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Learning probability distributions

Basic learning settings:
e A set of random variables X={X,,X,,....X, }
* A model of the distribution over variables in X
with parameters ©

-« Data D={D,D,,.,D,} st D, =(x,x,...x,)
Objective: find parameters O that describe p(X) based on D
Assumptions considered so far:

— Known parameterizations

— No hidden variables

— No-missing values

This lecture: learning with hidden variables and missing values
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Learning with hidden variables and
missing values

Problem: we want to learn P(X) from data D

« Data consists of instances with values assigned to variables
* But sometimes the values are hidden or missing

Data X X Xs Extended x, x, Xs h
T T F T T/| Data TT F T T -
T - T F F T- T F F|[-
F 4\ x F T FT - F T /‘-
\\\
W\

Hidden variable h

Missing values o
(all values missing)
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Density estimation

Goal: Find the best set of parameters @ based on data

Estimation criteria:

- ML maxp(D[0,5)
— Bayesian  p(®|D,S)

Why hidden vars and missing values are a problem? The
parameter estimation for models defined by a set of parameters
does not decompose to a set of independent estimation tasks

Approaches for ML estimates: general optimization methods:
gradient-ascent, conjugate gradient, Newton-Rhapson, etc

An alternative optimization method:
 Expectation-maximization (EM) method <:|
— Suitable when there are missing or hidden values

— Takes advantage of the structure of the belief network

CS 2750 Machine Learning



General EM

The key idea of a method:

Compute the parameter estimates iteratively by performing the
following two steps:

Two steps of the EM:

1. Expectation step. For all hidden and missing variables (and
their possible value assignments) calculate their expectations
for the current set of parameters ©'

2. Maximization step. Compute the new estimates of ® by
considering the expectations of the different value
completions

Stop when no improvement possible
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General EM

Current parameters ' estimating P(x)
(1) Expectation step. For all hidden and missing variables (and
their possible value assignments) calculate their expectations for

the current set of parameters
Calculate expectations for all unknown

X, X x5 h
1 A : . |
value assignments using )

T'T F T T -

T —\T\F F - P =T |DV,0")
1 _ (1) '
F T - ‘F\\T\\\ P(h =F|D",0")
T~ P(x,” =T,n® =7 | D?,0")
P(x,” =T,h® =F | D?,0"

P(x,” =F,h® =T |D?,0"
P(x, =F,h® =F | D?®,0"
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General EM

Current parameters ' estimating P(x)
(1) Expectation step. For all hidden and missing variables (and
their possible value assignments) calculate their expectations for

the current set of parameters
Calculate expectations for all unknown

X, X x5 h
) : . \
value assignments using )

T'T F T T -

P(h" =[T]| D", ®")

T T F F -_
FI T \\F\\T\\\ P(h" =F|| D.,0")
\

P(x,”” =11, n® =|1|| D@, 0"
P(x,'”” [T\ h® =|F|| D®,0")
P(x,”” =|F,n® =|T|| D®,0")
P(x2(2) :F,h(z) —|F |D(2),@')
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General EM

Current parameters ©'

(2) Maximization step. Compute the new improved estimates of
parameters ) by considering the expectations of the different

value completions

X, X, Xs h Compute the new estimates

of
T T  F|T O

T/ -_T F - P =T |DV,0")

T
F
1 _ (D '
ET \\T\ x P(h® =F| DY, 0"
(2) _ (2) _ (2) '
P(x,” =T,h® =T |D?,0"

P(x,” =T,n® =F | D?,0"

P(x,” =F.h'® =T | D?,0")
P(x,” =F.h'® =F | D?,0"




EM details

Let H — be a set of hidden or missing variable values 1n data

Derivation
P(H,D|0,5)=P(H |D,0,5)P(D|0O,5)

logP(H,D|0,&)=log P(H |D,0,&)+1log P(D|0©,%)
logP(D|0©,&)=log P(H,D|0,$)—logP(H | D,®,¢&)

= Log-likelihood of data

Average both sides with P(H | D,®',£) for some O
Eype log P(D]0,5) = EH|D® logP(H D|0, 5) EH|D® 10gP(H|® 5)

logP(D|©.5)=  0O©|0) + H(©|O)

Log-likelihood of data
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EM algorithm

Algorithm (general formulation)

Initialize parameters
Repeat

Set O'=0
1. Expectation step

QO|0") =Ly pelogP(H,D]0,5)
2. Maximization step

®=argmax QO(® | O")

until no or small im(i))rovement in ® (=0")

Questions: Why this leads to the ML estimate ?
What 1s the advantage of the algorithm?
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EM algorithm

Question: Why is the EM algorithm correct?

 Claim: maximizing Q improves the log-likelihood
1(0)=0(0|0")+H(O|O")

Difference in log-likelihoods (current and ne
[(©)-/(0)=0(0]|0")-0(O'0")KH(O|0")-H(O'|O)

Kullback-Leibler (KL) divergence >0
« distance between 2 distributions)

KL(P|R) = ZE log]];i > O Is always positive !!!

l

H(®©|©)=-E,logP(H|0,D,)=-) p(H|D,0")log P(H|©,D,S)

@@')—H@: > P(H|D,0"log 1;((1:[“2’5’;) >0
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EM algorithm

Difference in log-likelihoods
[(0)-1(0)=0(0]0")-0(O'0")+H(O|0")-H(O'|0)
[(0)-1(0")20(0]0")-0(0'0")
Thus
by maximizing Q we improve (!!!) the log-likelihood
[(0)=0(0|0")+H(©O|O")
EM 1s a first-order optimization procedure

e Climbs the gradient
e Automatic learning rate

No need to adjust the learning rate !!!!
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EM advantages

Key advantages:

* In many problems (e.g. Bayesian belief networks)
QO|0) =L e logP(H,D|0,5)

— has a nice form and the maximization of OQ(® |®') can be
carried out 1n the closed form

* No need to compute Q before maximizing
* We directly optimize

— using quantities corresponding to expected counts
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Naive Bayes with a hidden class and
missing values

Assume:

 P(X) 1s modeled using a Naive Bayes model with a hidden
class variable C

* Missing entries (values) for attributes in the dataset D

Hidden class variable

(X € Attributes are independent
/g \x given the class
O
X, X, ... X,
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EM for the Naive Bayes

* Use EM to iteratively optimize / \
0(©]©)=E, o log P(H,D|©,) \

e Parameters:

I’l

7T ; prior on class

6, probability of an attribute i having value k given class j
* Indicator variables :

5jlf0r example /, the class 1sj ; if true (=1) else false (=0)

O 'for example /, the class is j and the value of attrib 7 is &

* because the class 1s hidden and some attributes are missing, the

values (0,1) of indicator variables are not known; they are
hidden

H — a collection of all indicator variables (that ‘complete’ the data)
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EM for the Naive Bayes model

 We can use EM to iteratively learn the parameters of the model
QO[O =Ey) e logP(H,D|0,5)

N [ /
logP;H,D 10,8) = 1ogHH7sz HH@j,gk

Complete loglikelihood ul
=> > (8’ logr, +ZZ§M logd,,)

— =
Expectation over H L

H]DG) log P(H,D|0,5) = ZZ H\D®(5 )logﬂ +ZZEH\D®(5yk)10g6ijk)

=1 j
[ . '
Enpe(0;)=p(C,=71D,07) Substitutes 0,1
H\D o (5l]k) p(Xﬂ =k, Cl = | Dw@') with the expected value
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EM for the Naive Bayes model

e Computing derivatives of @ for parameters and setting 1t to 0
we get:

ijk

& O = nNyk
N > N,
k=1

N ; N .
N, =2 E,pe(3)=2, p(C, =j|D,,0"

N N
Z EH|D,®'(5yl'k) :Z p(X,; =k,C, =j|D,,0)
=1

[=1

~~

N,

 Important:
— Use expected counts instead of counts !!!

— Re-estimate the parameters using expected counts
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EM for BBNs

* The same result applies to learning of parameters of any
Bayesian belief network with discrete-valued variables

QO|0") =Ly pelogP(H,D]0,5)

ijk e
6, =— <« Parameter value maximizing Q

may require inference

* Again:
— Use expected counts instead of counts

CS 2750 Machine Learning



Gaussian mixture model

Goal: We want a model of p(x)
Problem: a multidimensional Gaussian not a good fit to data

25,
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Gaussian mixture model

Goal: We want a density model of p(x)
Problem: a multidimensional Gaussian not a good fit to data
But three different Gaussians may do well

2.5~

r r r r r r r r
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Recall QDA

Generative classifier model:
* models of p(x,C) as p(x|C).p(C)

e (lass labels are known P(C)
Model: O C
p(C =i)
= probability of a data instance coming p(X|C=i)
from class C=i ) X

px|C=i)=N(u,,X,)
= class conditional density (modeled as a Gaussian)
for class 1
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Recall QDA

Generative classifier model:
* models of p(x,C) as p(x|C).p(C)
Class labels are known

The ML estimate of parameters

N, =>'1

j:CZ:i
_ N
T, =

N
—~ 1
M=y &%
= 1
2 =—

(Xj —llz-)(Xj —Hi)T

CS 2750 Machine Learning



Gaussian mixture model

The model of p(x) based on the model of p(x,C)
e C(lass labels are not known

K P(C)
p(x)=2, p(C=ipkx|C=i) ®cC
The same mol(_iel as QDA: p(X|C =i)
p(C=10) O x

= probability of a data point coming
from class C=i
px|C=i)~N(p,;,x%,)
= class conditional density (modeled as a Gaussian)
for class 1
Important: C' values are hidden !!!!
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Gaussian mixture model

Gaussian mixture: we do not know what Gaussian generates x

 We can apply EM algorithm:
— re-estimation based on the class posterior

; ' C :l ®' X C :i,®'
hz’l:p(CZ:l|Xz,®): mp( [ | )p( l| / )
ZP(CZ :M|®')p(xl |Cl :u,(v-)')

u=l1

N, = Z hy, \
/ Count replaced with the expected count

_ N,
7Z-l'_

N

1
n=— E h, X

~ 1
Z, :_th‘l(X, _ui)(xl -n,)"
N, 5
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Gaussian mixture

e Density function p(x) for the Mixture of Gaussians model
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GM algorithm

Assume special case of the GM: a fixed and shared covariance
matrix for all hidden groups and uniform prior on groups

* Algorithm:
Initialize means p, for all classes 1
Repeat two steps until no change in the means:

1. Compute the class posterior for each Gaussian and each point
(a kind of responsibility for a Gaussian for a point)
p(C,=i|O)p(x, |C, =i,0")

ZP(CZ =u|O)p(x, |C, =u,0")

u=l1
2. Move the means of the Gaussians to the center of the data,
weighted by the responsibilities N

2 l,hizxz
I—1

N

E l,hil

Responsibility: hy =

New mean: n, =
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Gaussian mixture model: Gradient ascent

e A set of parameters
P p(C)
@:{ﬂl,ﬂz,..ﬂm,ﬂl,ﬂz,...ﬂm} c
Assume unit variance terms and fixed priors
1
P(x|C=i)=2x)"" exp{—gnx_lui 2} p(x|C)
A (1 2 :
P(D|®)= HZﬂ'i (27) 7" expd — EHx, — U, }
=1 i=1 L
= N ~1/2 1 2
[(®) = ZlogZﬂi (27) '~ expy— EHxl — U,
/=1 i=l \
ol(® A
8(—) = Z h,(x, —u,) - easy on-line update
H; I=1
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EM versus gradient ascent

Gradient ascent EM

N
2 : h,x,
/=1

N

E : h,

/=1

Learning rate No learning rate

‘2 ‘2
-

Small pull towards distant Renormalized — big jump in the
uncovered data first step

N
H, <_/Ui+azhil(xl_:ui) M, <—
=1
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K-means approximation to EM

Mixture of Gaussians with the fixed covariance matrix:

 posterior measures the responsibility of a Gaussian for every point
pC, =i|O)p(x, |C, =i,0Y

ZP(C =u|©®)p(x |C, =u,0")
thle
> x,

K- Means approximations (next lecture)
* Only the closest Gaussian is made responsible for a data point

hil _

e Re-estimation of means:

B, =

h, =1 Ifiis the closest Gaussian h, =0 Otherwise

* Results in moving the means of Gaussians to the center of the
data points 1t covered in the previous step
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K-means algorithm

K-Means algorithm:
Initialize k values of means (centers)
Repeat two steps until no change in the means:
— Partition the data according to the current means (using
the similarity measure)

— Move the means to the center of the data in the current
partition

Used frequently for clustering data:

Basic clustering problem:

— distribute data into & different groups such that data points
similar to each other are in the same group
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