is adopted also in 

the evaluation

• Advantage:  may help us to see model overfitting.  Simply 

compare the error on the training and testing data. 

Evaluation of the models often considers: 

• Other aspects or statistics of the model and its performance

• Moreover the Error function used for the optimization may be a 

convenient approximation of the quality measure we would 

really like to optimize
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Evaluation measures

Classification: 

Actual

Prediction

FN

0.2

FP

0.1

Control

Control

TN

0.4

Case

TP

0.3

Case
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SN




Sensitivity:

Specificity:

FPTN

TN
SP




Misclassification error:

CS 2750 Machine Learning

A learning system: basic cycle

1. Data:

2. Model selection:

– Select a model or a set of models (with parameters)

E.g.

3. Choose the objective function

– Squared error

4. Learning:

• Find the set of parameters optimizing the error function

– The model and parameters with the smallest error 

5. Testing/validation:

– Evaluate on the test data

6. Application

– Apply the learned model to new data 
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A learning system: basic cycle

1. Data:

2. Model selection:

– Select a model or a set of models (with parameters)

E.g.

3. Choose the objective function

– Squared error

4. Learning:

• Find the set of parameters optimizing the error function

– The model and parameters with the smallest error 

5. 5. Testing/validation:

– Evaluate on the test data

6. Application

– Apply the learned model to new data 
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CS 2750 Machine Learning

A learning system: basic cycle

1. Data:

2. Model selection:

– Select a model or a set of models (with parameters)

E.g.

3. Choose the objective function

– Squared error

4. Learning:

• Find the set of parameters optimizing the error function

– The model and parameters with the smallest error 

5. Testing/validation:

– Evaluate on the test data

6. Application

– Apply the learned model to new data 

baxy 

2

1

))((
1

ii

n

i

xfy
n




},..,,{ 21 ndddD 

)(xf



22

Steps taken when designing an ML system

Data

Model selection

Learning/optimization

Evaluation

Application

Choice of Error function

Add some complexity

Data

Feature selection/dimensionality reduction

Model selection

Learning/optimization

Evaluation

Application

Choice of Error function

Data cleaning/preprocessing
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Designing an ML solution

Data

Feature selection/dimensionality reduction

Model selection

Learning/optimization

Evaluation

Application

Choice of Error function

Data cleaning/preprocessing

Designing an ML solution

Data

Feature selection/dimensionality reduction

Model selection

Learning/optimization

Evaluation

Application

Choice of Error function

Data cleaning/preprocessing
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CS 2750 Machine Learning

Data source and data biases

• Understand the data source

• Understand the data your models will be applied to

• Watch out for data biases:

– Make sure the data we make conclusions on are the same as 

data we used in the analysis 

– It is very easy to derive “unexpected” results when data 

used for analysis and learning are biased

• Results (conclusions) derived for a biased dataset do not 

hold in general !!!

CS 2750 Machine Learning

Data biases

Example: Assume you want to build an ML program for 

predicting the stock behavior and for choosing your 

investment strategy

Data extraction:

• pick companies that are traded on the stock market on January 

2017

• Go back 30 years and extract all the data for these companies

• Use the data to build an ML model supporting your future 

investments

Question:

– Would you trust the model?

– Are there any biases in the data?


