Probabilistic graphical models:
 - BBN inference
 - Markov Random Fields (MRFs)

Milos Hauskrecht
milos@pitt.edu
5329 Sennott Square

Modeling complex distributions

Question: How to model and learn complex multivariate distributions $\hat{p}(\mathbf{X})$ with a large number of variables?

- Represent the full joint distribution over the variables more compactly with a smaller number of parameters.
- Take advantage of conditional and marginal independences among random variables

Bayesian belief networks (BBNs)

Question: How to model and learn complex multivariate distributions with a large number of variables?
BBNs:

- Represent the full joint distribution over the variables more compactly with a smaller number of parameters.
- Take advantage of conditional and marginal independences among random variables
- X and Y are independent $\quad P(X, Y)=P(X) P(Y)$
- X and Y are conditionally independent given Z

$$
\begin{aligned}
& P(X, Y \mid Z)=P(X \mid Z) P(Y \mid Z) \\
& P(X \mid Y, Z)=P(X \mid Z)
\end{aligned}
$$

Bayesian belief network

Belief network structure:

- Nodes = random variables

Burglary, Earthquake, Alarm, Mary calls and John calls

- Links = direct (causal) dependencies between variables.

The chance of Alarm being is influenced by Earthquake, The chance of John calling is affected by the Alarm

Bayesian belief network: parameters

Full joint distribution in BBNs

Full joint distribution is defined in terms of local conditional distributions (obtained via the chain rule):

$$
\mathbf{P}\left(X_{1}, X_{2}, . ., X_{n}\right)=\prod_{i=1, . . n} \mathbf{P}\left(X_{i} \mid p a\left(X_{i}\right)\right)
$$

Example:

Assume the following assignment of values to random variables

$$
B=T, E=T, A=T, J=T, M=F
$$

Then its probability is:

$$
\begin{aligned}
& P(B=T, E=T, A=T, J=T, M=F)= \\
& \quad P(B=T) P(E=T) P(A=T \mid B=T, E=T) P(J=T \mid A=T) P(M=F \mid A=T)
\end{aligned}
$$

Parameter complexity problem

- In the BBN the full joint distribution is defined as:

$$
\mathbf{P}\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\prod_{i=1, \ldots n} \mathbf{P}\left(X_{i} \mid p a\left(X_{i}\right)\right)
$$

- What did we save?

Alarm example: 5 binary (True, False) variables \# of parameters of the full joint:

$$
2^{5}=32
$$

One parameter in every conditional depends on the rest:

$$
2^{2}+2(2)+2(1)=10
$$

Inference in Bayesian network

- Bad news:
- Exact inference problem in BBNs is NP-hard (Cooper)
- Approximate inference is NP-hard (Dagum, Luby)
- But very often we can achieve significant improvements
- Assume our Alarm network

- Assume we want to compute: $\quad P(J=T)$

Inference in Bayesian networks

How to compute sums and products more efficiently?

$$
\sum_{x} a f(x)=a \sum_{x} f(x)
$$

Inference in Bayesian network

- Exact inference algorithms:
- Variable elimination
- Recursive decomposition (Cooper, Darwiche)
- Symbolic inference (D'Ambrosio)
- Belief propagation algorithm (Pearl)
- Clustering and joint tree approach (Lauritzen, Spiegelhalter)
- Arc reversal (Olmsted, Schachter)
- Approximate inference algorithms:
- Monte Carlo methods:
- Forward sampling, Likelihood sampling
- Variational methods

Monte Carlo approaches

- MC approximation:
- The probability is approximated using sample frequencies
- Example:

- Sample generation: BBN sampling of the joint is easy
 E Generate sample in a top down manner, following the links
- One sample gives one assignment of values to all variables

BBN sampling example

Monte Carlo approaches

- MC approximation of conditional probabilities:
- The probability is approximated using sample frequencies
- Example:
\# samples with $B=T, J=T, M=F$
$\tilde{P}(B=T \mid J=T, M=F)=\frac{N_{B=T, J=T, M=F}}{N_{J=T, M=F}}$
\# samples with $J=T, M=F$

Monte Carlo approaches

- Rejection sampling
- Generate samples from the full joint by sampling BBN
- Use only samples that agree with the condition, the remaining samples are rejected
- Problem: many samples can be rejected

Importance sampling

Idea: generate only examples consistent with the evidence

- Avoids inefficiencies of rejection sampling

Problem:

- the distribution generated by enforcing the evidence is biased
- simple counts are not sufficient to estimate the probabilities

Solution: importance sampling

- Generate examples from the (sampling) distribution that is different from the target distribution.
- Give examples from the sample distribution a weight that reflects the consistency between the two distributions

$$
\tilde{P}(B=T \mid J=T, M=F)=\frac{\sum_{\text {samples with } B=T, M=F \text { and } J=T} w_{B=T \mid J=T, M=F}}{\sum_{B=x \mid J=T, M=F}}
$$

Importance sampling

Solution: importance sampling /likelihood weighting

- Generate examples from the (sampling) distribution that is different from the target distribution.
- Give examples from the sample distribution a weight that reflects the consistency between the two distributions

Estimate based on the target distribution:

$$
\widetilde{P}(B=T \mid J=T, M=F)=\frac{N_{B=T, J=T, M=F}}{N_{J=T, M=F}}
$$

Estimate based on the sampling distribution:

$$
\tilde{P}(B=T \mid J=T, M=F)=\frac{\sum_{\text {samples with } B=T, M=F \text { and } J=T} \sum_{\text {samples with any value of } B \text { and } J=T, M=F} \mathcal{W}_{B=T \mid J=T, M=F}}{\mathcal{W}_{B=x \mid J=T, M=F}}
$$

Likelihood weighting

Consider the following evidence:

$\mathbf{E}=\mathbf{F}$ and $\mathbf{J}=\mathbf{T}$ in the Alarm network

Two questions:

- How to generate examples consistent with the evidence?
- How to de-bias (correct) the sample with a weight?

BBN likelihood weighting example

BBN likelihood weighting example

BBN likelihood weighting example

CS 3750 Advanced Machine Learning

BBN likelihood weighting example

Second sample

CS 3750 Advanced Machine Learning

BBN likelihood weighting example

Second sample

BBN likelihood weighting example

BBN likelihood weighting example

BBN likelihood weighting example

Likelihood weighting

- Assume we have generated the following M samples:

- If we calculate the estimate:

$$
P(B=T \mid J=T, E=F)=\frac{\# \text { sample_with }(B=T)}{\# \text { total_sample }}
$$

a less likely sample from $P(X)$ may be generated more often.

- For example, sample than in $P(X)$
 is generated more often
- So the samples are not consistent with $\mathrm{P}(\mathrm{X})$.

Likelihood weighting

- Assume we have generated the following M samples:

How to make the samples consistent?
Weight each sample by probability with which it agrees with the conditioning evidence $\mathrm{P}(\mathrm{e})$.

43

Likelihood weighting

- How to compute weights for the sample?
- Assume the query $\mathrm{P}(\mathrm{B}=\mathrm{T} \mid \mathrm{J}=\mathrm{T}, \mathrm{E}=\mathrm{F})$
- Likelihood weighting:
- With every sample keep a weight with which it should count towards the estimate

$$
\begin{aligned}
& \widetilde{P}(B=T \mid J=T, E=F)=\frac{\sum_{i=1}^{M} 1\left\{B^{(i)}=T\right\} w^{(i)}}{\sum_{i=1}^{M} w^{(i)}} \\
& \tilde{P}(B=T \mid J=T, E=F)=\frac{\sum_{\text {samples wih } B=T \text { and } J=T, E=F} w_{B=T}}{\sum_{\text {samples with any value of } B \text { and } J=T, E=F} w_{B=x}}
\end{aligned}
$$

Markov random fields

An undirected network (also called independence graph)

- Probabilistic models with symmetric dependences
- $\mathrm{G}=(\mathrm{S}, \mathrm{E})$
- S set of random variables
- Undirected edges E that define dependences between pairs of variables

Example:

variables A,B ..H

Markov random fields

The full joint of the MRF is defined

$$
P(\mathbf{x}) \propto \prod_{c \in c l(x)} \phi_{c}\left(\mathbf{x}_{c}\right)
$$

$\phi_{c}\left(x_{c}\right)$ - A potential function (defined over variables in cliques/factors)

Example:

$P(A, B, \ldots H) \sim \phi_{1}(A, B, C) \phi_{2}(B, D, E) \phi_{3}(A, G) \phi_{4}(C, F) \phi_{5}(G, H) \phi_{6}(F, H)$
$\phi_{c}\left(x_{c}\right)$ - A potential function (defined over a clique of the graph)

Markov random fields: independence relations

- Pairwise Markov property
- Two nodes in the network that are not directly connected can be made independent given all other nodes
- Local Markov property
- A set of nodes (variables) can be made independent from the rest of nodes variables given its immediate neighbors
- Global Markov property
- A vertex set A is independent of the vertex set B (A and B are disjoint) given set C if all chains in between elements in A and B intersect C

Markov random fields: independence relations

- Pairwise Markov property
- Two nodes in the network that are not directly connected can be made independent given all other nodes
- Example:

C and H are independent given the rest of the nodes

Markov random fields: independence relations

- Local Markov property
- A set of nodes (variables) can be made independent from the rest of nodes variables given its immediate neighbors
- Example:

C is independent of $\{G, H, D, E\}$ given the neighbors of C that is, variables $\{\mathrm{A}, \mathrm{B}, \mathrm{F}\}$

Markov random fields: independence relations

- Global Markov property
- A vertex set A is independent of the vertex set B (A and B are disjoint) given set C if all chains in between elements in A and B intersect C
- Example:

A set $\{B, C\}$ is independent of $\{G, H\}$ given the $\operatorname{set}\{A, F\}$

Markov random fields

- regular lattice
(Ising model)

- Arbitrary graph

Markov random fields

- regular lattice
(Ising model)

- Arbitrary graph

Markov random fields

- Joint probability

$$
P(x) \approx \prod_{c \in c l(x)} \phi_{c}\left(x_{c}\right)
$$

$\phi_{c}\left(x_{c}\right)$ - A potential function (defined over cliques/factors)

- Typical condition on potential functions:
- If $\phi_{c}\left(x_{c}\right)$ is strictly positive we can rewrite the definition in terms of a log-linear model :
$P(x)=\frac{1}{Z} \exp \left(\sum_{\in c l(x)} E_{c}\left(x_{c}\right)^{\prime} \quad\right.$ Energy function
- Gibbs (Boltzman) distribution
$Z=\sum_{x \in\{x\}} \exp \left(-\sum_{c \in c l(x)} E_{c}\left(x_{c}\right)\right) \quad$ - A partition function

Are BBNs and MRFs different?

Both models represent independences that hold among variables or sets of variables?

- Are the two the same in terms of independences they can represent?
- Or, are they different?

Are BBNs and MRFs different?

Both models represent independences that hold among variables or sets of variables?

- Are the two the same in terms of independences they can represent?
- Or, are they different?

Answer: MRFs are different from BBNs

- There are independences that can be represented by one model but not the other

Directed Models (BBNs)

Are BBNs and MRFs different?

MRFs are different from BBNs

- There are independences that can be represented by one model but not the other
Analysis:
directed undirected

A is independent of C given B

Are BBNs and MRFs different?

MRFs are different from BBNs

- There are independences that can be represented by one model but not the other
Analysis:

undirected

B is independent of C given A

Are BBNs and MRFs different?

MRFs are different from BBNs

- There are independences that can be represented by one model but not the other
Analysis:
 undirected

A and B are marginally independent
A and B are independent given C

Fix to undirected ("moralization")

$\mathrm{A}, \mathrm{B}, \mathrm{C}$ are all dependent No false independence

Are BBNs and MRFs different?

MRFs are different from BBNs

- There are independences that can be represented by one model but not the other
Analysis: undirected

No directed graph can represent the same set of independences
B and C are independent given A, D
A and D are independent given B, C

Markov random fields: inference

The full joint of the MRF is defined

$$
P(\mathbf{x}) \propto \prod_{c \in c l(x)} \phi_{c}\left(\mathbf{x}_{c}\right)
$$

$\phi_{c}\left(x_{c}\right)$ - A potential function (defined over variables in cliques/factors)
Example:

Full joint:

$$
P(A, B, \ldots H) \sim \phi_{1}(A, B, C) \phi_{2}(B, D, E) \phi_{3}(A, G) \phi_{4}(C, F) \phi_{5}(G, H) \phi_{6}(F, H)
$$

How to calculate probabilistic queries, such as $P(B)$?
Next: Variable elimination

MRF variable elimination inference

Example:

$P(B)=\sum_{A, C, D, \ldots H} P(A, B, \ldots H)$

$=\frac{1}{Z} \sum_{A, C, D, \ldots H} \phi_{1}(A, B, C) \phi_{2}(B, D, E) \phi_{3}(A, G) \phi_{4}(C, F) \phi_{5}(G, H) \phi_{6}(F, H)$

Eliminate E

$$
=\frac{1}{Z} \sum_{A, C, D, F, G, H} \phi_{1}(A, B, C) \underbrace{\left[\sum_{E} \phi_{2}(B, D, E)\right.}_{\tau_{1}(B, D)}] \phi_{3}(A, G) \phi_{4}(C, F) \phi_{5}(G, H) \phi_{6}(F, H
$$

MRF variable elimination inference

Example (cont):
$P(B)=\sum_{A, C, D, \ldots H} P(A, B, \ldots H)$

D
$=\frac{1}{Z} \sum_{A, C, D, F, G, H} \phi_{1}(A, B, C) \tau_{1}(B, D) \phi_{3}(A, G) \phi_{4}(C, F) \phi_{5}(G, H) \phi_{6}(F, H)$
Eliminate D

$$
=\frac{\mathbf{1}}{Z_{A, C, F, G, H}} \sum_{1} \phi_{1}(A, B, C) \underbrace{\sum_{D} \tau_{1}(B, D)}_{\tau_{2}(B)}] \phi_{3}(A, G) \phi_{4}(C, F) \phi_{5}(G, H) \phi_{6}(F, H)
$$

MRF variable elimination inference

Example (cont):

$$
\begin{gathered}
P(B)=\sum_{A, C, D, \ldots H} P(A, B, \ldots H) \\
=\frac{\mathbf{1}}{Z} \sum_{A, C, F, G, H} \phi_{1}(A, B, C) \tau_{2}(B) \phi_{3}(A, G) \phi_{4}(C, F) \phi_{5}(G, H) \phi_{6}(F, H) \\
\text { Eliminate H } \\
=\frac{\mathbf{1}}{Z} \sum_{A, C, F, G} \phi_{1}(A, B, C) \tau_{2}(B) \phi_{3}(A, G) \phi_{4}(C, F)[\underbrace{\left.\sum_{\tau_{4}(F, G)}^{\phi_{5}(G, H) \phi_{6}(F, H)}\right]}_{\tau_{3}(F, G, H)}
\end{gathered}
$$

MRF variable elimination inference

Example (cont):

$$
P(B)=\sum_{A, C, D, \ldots H} P(A, B, \ldots H)
$$

$=\frac{1}{Z} \sum_{\ldots, C, F, G} \phi_{1}(A, B, C) \tau_{2}(B) \phi_{3}(A, G) \phi_{4}(C, F) \tau_{4}(F, G)$
Eliminate F

$$
=\frac{1}{Z} \sum_{A, C, G} \phi_{1}(A, B, C) \tau_{2}(B) \phi_{3}(A, G)[\underbrace{\sum_{F} \underbrace{\phi_{4}(C, F) \tau_{4}(F, G)}_{\tau_{5}(C, F, G)}}_{\tau_{6}(G, C)}]
$$

MRF variable elimination inference

Example (cont):

$$
\begin{aligned}
P(B) & =\sum_{A, C, D, \ldots H} P(A, B, \ldots H) \\
& =\frac{1}{Z} \phi_{1}(A, B, C) \tau_{2}(B) \phi_{3}(A, G) \tau_{6}(C, G)
\end{aligned}
$$

Eliminate G

$$
=\frac{\mathbf{1}}{Z} \sum_{A, C} \phi_{1}(A, B, C) \tau_{2}(B)[\underbrace{\sum_{F} \underbrace{\phi_{3}(A, G) \tau_{6}(C, G)}_{\tau_{7}(A, C, G)}}_{\tau_{8}(A, C)}]
$$

MRF variable elimination inference

Example (cont):

$$
\begin{aligned}
P(B) & =\sum_{A, C, D, \ldots H} P(A, B, \ldots H) \\
& =\frac{\mathbf{1}}{Z} \sum_{A, C} \phi_{1}(A, B, C) \tau_{2}(B) \tau_{8}(A, C)
\end{aligned}
$$

Eliminate C

$$
=\frac{\mathbf{1}}{Z}: \sum_{A} \tau_{2}(B)[\underbrace{\sum_{\tau_{9}(A, B, C)} \underbrace{\phi_{1}(A, B, C) \tau_{8}(A, C)}}_{\tau_{10}(A, B)}]
$$

MRF variable elimination inference

Example (cont):

$$
\begin{aligned}
P(B)=\sum_{A, C, D, .} & P(A, B, \ldots H) \\
= & \frac{1}{Z}, \tau_{2}(B) \tau_{10}(A, B) \\
= & \frac{1}{Z} \tau_{2}(B) \sum_{A} \tau_{10}(A, B)
\end{aligned}
$$

Eliminate A

$=\frac{\mathbf{1}}{Z} \tau_{2}(B) \underbrace{\sum_{A} \tau_{10}(A, B)}_{\tau_{11}(B)}$

$$
=\frac{\mathbf{1}}{Z}: \tau_{2}(B) \tau_{11}(B)
$$

B

