CS 2750 Machine Learning Lecture 19

Clustering

Milos Hauskrecht

milos@pitt.edu

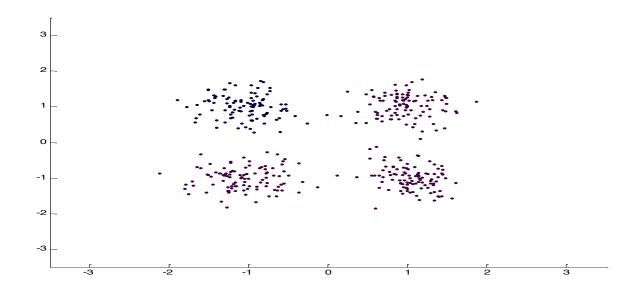
5329 Sennott Square

Clustering

Groups together "similar" instances in the dataset

Basic clustering problem:

- distribute data into k different groups such that data points similar to each other are in the same group
- Similarity between data points is typically defined in terms of some similarity measure or a distance metric

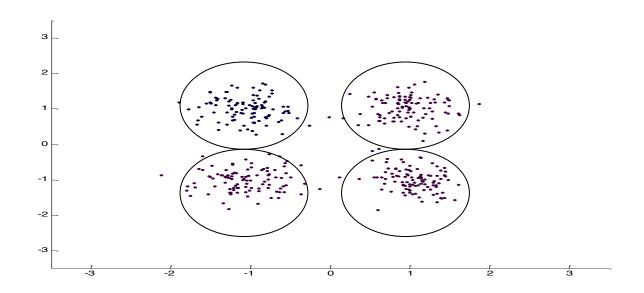


Clustering

Groups together "similar" instances in the dataset

Basic clustering problem:

- distribute data into k different groups such that data points similar to each other are in the same group
- Similarity between data points is typically defined in terms of some distance metric (can be chosen)



Clustering example

- Clustering. Group together similar examples in the dataset
- Clustering could be applied to different types of data instances

Clustering example

- Clustering. Group together similar examples in the dataset
- Clustering could be applied to different types of data instances

Patient #	Age	Sex	Heart Rate	Blood pressure
Patient 1	55	M	85	125/80
Patient 2	62	M	87	130/85
Patient 3	67	F	80	126/86
Patient 4	65	F	90	130/90
Patient 5	70	M	84	135/85

Clustering example

- Clustering. Group together similar examples in the dataset
- Clustering could be applied to different types of data instances

Patient #	Age	Sex	Heart Rate	Blood pressure
Patient 1	55	M	85	125/80
Patient 2	62	M	87	130/85
Patient 3	67	F	80	126/86
Patient 4	65	F	90	130/90
Patient 5	70	M	84	135/85

Key question: How to define similarity between instances?

Similarity and dissimilarity measures

Dissimilarity measure

- Numerical measure of how different two data objects are
- Often expressed in terms of a distance metric
- Example: Euclidean:

$$d(a,b) = \sqrt{\sum_{i=1}^{k} (a_i - b_i)^2}$$

Similarity measure

- Numerical measure of how alike two data objects are
- Examples:
 - Gaussian kernel:

$$K(a,b) = \frac{1}{(2\pi h^2)^{d/2}} \exp \left[-\frac{||a-b||_2^2}{2h^2} \right]$$

• Cosine similarity: $K(a,b) = a^T b$

Dissimilarity is often measured with the help of a distance metrics.

Properties of distance metrics:

Assume 2 data entries a, b

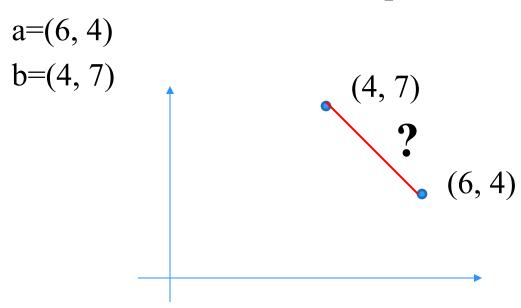
Positiveness: $d(a,b) \ge 0$

Symmetry: d(a,b) = d(b,a)

Identity: d(a,a) = 0

Triangle inequality: $d(a,c) \le d(a,b) + d(b,c)$

Assume 2 real-valued data-points:

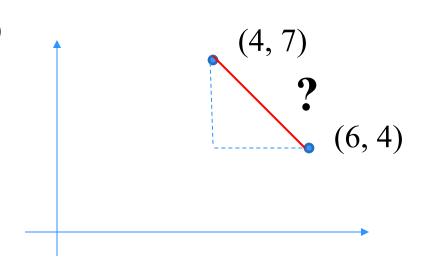


What distance metric to use?

Assume 2 real-valued data-points:

$$a=(6, 4)$$

 $b=(4, 7)$



What distance metric to use?

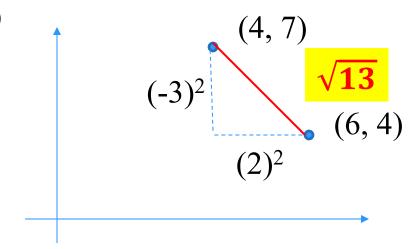
Euclidian:

$$d(a,b) = \sqrt{\sum_{i=1}^{k} (a_i - b_i)^2}$$

Assume 2 real-valued data-points:

$$a=(6, 4)$$

$$b = (4, 7)$$

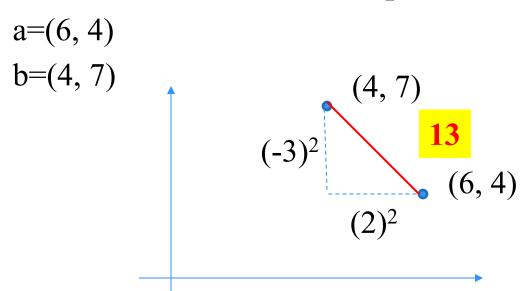


What distance metric to use?

Euclidian:

$$d(a,b) = \sqrt{\sum_{i=1}^{k} (a_i - b_i)^2}$$

Assume 2 real-valued data-points:

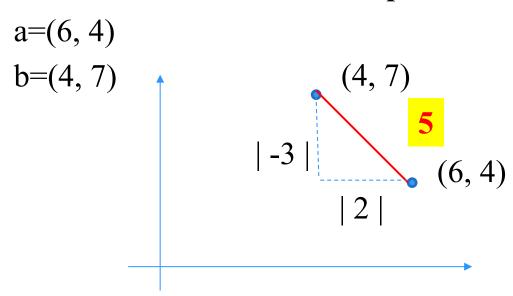


What distance metric to use?

Squared Euclidian: works for an arbitrary k-dimensional space $\frac{k}{k}$

$$d^{2}(a,b) = \sum_{i=1}^{k} (a_{i} - b_{i})^{2}$$

Assume 2 real-valued data-points:



Manhattan distance:

works for an arbitrary k-dimensional space

$$d(a,b) = \sum_{i=1}^{k} |a_i - b_i|$$

 $\Gamma^{^{-1}}$

Distance measures

Generalized distance metric:

$$d^{2}(\mathbf{a},\mathbf{b}) = (\mathbf{a} - \mathbf{b})^{T} \mathbf{\Gamma}^{-1} (\mathbf{a} - \mathbf{b})$$

- Γ semi-definite positive matrix
- Γ^{-1} is a matrix that weights attributes proportionally to their importance. Different weights lead to a different distance metric.
- If $\Gamma = I$ we get squared Euclidean $\Gamma = \Sigma$ (covariance matrix) we get the Mahalanobis distance that takes into account correlations among attributes

 Γ^{-1}

Distance measures

Generalized distance metric:

$$d^{2}(\mathbf{a},\mathbf{b}) = (\mathbf{a} - \mathbf{b})^{T} \mathbf{\Gamma}^{-1} (\mathbf{a} - \mathbf{b})$$

Special case: $\Gamma = I$ we get squared Euclidean

Example:

$$\mathbf{a} = \begin{bmatrix} 6 \\ 4 \end{bmatrix} \qquad \mathbf{b} = \begin{bmatrix} 4 \\ 7 \end{bmatrix} \qquad \Gamma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \Gamma^{-1}$$

$$d^{2}(\mathbf{a}, \mathbf{b}) = \begin{bmatrix} 2 - 3 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ -3 \end{bmatrix} = 2^{2} + (-3)^{2} = 13$$

Generalized distance metric:

$$d^{2}(\mathbf{a},\mathbf{b}) = (\mathbf{a} - \mathbf{b})^{T} \mathbf{\Gamma}^{-1} (\mathbf{a} - \mathbf{b})$$

Special case: $\Gamma = \Sigma$ defines **Mahalanobis distance**

Example: Assume dimensions are independent in data

Covariance matrix

Inverse covariance

$$\sum = \begin{pmatrix} \sigma_1^2 & 0 \\ 0 & \sigma_2^2 \end{pmatrix}$$

$$\sum ^{-1} = \begin{pmatrix} \frac{1}{\sigma_1^2} & 0 \\ 0 & \frac{1}{\sigma_2^2} \end{pmatrix}$$

$$d^{2}(\mathbf{a}, \mathbf{b}) = \begin{bmatrix} 2 & -3 \end{bmatrix} \begin{bmatrix} \frac{1}{\sigma_{1}^{2}} & 0 \\ 0 & \frac{1}{\sigma_{2}^{2}} \end{bmatrix} \begin{bmatrix} 2 \\ -3 \end{bmatrix} = \frac{2^{2}}{\sigma_{1}^{2}} + \frac{(-3)^{2}}{\sigma_{2}^{2}}$$

Contribution of each dimension to the squared Euclidean is normalized (rescalled) by the variance of that dimension

Assume categorical data where integers represent the different categories:

```
      0
      1
      1
      0
      0

      1
      0
      3
      0
      1

      2
      1
      1
      0
      2

      1
      1
      1
      1
      2
```

. . .

What distance metric to use?

Assume categorical data where integers represent the different categories:

```
      0
      1
      1
      0
      0

      1
      0
      3
      0
      1

      2
      1
      1
      0
      2

      1
      1
      1
      1
      2
```

• • •

What distance metric to use?

Hamming distance: The number of values that need to be changed to make them the same

Assume pure binary values data:

```
      0
      1
      1
      0
      1

      1
      0
      1
      0
      1

      0
      1
      1
      0
      1

      1
      1
      1
      1
      1
```

One metric is the **Hamming distance:** The number of bits that need to be changed to make the entries the same

How about squared Euclidean?

$$d^{2}(a,b) = \sum_{i=1}^{k} (a_{i} - b_{i})^{2}$$

Assume pure binary values data:

• • •

One metric is the **Hamming distance:** The number of bits that need to be changed to make the entries the same

How about the squared Euclidean?

$$d^{2}(a,b) = \sum_{i=1}^{k} (a_{i} - b_{i})^{2}$$

The same as Hamming distance

Combination of real-valued and categorical attributes

Patient #	Age	Sex	Heart Rate	Blood pressure
Patient 1	55	M	85	125/80
Patient 2	62	M	87	130/85
Patient 3	67	F	80	126/86
Patient 4	65	F	90	130/90
Patient 5	70	M	84	135/85

What distance metric to use?

Combination of real-valued and categorical attributes

Patient #	Age	Sex	Heart Rate	Blood pressure
Patient 1	55	M	85	125/80
Patient 2	62	M	87	130/85
Patient 3	67	F	80	126/86
Patient 4	65	F	90	130/90
Patient 5	70	M	84	135/85

What distance metric to use? Solutions:

- A weighted sum approach: e.g. a mix of Euclidian and Hamming distances for subsets of attributes
- Generalized distance metric (a weighted combination, use one-hot representation of categories)

More complex solutions: tensors and decompositions

Distance metrics and similarity

- Dissimilarity/distance measure
- Similarity measure
 - Numerical measure of how alike two data objects are

a-b

- Do not have to satisfy the properties like the ones for the distance metric
- Examples:
 - Cosine similarity $K(a,b) = a^T b$

Gaussian kernel:
$$K(a,b) = \frac{1}{\left(2\pi h^2\right)^{d/2}} \exp\left[-\frac{\|a-b\|_2^2}{2h^2}\right]$$

Clustering

Clustering is useful for:

- Similarity/dissimilarity analysis

 Analyze what data points in the data are close to each other
- Dimensionality reduction
 High dimensional data replaced with a group (cluster) label
- Data reduction: Replaces many data-points with a point representing the group mean

Challenges:

- How to measure similarity (problem/data specific)?
- How to choose the number of groups?
 - Many clustering algorithms require us to provide the number of groups ahead of time

Clustering algorithms

- K-means algorithm
- Probabilistic (soft) clustering methods (with EM) = soft clustering
 - Latent variable models: class (cluster) is represented by a latent (hidden) variable value
 - Every point goes to the class with the highest posterior
 - Examples: mixture of Gaussians, Naïve Bayes with a hidden class
- Hierarchical methods
 - Agglomerative
 - Divisive

K-means clustering algorithm

- an iterative clustering algorithm
- works in the d-dimensional R space representing \mathbf{x}

K-Means clusterting algorithm:

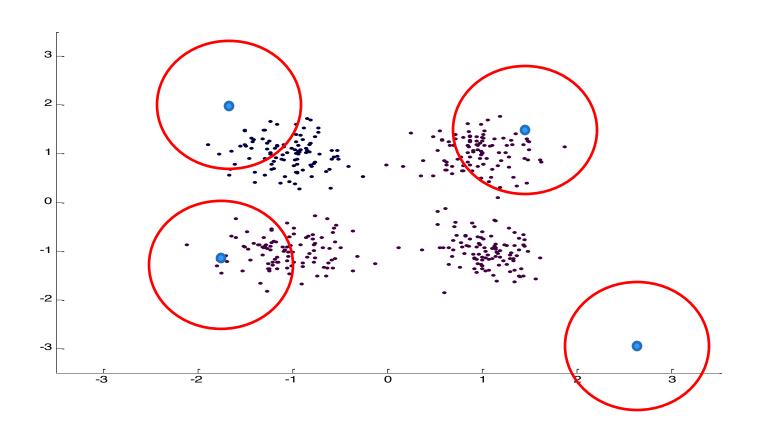
Initialize randomly *k* values of means (centers)

Repeat

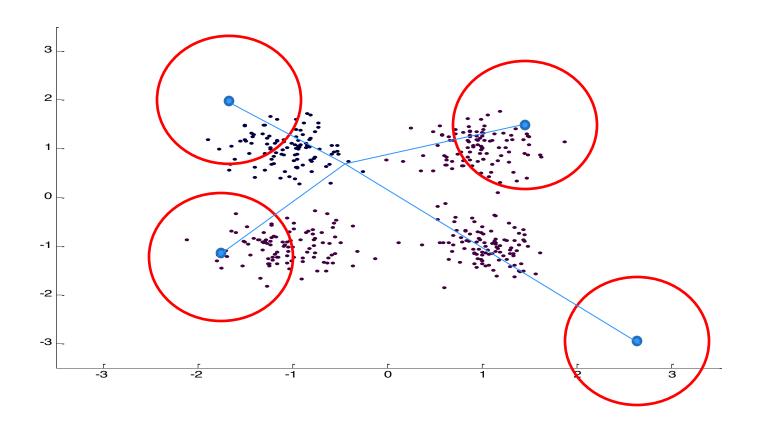
- Partition the data according to the current set of means (using the similarity measure)
- Move the means to the center of the data in the current partition

Until no change in the means

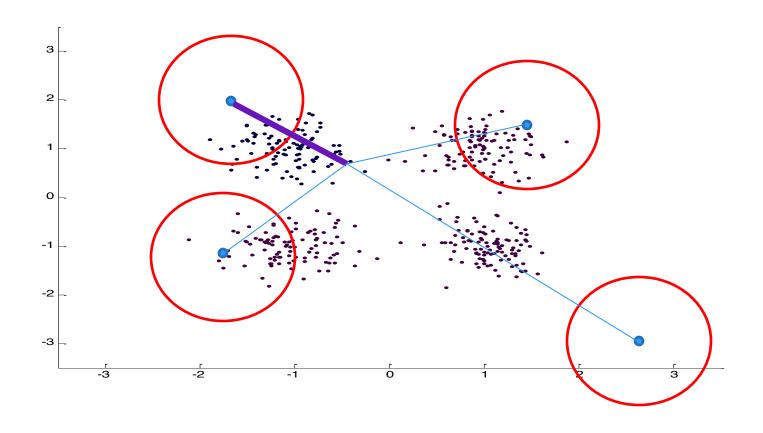
• Initialize the cluster centers



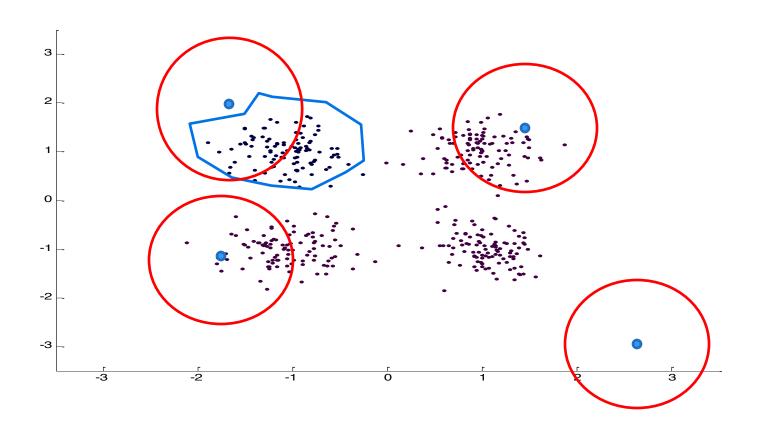
Calculate the distances of each point to all centers



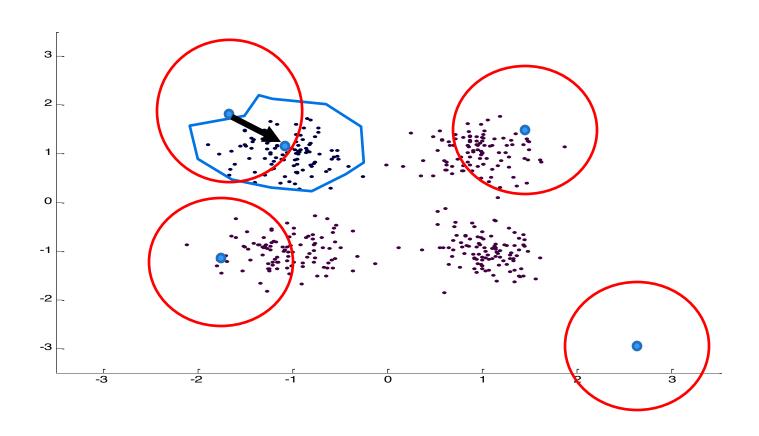
• For each example pick the best (closest) center



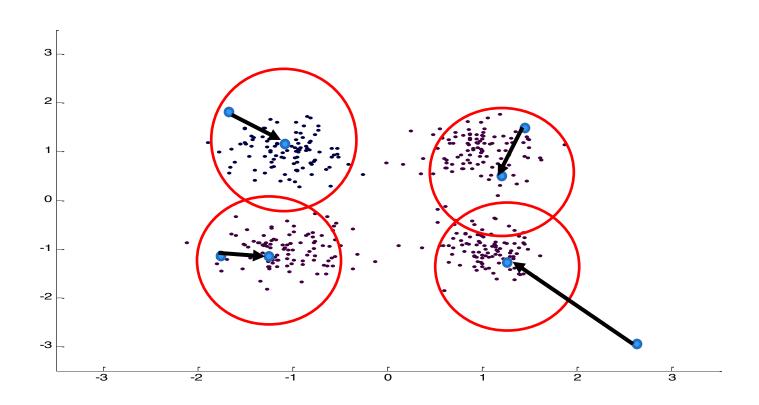
 Recalculate the new mean from all data examples assigned to the same cluster center



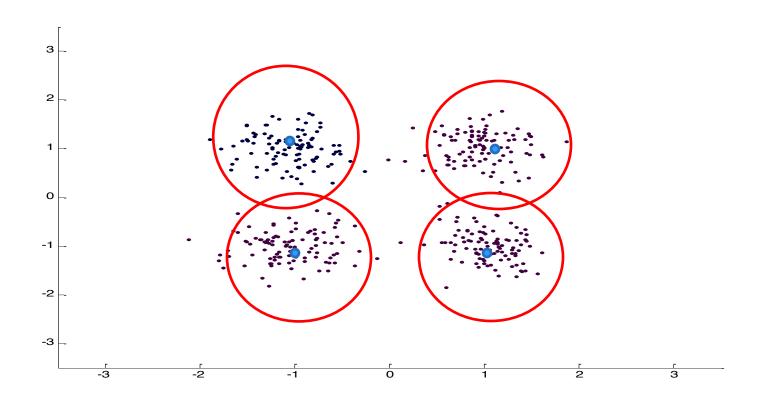
• Shift the cluster center to the new mean



Shift the cluster centers to the new calculated means



- And repeat the iteration ...
- Till no change in the centers



K-means clustering algorithm

K-Means algorithm:

Initialize randomly *k* values of means (centers)

Repeat

- Partition the data according to the current set of means (using the similarity measure)
- Move the means to the center of the data in the current partition

Until no change in the means

Properties:

 Minimizes the sum of squared center-point distances for all clusters

$$\min_{\mathbf{S}} \sum_{i=1}^{k} \sum_{x_j \in S_i} ||x_j - u_i||^2 \qquad u_i = \text{center of cluster } S_i$$

K-means clustering algorithm

• Properties:

- converges to centers minimizing the sum of squared center-point distances (still local optima)
- The result is **sensitive** to the initial means' values

Advantages:

- Simplicity
- Generality can work for more than one distance measure

Drawbacks:

- Can perform poorly with overlapping regions
- Lack of robustness to outliers
- Good for attributes (features) with continuous values
 - Allows us to compute cluster means
 - k-medoid algorithm used for discrete data

Probabilistic (soft) clustering algorithms

Latent variable models

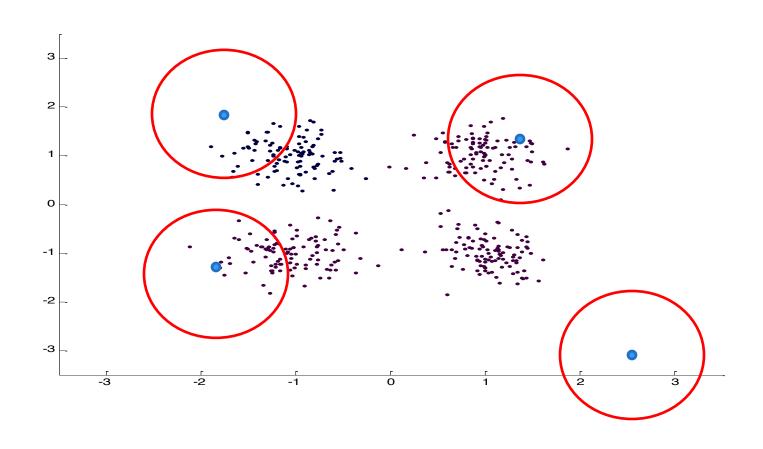
Examples: Mixture of Gaussians

Naïve Bayes with hidden class

- Iterative algorithm:
 - Steps correspond to the steps of the EM algorithm
- Mixture of Gaussian model:
 - Difference from k-means: each mean is responsible for every data instance, responsibilities can be different based on the distance of a Gaussian from the data instance
- Final clusters:
 - the data point belongs to the class with the highest posterior

Soft clustering

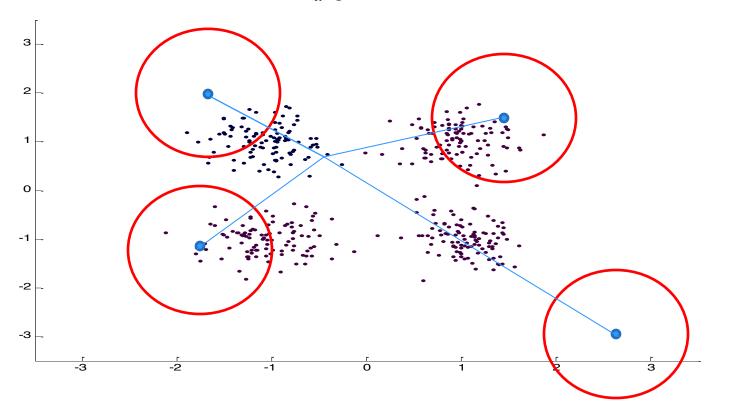
• Gaussians centered at random mean points



Soft clustering

• Each Gaussian is responsible for every data instance

$$h_{il} = \frac{p(C_l = i \mid \Theta') p(x_l \mid C_l = i, \Theta')}{\sum_{u=1}^{m} p(C_l = u \mid \Theta') p(x_l \mid C_l = u, \Theta')}$$



Soft clustering

Each Gaussian is repositioned by recalculating the

Gaussian means: 3 o -2 -3

Probabilistic (soft) clustering algorithms

Advantages:

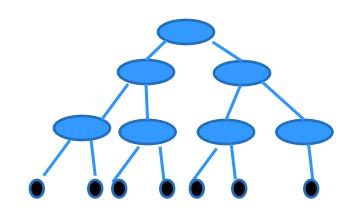
- Good performance on overlapping regions
- Robustness to outliers
- Data attributes can have different types of values

Drawbacks:

- EM is computationally expensive and can take time to converge
- Density model should be given in advance

Hierarchical clustering

Builds a hierarchy of clusters
 (groups) with singleton groups
 at the bottom and 'all points' group
 on the top



Uses many different dissimilarity measures

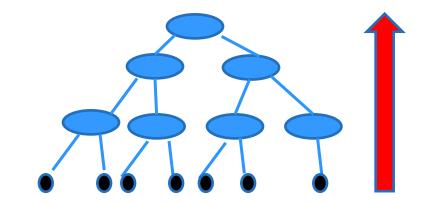
- Pure real-valued data-points:
 - Euclidean, Manhattan, Minkowski Pure categorical data:
 - Hamming distance,
 - Combination of real-valued and categorical attributes
 - Weighted, or Euclidean

Hierarchical clustering

Two versions of the hierarchical clustering

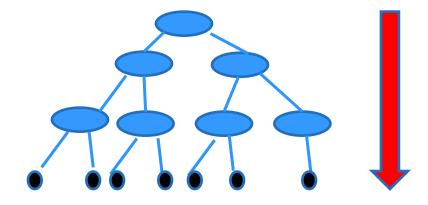
Agglomerative approach

 Merge pair of clusters in a bottom-up fashion, starting from singleton clusters



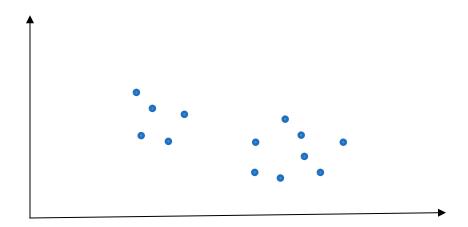
Divisive approach:

 Splits clusters in top-down fashion, starting from one complete cluster



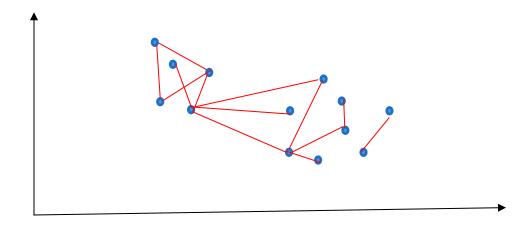
- Compute dissimilarity matrix for all pairs of points
 - uses standard or other distance measures
- Construct clusters greedily:
 - Agglomerative approach
 - Merge pair of clusters in a bottom-up fashion, starting from singleton clusters
- Stop the greedy construction when some criterion is satisfied
 - E.g. fixed number of clusters

- Compute dissimilarity matrix for all pairs of points
 - uses standard or other distance measures



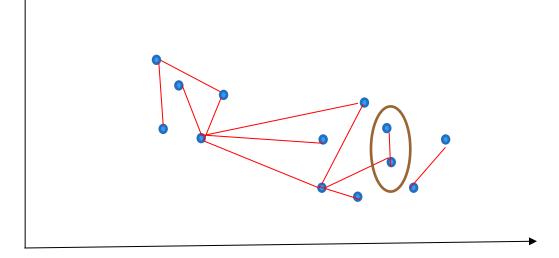
Approach:

- Compute dissimilarity matrix for all pairs of points
 - uses standard or other distance measures

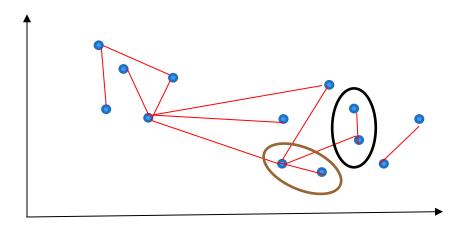


N datapoints, O(N²) pairs, O(N²) distances

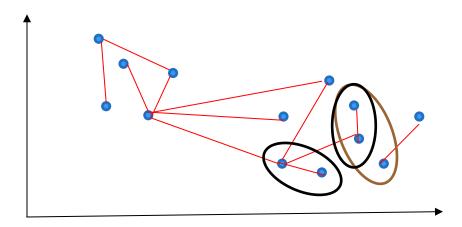
- Compute dissimilarity matrix for all pairs of points
 - uses standard or other distance measures
- Construct clusters greedily:
 - Agglomerative approach
 - Merge pair of clusters in a bottom-up fashion, starting from singleton clusters



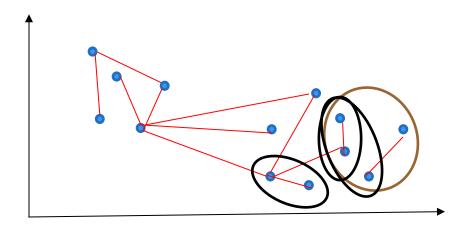
- Compute dissimilarity matrix for all pairs of points
 - uses standard or other distance measures
- Construct clusters greedily:
 - Agglomerative approach
 - Merge pair of clusters in a bottom-up fashion, starting from singleton clusters



- Compute dissimilarity matrix for all pairs of points
 - uses standard or other distance measures
- Construct clusters greedily:
 - Agglomerative approach
 - Merge pair of clusters in a bottom-up fashion, starting from singleton clusters



- Compute dissimilarity matrix for all pairs of points
 - uses standard or other distance measures
- Construct clusters greedily:
 - Agglomerative approach
 - Merge pair of clusters in a bottom-up fashion, starting from singleton clusters



Cluster merging

- Agglomerative approach
 - Merge pair of clusters in a bottom-up fashion, starting from singleton clusters
 - Merge clusters based on cluster (or linkage) distances.
 Defined in terms of point distances. Examples:

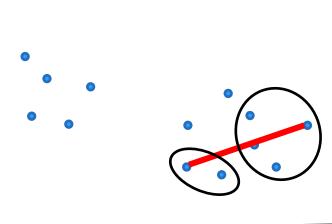
Min distance
$$d_{\min}(C_i, C_j) = \min_{p \in C_i, q \in C_j} d(p, q)$$

Cluster merging

Agglomerative approach

- Merge pair of clusters in a bottom-up fashion, starting from singleton clusters
- Merge clusters based on cluster (or linkage) distances.
 Defined in terms of point distances. Examples:

Max distance
$$d_{\max}(C_i, C_j) = \max_{p \in C_i, q \in C_j} d(p, q)$$



Cluster merging

Agglomerative approach

- Merge pair of clusters in a bottom-up fashion, starting from singleton clusters
- Merge clusters based on cluster (or linkage) distances.
 Defined in terms of point distances. Examples:

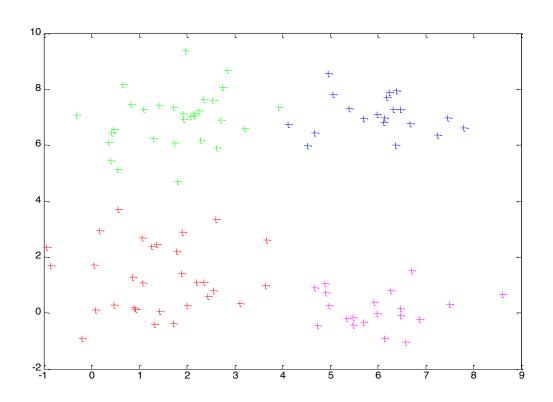
Mean distance
$$d_{mean}(C_i, C_j) = \left| d \left(\frac{1}{|C_i|} \sum_i p_i; \frac{1}{|C_j|} \sum_j q_j \right) \right|$$

- Compute dissimilarity matrix for all pairs of points
 - uses standard or other distance measures
- Construct clusters greedily:
 - Agglomerative approach
 - Merge pair of clusters in a bottom-up fashion, starting from singleton clusters
- Stop the greedy construction when some criterion is satisfied
 - E.g. fixed number of clusters

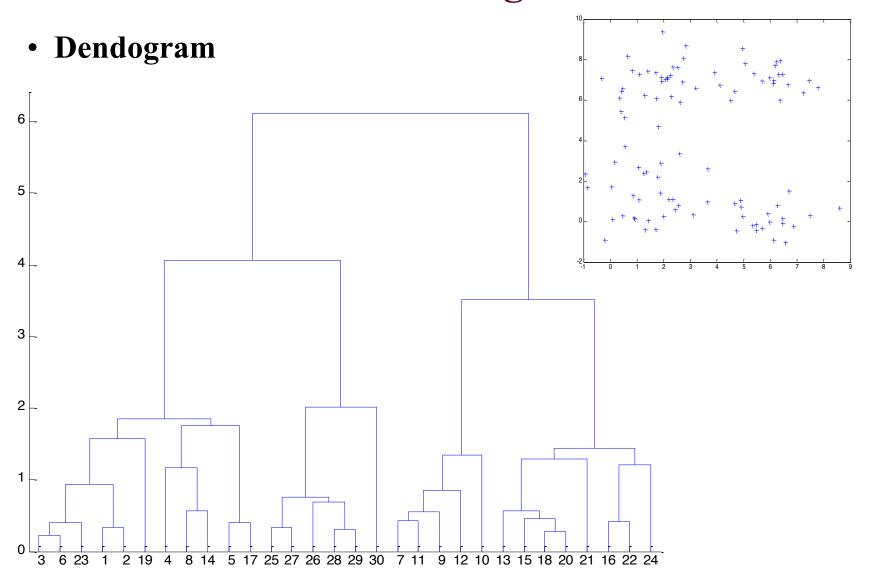
Hierarchical (divisive) clustering

- Compute dissimilarity matrix for all pairs of points
 - uses standard distance or other dissimilarity measures
- Construct clusters greedily:
 - Agglomerative approach
 - Merge pair of clusters in a bottom-up fashion, starting from singleton clusters
 - Divisive approach:
 - Splits clusters in top-down fashion, starting from one complete cluster
- Stop the greedy construction when some criterion is satisfied
 - E.g. fixed number of clusters

Hierarchical clustering example



Hierarchical clustering example



Hierarchical clustering

Advantage:

Smaller computational cost; avoids scanning all possible clusterings

Disadvantage:

Greedy choice fixes the order in which clusters are merged;
 cannot be repaired

Partial solution:

 combine hierarchical clustering with iterative algorithms like k-means algorithm

Other clustering methods

Spectral clustering

 Relies on similarity matrix and its spectral decomposition (eigenvalues and eigenvectors)