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Clustering

Groups together “similar” instances in the dataset

Basic clustering problem:

distribute data into k£ different groups such that data points
similar to each other are in the same group

Similarity between data points 1s typically defined in terms
of some similarity measure or a distance metric
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Clustering

Groups together “similar” instances in the dataset
Basic clustering problem:

« distribute data into k different groups such that data points
similar to each other are in the same group

* Similarity between data points 1s typically defined in terms
of some distance metric (can be chosen)




Clustering example

* Clustering. Group together similar examples in the dataset

* Clustering could be applied to different types of data instances




Clustering example

* Clustering. Group together similar examples in the dataset

« Clustering could be applied to different types of data instances

Patient # Age Sex Heart Rate Blood pressure ...

Patient 1 55 M 85 125/80
Patient 2 62 M 87 130/85
Patient 3 67 F 80 126/86
Patient 4 65 F 90 130/90
Patient 5 70 M 84 135/85




Clustering example

* Clustering. Group together similar examples in the dataset

« Clustering could be applied to different types of data instances

Patient # Age Sex Heart Rate Blood pressure ...

Patient 1 55 M 85 125/80
Patient 2 62 M 87 130/85
Patient 3 67 F 80 126/86
Patient 4 65 F 90 130/90
Patient 5 70 M 84 135/85

Key question: How to define similarity between instances?




Similarity and dissimilarity measures

e Dissimilarity measure
— Numerical measure of how different two data objects are
— Often expressed 1n terms of a distance metric

- Example: Euclidean:

d(a,b) = Zk:(ai —b.)’
* Similarity measure -
— Numerical measure of how alike two data objects are
— Examples:

e (Gaussian kernel:

1 |a—b];
K(a,b)= (27z_hz)d/2 exp|:— YE -

« Cosine similarity: K(a,b)=a"b




Distance metrics

Dissimilarity is often measured with the help of a distance
metrics.

Properties of distance metrics:

Assume 2 data entries a, b

Positiveness: d(a,b) =0
Symmetry: d(a,b)=d(b,a)
Identity: d(a,a)=0

Triangle inequality: d(a,c)<d(a,b)+d(b,c)




Distance metrics

Assume 2 real-valued data-points:
a=(6, 4)
o=(7) (4,7)

y‘
(6,4)

What distance metric to use?
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Distance metrics

Assume 2 real-valued data-points:

a=(6, 4)
b=(4,7) 4, 7)
SN
_____________ (6, 4)

What distance metric to use?

Euclidian:

d(a.b)= |3 (@, —b,)




Distance metrics

Assume 2 real-valued data-points:
a=(6, 4)
o=(7) (4,7)

v

What distance metric to use?

Squared Euclidian: works for an arbitrary k-dimensional

Space k
’ d*(a,b) =) (a,—b,)’
i=1




Distance metrics

Assume 2 real-valued data-points:
a=(6, 4)
b:(49 7) 1

»

4,7)

Manhattan distance:
works for an arbitrary k-dimensional space

k
d(a,b)=) |a,—b,
i=1




Distance measures

Generalized distance metric:

d’(a,b)=(a—b) ' IT""'(a—b)

[' semi-definite positive matrix

"' is a matrix that weights attributes proportionally to their
importance. Different weights lead to a different distance
metric.

If I'=17 we get squared Euclidean

['=2 (covariance matrix) — we get the Mahalanobis
distance that takes into account correlations among
attributes




Distance measures

Generalized distance metric:

d’(a,b)=(a—b) ' IT""'(a—b)

Special case: T'=7 we get squared Euclidean
Example:

=13




Distance measures

Generalized distance metric:
d’(a,b)=(a—b)' IT""'(a—b)
Special case: ['=Y defines Mahalanobis distance

Example: Assume dimensions are independent in data

Covariance matrix Invers{e covariance
1
Z_ o 0 ~1 o2 0
0 o) 2. = 1
0 —
\ G, )
- _
— 0
) 2 2 2 A Y
d*(a,b)=[2 -3] % _2, 3
- 1 —3 o’ o2
0 — 1 2
o, |

Contribution of each dimension to the squared Euclidean 1s
normalized (rescalled) by the variance of that dimension




Distance measures

Assume categorical data where integers represent the
different categories:

1
0
1
1

_— N = O
e Y "
_—e O O
o o = O

What distance metric to use?




Distance measures

Assume categorical data where integers represent the
different categories:

1
0
1
1

_— N = O
ek (YD
_—e O O
o o = O

What distance metric to use?

Hamming distance: The number of values that need to be
changed to make them the same




Distance measures.

Assume pure binary values data:

0 1

—_—0 = O

1 1
010 1
1 1 0 1
1 1 1 1

One metric 1s the Hamming distance: The number of bits that
need to be changed to make the entries the same

How about squared Euclidean?

d>(a.b) = (a,—b,)’




Distance measures.

Assume pure binary values data:

1 1 0 1
010 1
1 1 0 1
1 1 1 1

—_—0 = O

One metric 1s the Hamming distance: The number of bits that
need to be changed to make the entries the same

How about the squared Euclidean?
k
d*(a,b)=> (a,—b,)’
i=1

The same as Hamming distance




Distance measures

Combination of real-valued and categorical attributes

Patient # Age Sex Heart Rate Blood pressure ...
Patient 1 55 M 85 125/80
Patient 2 62 M 87 130/85
Patient 3 67 F 80 126/86
Patient 4 65 F 90 130/90
Patient 5 70 M 84 135/85

What distance metric to use?




Distance measures

Combination of real-valued and categorical attributes

Patient # Age Sex Heart Rate Blood pressure ...
Patient 1 55 M 85 125/80
Patient 2 62 M 87 130/85
Patient 3 67 F 80 126/86
Patient 4 65 F 90 130/90
Patient 5 70 M 84 135/85

What distance metric to use? Solutions:

* A weighted sum approach: e.g. a mix of Euclidian and
Hamming distances for subsets of attributes

* Generalized distance metric (a weighted combination, use
one-hot representation of categories)

More complex solutions: tensors and decompositions




Distance metrics and similarity

* Similarity measure
— Numerical measure of how alike two data objects are

— Do not have to satisfy the properties like the ones for the
distance metric

— Examples:
e Cosine similarityX (a,b) =a’b
» Gaussian kernel: 1 a—bl32
K(a,b) = . duexp{—” 2”2}
(27zh ) 2h

v




Clustering

Clustering is useful for:

* Similarity/dissimilarity analysis

Analyze what data points in the data are close to each other
 Dimensionality reduction

High dimensional data replaced with a group (cluster) label

 Data reduction: Replaces many data-points with a point
representing the group mean

Challenges:

 How to measure similarity (problem/data specific)?
 How to choose the number of groups?

— Many clustering algorithms require us to provide the
number of groups ahead of time




Clustering algorithms

K-means algorithm

Probabilistic (soft) clustering methods (with EM) = soft
clustering

— Latent variable models: class (cluster) 1s represented by
a latent (hidden) variable value

— Every point goes to the class with the highest posterior

— Examples: mixture of Gaussians, Naive Bayes with a
hidden class

Hierarchical methods
— Agglomerative
— Divisive




K-means clustering algorithm

 an iterative clustering algorithm
* works 1n the d-dimensional R space representing x

K-Means clusterting algorithm:
Initialize randomly k& values of means (centers)

Repeat

— Partition the data according to the current set of means
(using the similarity measure)

— Move the means to the center of the data in the current
partition
Until no change in the means




K-means: example

Initialize the cluster centers

3|
2.
11
ol
° L]
& .~ .
rd e & - LY
1L Ak T A
- T i
-~ e o, " ..
S el
_2‘_
-3 ()
r
3 -2 1 o) 1




K-means: example

e Calculate the distances of each point to all centers




K-means: example

* For each example pick the best (closest) center




K-means: example

* Recalculate the new mean from all data examples assigned
to the same cluster center




K-means: example

 Shift the cluster center to the new mean




K-means: example

o Shift the cluster centers to the new calculated means




K-means: example

* And repeat the iteration ...
* Till no change in the centers




K-means clustering algorithm

K-Means algorithm:
Initialize randomly k& values of means (centers)

Repeat

— Partition the data according to the current set of means
(using the similarity measure)

— Move the means to the center of the data in the current
partition
Until no change in the means

Properties:
e Minimizes the sum of squared center-point distances for all
clusters

k
min Z ZH X, —u, | u, = center of cluster S,
S




K-means clustering algorithm

* Properties:

— converges to centers minimizing the sum of squared
center-point distances (still local optima)

— The result 1s sensitive to the initial means’ values
* Advantages:
— Simplicity
— Generality — can work for more than one distance measure
 Drawbacks:
— Can perform poorly with overlapping regions
— Lack of robustness to outliers
— Good for attributes (features) with continuous values
« Allows us to compute cluster means
* k-medoid algorithm used for discrete data




Probabilistic (soft) clustering algorithms

Latent variable models
Examples: Mixture of Gaussians
Naive Bayes with hidden class
Iterative algorithm:
— Steps correspond to the steps of the EM algorithm
Mixture of Gaussian model:

— Difference from k-means: each mean 1s responsible for
every data instance, responsibilities can be different based
on the distance of a Gaussian from the data instance

Final clusters:
— the data point belongs to the class with the highest posterior




Soft clustering

* Gaussians centered at random mean points




Soft clustering

 Each Gaussian is responsible for every data instance

— Responsibility B = pC =i|O)plx, |C =i,0"
ZP(CI =u|O)p(x, |C, =u,®")
u=1




Soft clustering

* Each Gaussian is repositioned by recalculating the
Gaussian means:




Probabilistic (soft) clustering algorithms

* Advantages:

— Good performance on overlapping regions

— Robustness to outliers

— Data attributes can have different types of values
* Drawbacks:

— EM 1s computationally expensive and can take time to
converge

— Density model should be given in advance




Hierarchical clustering

atety

* Builds a hierarchy of clusters

(groups) with singleton groups

at the bottom and ‘all points’ group
on the top

Uses many different dissimilarity measures

 Pure real-valued data-points:
— Euclidean, Manhattan, Minkowski Pure categorical data:
— Hamming distance,
— Combination of real-valued and categorical attributes
— Weighted, or Euclidean




Hierarchical clustering

Two versions of the hierarchical

clustering
 Agglomerative approach
— Merge pair of clusters in a
bottom-up fashion, starting #
from singleton clusters
o o ( & { o

* Divisive approach:

— Splits clusters in top-down
fashion, starting from one
complete cluster #
o o { & { o




Hierarchical (agglomerative) clustering

Approach:

e Compute dissimilarity matrix for all pairs of points
— uses standard or other distance measures

e Construct clusters greedily:
— Agglomerative approach

« Merge pair of clusters in a bottom-up fashion, starting
from singleton clusters

* Stop the greedy construction when some criterion is satisfied

— E.g. fixed number of clusters




Hierarchical (agglomerative) clustering

Approach:
e Compute dissimilarity matrix for all pairs of points

— uses standard or other distance measures




Hierarchical (agglomerative) clustering

Approach:
e Compute dissimilarity matrix for all pairs of points

— uses standard or other distance measures

N datapoints, O(N?) pairs, O(N?) distances




Hierarchical (agglomerative) clustering

Approach:

e Compute dissimilarity matrix for all pairs of points
— uses standard or other distance measures

e Construct clusters greedily:
— Agglomerative approach

« Merge pair of clusters in a bottom-up fashion, starting
from singleton clusters




Hierarchical (agglomerative) clustering

Approach:

e Compute dissimilarity matrix for all pairs of points
— uses standard or other distance measures

e Construct clusters greedily:
— Agglomerative approach

« Merge pair of clusters in a bottom-up fashion, starting
from singleton clusters
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Hierarchical (agglomerative) clustering

Approach:

e Compute dissimilarity matrix for all pairs of points
— uses standard or other distance measures

e Construct clusters greedily:
— Agglomerative approach

« Merge pair of clusters in a bottom-up fashion, starting
from singleton clusters
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Hierarchical (agglomerative) clustering

Approach:

e Compute dissimilarity matrix for all pairs of points
— uses standard or other distance measures

e Construct clusters greedily:
— Agglomerative approach

« Merge pair of clusters in a bottom-up fashion, starting
from singleton clusters

A




Cluster merging

* Agglomerative approach

— Merge pair of clusters 1n a bottom-up fashion, starting from
singleton clusters

— Merge clusters based on cluster (or linkage) distances.
Defined in terms of point distances. Examples:

Min distance d_, (C;,C. )= mm d(p,q)

peC;.qeC;

A




Cluster merging

* Agglomerative approach

— Merge pair of clusters in a bottom-up fashion, starting from
singleton clusters

— Merge clusters based on cluster (or linkage) distances.
Defined in terms of point distances. Examples:

Max distance d,, (C;,C;)= max d(p,q)

peC;.qeC;

A




Cluster merging

* Agglomerative approach

— Merge pair of clusters in a bottom-up fashion, starting from

singleton clusters

— Merge clusters based on cluster (or linkage) distances.
Defined in terms of point distances. Examples:

Mean distance
mea

A

n(Ciacj) —

d(ﬁ,zp”m |Z%J




Hierarchical (agglomerative) clustering

Approach:

e Compute dissimilarity matrix for all pairs of points
— uses standard or other distance measures

e Construct clusters greedily:
— Agglomerative approach

« Merge pair of clusters in a bottom-up fashion, starting
from singleton clusters

* Stop the greedy construction when some criterion is satisfied

— E.g. fixed number of clusters




Hierarchical (divisive) clustering

Approach:

e Compute dissimilarity matrix for all pairs of points

— uses standard distance or other dissimilarity measures
e Construct clusters greedily:

— Agglomerative approach

* Merge pair of clusters 1n a bottom-up fashion, starting
from singleton clusters

— Divisive approach:

* Splits clusters in top-down fashion, starting from one
complete cluster

* Stop the greedy construction when some criterion 1is satisfied

— E.g. fixed number of clusters




Hierarchical clustering example
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Hierarchical clustering example

Dendogram
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Hierarchical clustering

* Advantage:

— Smaller computational cost; avoids scanning all possible
clusterings

* Disadvantage:

— Greedy choice fixes the order in which clusters are merged;
cannot be repaired

 Partial solution:

— combine hierarchical clustering with iterative algorithms
like k-means algorithm




Other clustering methods

* Spectral clustering

— Relies on similarity matrix and its spectral decomposition
(e1igenvalues and eigenvectors)




