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Clustering
Groups together “similar” instances in the dataset
Basic clustering problem:
• distribute data into k different groups such that data points 

similar to each other are in the same group 
• Similarity between data points is typically defined in terms 

of some similarity measure or a distance metric
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Clustering
Groups together “similar” instances in the dataset
Basic clustering problem:
• distribute data into k different groups such that data points 

similar to each other are in the same group 
• Similarity between data points is typically defined in terms 

of some distance metric (can be chosen)
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Clustering example
• Clustering. Group together similar examples in the dataset
• Clustering could be applied to different types of data instances
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• Clustering. Group together similar examples in the dataset
• Clustering could be applied to different types of data instances

Patient #        Age    Sex     Heart Rate     Blood pressure …    

Patient  1        55        M            85                    125/80 

Patient  2        62        M            87                    130/85 

Patient  3        67        F             80                    126/86 

Patient  4        65        F             90                    130/90 

Patient  5        70        M            84                    135/85 



Clustering example

• Clustering. Group together similar examples in the dataset
• Clustering could be applied to different types of data instances

Key question: How to define similarity between instances?

Patient #        Age    Sex     Heart Rate     Blood pressure …    

Patient  1        55        M            85                    125/80 

Patient  2        62        M            87                    130/85 

Patient  3        67        F             80                    126/86 

Patient  4        65        F             90                    130/90 

Patient  5        70        M            84                    135/85 



Similarity and dissimilarity measures 
• Dissimilarity measure

– Numerical measure of how different two data objects are
– Often expressed in terms of a distance metric
- Example:  Euclidean: 

• Similarity measure
– Numerical measure of how alike two data objects are
– Examples: 

• Gaussian kernel: 

• Cosine similarity:

( ) ú
û

ù
ê
ë

é -
-= 2

2
2

2/2 2
||||exp

2
1),(

h
ba

h
baK dp

babaK T=),(

å
=

-=
k

i
ii babad

1

2)(),(



Distance metrics 
Dissimilarity is often measured with the help of a distance 

metrics.

Properties of distance metrics:
Assume 2 data entries a, b

Positiveness:
Symmetry:
Identity:
Triangle inequality: 
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Distance metrics 

Assume 2 real-valued data-points:
a=(6, 4)
b=(4, 7)

What distance metric to use?
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What distance metric to use?
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Distance metrics 

Assume 2 real-valued data-points:
a=(6, 4)
b=(4, 7)

What distance metric to use?
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Distance metrics 

Assume 2 real-valued data-points:
a=(6, 4)
b=(4, 7)

What distance metric to use?
Squared Euclidian: works for an arbitrary k-dimensional 

space
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Distance metrics 

Assume 2 real-valued data-points:
a=(6, 4)
b=(4, 7)

Manhattan distance:
works for an arbitrary k-dimensional space
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Distance measures 
Generalized distance metric:

semi-definite positive matrix 
is a matrix that weights attributes proportionally to their 
importance.  Different weights lead to a different distance 
metric. 

If             we get squared Euclidean  
(covariance matrix) – we get the Mahalanobis

distance that takes into account correlations among 
attributes

I=G

)()()( 12 baΓbaba, --= -Td

1-G

G

S=G

1-G



Distance measures 
Generalized distance metric:

Special case:             we get squared Euclidean
Example:    

I=G
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Distance measures 
Generalized distance metric:

Special case:             defines Mahalanobis distance
Example:  Assume dimensions are independent in data    
Covariance matrix                  Inverse covariance

Contribution of each dimension to the squared Euclidean is 
normalized (rescalled) by the variance of that dimension
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Distance measures

Assume categorical  data where integers represent the 
different categories:

What distance metric to use?

0   1   1   0   0 
1   0   3   0   1
2   1   1   0   2
1   1   1   1   2
…



Distance measures 

Assume categorical  data where integers represent the 
different categories:

What distance metric to use?
Hamming distance: The number of values that need to be 

changed to make them the same

0   1   1   0   0 
1   0   3   0   1
2   1   1   0   2
1   1   1   1   2
…



Distance measures. 

Assume pure binary values data:

One metric is the Hamming distance: The number of bits that 
need to be changed to make the entries the same

How about squared Euclidean? 

0   1   1   0   1 
1   0   1   0   1
0   1   1   0   1
1   1   1   1   1
…
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Distance measures. 

Assume pure binary values data:

One metric is the Hamming distance: The number of bits that 
need to be changed to make the entries the same

How about the squared Euclidean?

The same as Hamming distance 

0   1   1   0   1 
1   0   1   0   1
0   1   1   0   1
1   1   1   1   1
…
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Distance measures

Combination of real-valued and categorical attributes

What distance metric to use?

Patient #        Age    Sex     Heart Rate     Blood pressure …    
Patient  1        55        M            85                    125/80 
Patient  2        62        M            87                    130/85 
Patient  3        67        F             80                    126/86 
Patient  4        65        F             90                    130/90 
Patient  5        70        M            84                    135/85 



Distance measures 
Combination of real-valued and categorical attributes

What distance metric to use? Solutions:  
• A weighted sum approach: e.g. a mix of Euclidian and 

Hamming distances for subsets of attributes
• Generalized distance metric (a weighted combination, use 

one-hot representation  of categories)
More complex solutions:  tensors and decompositions

Patient #        Age    Sex     Heart Rate     Blood pressure …    
Patient  1        55        M            85                    125/80 
Patient  2        62        M            87                    130/85 
Patient  3        67        F             80                    126/86 
Patient  4        65        F             90                    130/90 
Patient  5        70        M            84                    135/85 



Distance metrics and similarity 
• Dissimilarity/distance measure
• Similarity measure

– Numerical measure of how alike two data objects are
– Do not have to satisfy the properties like the ones for the 

distance metric 
– Examples:

• Cosine similarity:
• Gaussian kernel: 
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Clustering
Clustering is useful for:
• Similarity/dissimilarity  analysis

Analyze what data points in the data are close to each other 
• Dimensionality reduction

High dimensional data replaced with a group (cluster) label
• Data reduction: Replaces many data-points with a point 

representing the group mean  
Challenges:
• How to measure similarity (problem/data specific)?
• How to choose the number of groups?

– Many clustering algorithms require us to provide the 
number of groups ahead of time



Clustering algorithms
• K-means algorithm 
• Probabilistic (soft) clustering methods (with EM) = soft 

clustering
– Latent variable models: class (cluster) is represented by 

a latent (hidden) variable value
– Every point goes to the class with the highest posterior
– Examples: mixture of Gaussians, Naïve Bayes with a 

hidden class
• Hierarchical methods

– Agglomerative
– Divisive



K-means clustering algorithm
• an iterative clustering algorithm
• works in the d-dimensional R space representing x 

K-Means clusterting algorithm:
Initialize randomly k values of means (centers)
Repeat
– Partition the data according to the current set of means 

(using the similarity measure)
– Move the means to the center of the data in the current 

partition
Until no change in the means



K-means: example

• Initialize the cluster centers
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K-means: example

• Calculate the distances of each point to all centers
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K-means: example

• For each example pick the best (closest) center
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K-means: example

• Recalculate the new mean from all data examples assigned 
to the same cluster center
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K-means: example

• Shift the cluster center to the new mean
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K-means: example

• Shift the cluster centers to the new calculated means
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K-means: example

• And repeat the iteration …
• Till no change in the centers



K-means clustering algorithm
K-Means algorithm:

Initialize randomly k values of means (centers)
Repeat
– Partition the data according to the current set of means 

(using the similarity measure)
– Move the means to the center of the data in the current 

partition
Until no change in the means

Properties: 
• Minimizes the sum of squared center-point distances for all 

clusters 
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K-means clustering algorithm
• Properties:

– converges to centers minimizing the sum of squared 
center-point distances (still local optima) 

– The result is sensitive to the initial means’ values
• Advantages:

– Simplicity
– Generality – can work for more than one distance measure

• Drawbacks:
– Can perform poorly with overlapping regions
– Lack of robustness to outliers
– Good for attributes (features) with continuous values

• Allows us to compute cluster means
• k-medoid algorithm used for discrete data



Probabilistic (soft) clustering algorithms

• Latent variable models
Examples: Mixture of Gaussians 

Naïve Bayes with hidden class
• Iterative algorithm:

– Steps correspond to the steps of the EM algorithm
• Mixture of Gaussian model:

– Difference from k-means: each mean is responsible for 
every data instance, responsibilities can be different based 
on the distance of a Gaussian from the data instance

• Final clusters: 
– the data point belongs to the class with the highest posterior



Soft clustering 

• Gaussians centered at random mean points
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Soft clustering
• Each Gaussian is responsible for every data instance

– Responsibility
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Soft clustering
• Each Gaussian is repositioned by recalculating the 

Gaussian means:  
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Probabilistic (soft) clustering algorithms

• Advantages:
– Good performance on overlapping regions
– Robustness to outliers
– Data attributes can have different types of values

• Drawbacks:
– EM is computationally expensive and can take time to 

converge
– Density model should be given in advance



Hierarchical clustering 
• Builds a  hierarchy of clusters 

(groups) with singleton groups 
at the bottom and ‘all points’ group 
on the top

Uses many different dissimilarity measures
• Pure real-valued data-points:

– Euclidean, Manhattan, Minkowski Pure categorical data:
– Hamming distance,
– Combination of real-valued and categorical attributes
– Weighted, or Euclidean



Hierarchical clustering 
Two versions of the hierarchical 

clustering
• Agglomerative approach

– Merge pair of clusters in a 
bottom-up fashion, starting 
from singleton clusters

• Divisive approach: 
– Splits clusters in top-down 

fashion, starting from one 
complete cluster



Hierarchical (agglomerative) clustering 
Approach:
• Compute dissimilarity matrix for all pairs of points 

– uses standard or other distance measures
• Construct clusters greedily:

– Agglomerative approach
• Merge pair of clusters in a bottom-up fashion, starting 

from singleton clusters
• Stop the greedy construction when some criterion is satisfied

– E.g. fixed number of clusters



Hierarchical (agglomerative) clustering 
Approach:
• Compute dissimilarity matrix for all pairs of points 

– uses standard or other distance measures



Hierarchical (agglomerative) clustering 
Approach:
• Compute dissimilarity matrix for all pairs of points 

– uses standard or other distance measures

N datapoints, O(N2) pairs, O(N2) distances



Hierarchical (agglomerative) clustering 
Approach:
• Compute dissimilarity matrix for all pairs of points 

– uses standard or other distance measures
• Construct clusters greedily:

– Agglomerative approach
• Merge pair of clusters in a bottom-up fashion, starting 

from singleton clusters
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Hierarchical (agglomerative) clustering 
Approach:
• Compute dissimilarity matrix for all pairs of points 

– uses standard or other distance measures
• Construct clusters greedily:

– Agglomerative approach
• Merge pair of clusters in a bottom-up fashion, starting 

from singleton clusters



Hierarchical (agglomerative) clustering 
Approach:
• Compute dissimilarity matrix for all pairs of points 

– uses standard or other distance measures
• Construct clusters greedily:

– Agglomerative approach
• Merge pair of clusters in a bottom-up fashion, starting 

from singleton clusters



Cluster merging
• Agglomerative approach

– Merge pair of clusters in a bottom-up fashion, starting from 
singleton clusters

– Merge clusters based on cluster (or linkage) distances. 
Defined in terms of point distances. Examples:
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Cluster merging
• Agglomerative approach

– Merge pair of clusters in a bottom-up fashion, starting from 
singleton clusters

– Merge clusters based on cluster (or linkage) distances. 
Defined in terms of point distances. Examples:

),(max),(
,max qpdCCd

ji CqCpji ÎÎ
=Max distance



Cluster merging
• Agglomerative approach

– Merge pair of clusters in a bottom-up fashion, starting from 
singleton clusters

– Merge clusters based on cluster (or linkage) distances. 
Defined in terms of point distances. Examples:
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Hierarchical (agglomerative) clustering 
Approach:
• Compute dissimilarity matrix for all pairs of points 

– uses standard or other distance measures
• Construct clusters greedily:

– Agglomerative approach
• Merge pair of clusters in a bottom-up fashion, starting 

from singleton clusters
• Stop the greedy construction when some criterion is satisfied

– E.g. fixed number of clusters



Hierarchical (divisive) clustering 
Approach:
• Compute dissimilarity matrix for all pairs of points 

– uses standard distance or other dissimilarity measures
• Construct clusters greedily:

– Agglomerative approach
• Merge pair of clusters in a bottom-up fashion, starting 

from singleton clusters
– Divisive approach: 

• Splits clusters in top-down fashion, starting from one 
complete cluster

• Stop the greedy construction when some criterion is satisfied
– E.g. fixed number of clusters



Hierarchical clustering example
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Hierarchical clustering example
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Hierarchical clustering
• Advantage:

– Smaller computational cost; avoids scanning all possible 
clusterings

• Disadvantage:
– Greedy choice fixes the order in which clusters are merged; 

cannot be repaired
• Partial solution:

– combine hierarchical clustering with iterative algorithms 
like k-means algorithm



Other clustering methods
• Spectral clustering

– Relies on similarity matrix and its spectral decomposition 
(eigenvalues and eigenvectors)


