## CS 2750 Machine Learning Lecture 15

## Bayesian belief networks

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

## Midterm exam

Midterm exam

- Thursday, March 5, 2020
- In-class
- Closed book


## Density estimation

Data: $\quad D=\left\{D_{1}, D_{2}, . ., D_{n}\right\}$
$D_{i}=\mathbf{x}_{i} \quad$ a vector of attribute values
Objective: estimate the model of the underlying probability distribution over variables $\mathbf{X}, p(\mathbf{X})$, using examples in $D$


## Density estimation



Standard (iid) assumptions: Samples

- are independent of each other
- come from the same (identical) distribution (fixed $p(\mathbf{X})$ )



## Learning via parameter estimation

In this lecture we consider parametric density estimation

## Basic settings:

- A set of random variables $\mathbf{X}=\left\{X_{1}, X_{2}, \ldots, X_{d}\right\}$
- A model of the distribution over variables in $X$ with parameters $\Theta$ :

$$
\hat{p}(\mathbf{X} \mid \Theta)
$$

- Data $D=\left\{D_{1}, D_{2}, . ., D_{n}\right\}$

Objective: Find the parameters $\Theta$ that explain the observed data the best

## Parameter estimation

- Maximum likelihood (ML)
maximize $p(D \mid \Theta, \xi)$
- yields: one set of parameters $\Theta_{M L}$
- the target distribution is approximated as:

$$
\hat{p}(\mathbf{X})=p\left(\mathbf{X} \mid \boldsymbol{\Theta}_{M L}\right)
$$

- Bayesian parameter estimation
- uses the posterior distribution over possible parameters

$$
p(\Theta \mid D, \xi)=\frac{p(D \mid \Theta, \xi) p(\Theta \mid \xi)}{p(D \mid \xi)}
$$

- Yields: all possible settings of $\Theta$ (and their "weights")
- The target distribution is approximated as:

$$
\hat{p}(\mathbf{X})=p(\mathbf{X} \mid D)=\int_{\boldsymbol{\Theta}} p(X \mid \boldsymbol{\Theta}) p(\boldsymbol{\Theta} \mid D, \xi) d \boldsymbol{\Theta}
$$

## Parameter estimation

Other possible criteria:

- Maximum a posteriori probability (MAP)
maximize $p(\boldsymbol{\Theta} \mid D, \xi) \quad$ (mode of the posterior)
- Yields: one set of parameters $\boldsymbol{\Theta}_{M A P}$
- Approximation:

$$
\hat{p}(\mathbf{X})=p\left(\mathbf{X} \mid \boldsymbol{\Theta}_{M A P}\right)
$$

- Expected value of the parameter

$$
\hat{\boldsymbol{\Theta}}=E(\boldsymbol{\Theta}) \quad \text { (mean of the posterior) }
$$

- Expectation taken with regard to posterior $p(\boldsymbol{\Theta} \mid D, \xi)$
- Yields: one set of parameters
- Approximation:

$$
\hat{p}(\mathbf{X})=p(\mathbf{X} \mid \hat{\boldsymbol{\Theta}})
$$

## Distribution models

- So far we have covered density estimation for "simple" distribution models:
- Bernoulli
- Binomial
- Multinomial
- Gaussian
- Poisson


## But what if:

- The dimension of $\mathbf{X}=\left\{X_{1}, X_{2}, \ldots, X_{d}\right\}$ is large
- Example: patient data
- Compact parametric distributions do not seem to fit the data
- E.g.: multivariate Gaussian may not fit
- We have only a relatively "small" number of examples to learn many parameter estimates


## Modeling complex distributions

Question: How to model and learn complex multivariate distributions $\hat{p}(\mathbf{X})$ with a large number of variables?

## Solution:

- Decompose the distribution using conditional and marginal independence relations
- Decompose the parameter estimation problem to a set of smaller parameter estimation tasks

Decomposition of distributions using conditional and marginal independence assumption is the main idea behind Bayesian belief networks

## Example

## Problem description:

- Disease: pneumonia
- Patient symptoms (findings, lab tests):
- Fever, Cough, Paleness, WBC (white blood cells) count, Chest pain, etc.


## Representation of a patient case:

- Symptoms and disease are represented as random variables


## Our objectives:

- Describe a multivariate distribution representing the relations between symptoms and disease
- Design inference and learning procedures for the multivariate model


## Representation complexity

## Example: modeling of disease - symptoms relations

- Disease: pneumonia (T?F)
- Patient symptoms (findings, lab tests):
- Fever (T/F) Cough (T/F), Paleness (T/F), WBC (white blood cells) count (High/Normal/Low), Chest pain (T/G), etc.
- Model of the full joint distribution: $\hat{p}(X)$ $\mathbf{P}$ (Pneumonia, Fever, Cough, Paleness, WBC, Chest pain)

One probability per assignment of values to variables:
$\mathrm{P}($ Pneumonia $=\mathrm{T}$, Fever $=\mathrm{T}$, Cought=T, WBC=High, Chest pain=T)
$\mathrm{P}($ Pneumonia $=T$, Fever $=T$, Cought $=T, W B C=$ High, Chest pain=F)
$\mathrm{P}($ Pneumonia $=\mathrm{T}$, Fever $=\mathrm{T}$, Cought $=\mathrm{T}, \mathrm{WBC}=$ Norm, Chest pain=T $)$

- How many probabilities are there?


## Representation complexity

Example: modeling of disease - symptoms relations

- Disease: pneumonia (T?F)
- Patient symptoms (findings, lab tests):
- Fever (T/F) Cough (T/F), Paleness (T/F), WBC (white blood cells) count (High/Normal/Low), Chest pain (T/G), etc.
- Model of the full joint distribution: $\hat{p}(X)$

P(Pneumonia, Fever, Cough, Paleness, WBC, Chest pain)
One probability per assignment of values to variables:
$\mathrm{P}($ Pneumonia $=\mathrm{T}$, Fever $=\mathrm{T}$, Cought=T, WBC=High, Chest pain=T)
$\mathrm{P}($ Pneumonia $=\mathrm{T}$, Fever $=\mathrm{T}$, Cought $=\mathrm{T}, \mathrm{WBC}=$ High, Chest pain=F)
$\mathrm{P}($ Pneumonia $=T$, Fever $=T$, Cought $=T, W B C=$ Norm, Chest pain=T $)$

- How many probabilities are there? $2^{5 * 3}=32 * 3=96$
$O\left(a^{k}\right)$ where $k$ is the number of variables


## Marginalization

Joint probability distribution (for a set variables)

- Defines probabilities for all possible assignments to values of variables in the set

| $\mathbf{P}$ ( pneumo | ,WB | unt) | $2 \times 3$ table |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | WBCcount |  | (Pneumonia) |
|  |  | high | normal | low | $\checkmark$ |
| onia | True | 0.0008 | 0.0001 | 0.0001 | 0.001 |
|  | False | 0.0042 | 0.9929 | 0.0019 | 0.999 |
|  |  | 0.005 | 0.993 | 0.002 |  |
| $\mathbf{P}(W B$ | ount | Margin - summ | zation <br> ng out va | mming <br> ables | ows, or columns) |

## Joint distribution over a subset variables

- Full joint distribution is defined over all variables we use in the model
E.g. P(Pneumonia, Fever, Cough, Paleness, WBC, Chest pain)
- Important: Any joint probability over a subset of variables can be obtained via marginalization from the full joint E.g.
$P($ Pneumonia, WBCcount, Fever $)=$
$\sum_{c, p=\{T, F\}} P($ Pneumonia, WBCcount, Fever, Cough $=c$, Paleness $=p)$
- Question: Is it possible to recover the full joint from the joint probabilities over a subset of variables?


## Joint probabilities

- Is it possible to recover the full joint from the joint probabilities over a subset of variables?
$\mathbf{P}($ pneumonia, WBCcount $) \quad 2 \times 3$ matrix

| Pneumonia | WBCcount |  |  |  | $\mathbf{P}$ (Pneumonia) |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | high | normal | low |  |
|  | True | ? | ? | ? | 0.001 |
|  | False | ? | ? | ? | 0.999 |
|  |  | 0.005 | 0.993 | 0.002 |  |

$\mathbf{P}$ (WBCcount)
$\qquad$

## Joint probabilities and independence

- Is it possible to recover the full joint from the joint probabilities over a subset of variables?
- Only if the variables are independent !!!



## Variable independence

- The two events $A, B$ are said to be independent if:

$$
\mathrm{P}(\mathrm{~A}, \mathrm{~B})=\mathrm{P}(\mathrm{~A}) \mathrm{P}(\mathrm{~B})
$$

- The variables $X, Y$ are said to be independent if their joint probabilities can be expressed as a product of marginal probabilities:

$$
\mathbf{P}(\mathrm{X}, \mathrm{Y})=\mathbf{P}(\mathrm{X}) \mathbf{P}(\mathrm{Y})
$$

## Bayesian belief networks (BBNs)

Proposed in late 80s, beginning of 90 s
Key features:

- Represent the full joint distribution over the variables more compactly with a smaller number of parameters.
- Take advantage of conditional and marginal independences among random variables
- $X$ and $Y$ are independent

$$
P(X, Y)=P(X) P(Y)
$$

- $X$ and $Y$ are conditionally independent given $Z$

$$
\begin{aligned}
& P(X, Y \mid Z)=P(X \mid Z) P(Y \mid Z) \\
& P(X \mid Y, Z)=P(X \mid Z)
\end{aligned}
$$

## Conditional probability: definitions

## Conditional probability :

- Probability of A given B $\quad P(A \mid B)=\frac{P(A, B)}{P(B)}$
- Conditional probability is defined in terms of the joint probabilities
- Joint probabilities can be expressed in terms of conditional probabilities

Product rule
$P(A, B)=P(A \mid B) P(B)$
Chain rule
$P\left(X_{1}, X_{2}, \ldots X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid X_{1,} \ldots X_{i-1}\right)$

## Conditional probabilities

## Conditional probability distribution

- Defines probabilities for all possible assignments of values to target variables, given a fixed assignment of other variable values $P($ Pneumonia $=$ true $\mid W B C$ count $=$ high $)$
$\mathbf{P}$ (Pneumonia $\mid$ WBCcount $) \quad 3$ element vector of 2 elements

|  | Pneumonia |  |  | 1.0 |
| :---: | :---: | :---: | :---: | :---: |
|  |  | True | False |  |
| WBCcount | high <br> normal low | 0.08 | 0.92 |  |
| 4 |  | 0.0001 | 0.9999 | 1.0 |
| / |  | 0.0001 | 0.9999 | 1.0 |

Variable we $\quad P($ Pneumonia $=$ true $\mid$ WBCcount $=$ high $)$
condition on $+P($ Pneumonia $=$ false $\mid$ WBCcount $=$ high $)$

## Bayesian belief networks (BBNs)

Proposed in late 80s, beginning of 90 s
Key features:

- Represent the full joint distribution over the variables more compactly with a smaller number of parameters.
- Take advantage of conditional and marginal independences among random variables
- $X$ and $Y$ are independent

$$
P(X, Y)=P(X) P(Y)
$$

- $X$ and $Y$ are conditionally independent given $Z$

$$
\begin{aligned}
& P(X, Y \mid Z)=P(X \mid Z) P(Y \mid Z) \\
& P(X \mid Y, Z)=P(X \mid Z)
\end{aligned}
$$

## Alarm system example

Story: Assume your house has an alarm system against burglary. You live in the seismically active area and the alarm system can get occasionally set off by an earthquake. You have two neighbors, Mary and John, who do not know each other. If they hear the alarm they call you, but this is not guaranteed.
We want to represent the relations among the events:

- Burglary, Earthquake, Alarm, Mary calls and John calls

From the story we can extract (typically causal) relations among the events

## Causal relations



## Bayesian belief network

1. Directed acyclic graph

- Nodes = random variables

Burglary, Earthquake, Alarm, Mary calls and John calls

- Links = direct (causal) dependencies between variables. The chance of Alarm being is influenced by Earthquake, The chance of John calling is affected by the Alarm



## Bayesian belief network

2. Local conditional distributions

- relating variables and their parents



## Bayesian belief network



## Full joint distribution in BBNs

Full joint distribution is defined in terms of local conditional distributions (obtained via the chain rule):

$$
\mathbf{P}\left(X_{1}, X_{2}, . ., X_{n}\right)=\prod_{i=1, . . n} \mathbf{P}\left(X_{i} \mid p a\left(X_{i}\right)\right)
$$

## Example:

Assume the following assignment of values to random variables

$$
B=T, E=T, A=T, J=T, M=F
$$



Then its probability is:

$$
\begin{aligned}
& P(B=T, E=T, A=T, J=T, M=F)= \\
& \quad P(B=T) P(E=T) P(A=T \mid B=T, E=T) P(J=T \mid A=T) P(M=F \mid A=T)
\end{aligned}
$$

## Bayesian belief networks (BBNs)

Bayesian belief networks

- Represent the full joint distribution over the variables more compactly using the product of local conditionals.
- But how did we get to local parameterizations?

Answer:

- Graphical structure encodes conditional and marginal independences among random variables
- A and $B$ are independent $P(A, B)=P(A) P(B)$
- $A$ and $B$ are conditionally independent given $C$

$$
\begin{gathered}
P(A \mid C, B)=P(A \mid C) \\
P(A, B \mid C)=P(A \mid C) P(B \mid C)
\end{gathered}
$$

- The graph structure implies the decomposition !!!


## Independences in BBNs

3 basic independence structures:


## Independences in BBNs



1. JohnCalls is independent of Burglary given Alarm

$$
\begin{gathered}
P(J \mid A, B)=P(J \mid A) \\
P(J, B \mid A)=P(J \mid A) P(B \mid A)
\end{gathered}
$$

## Independences in BBNs

1. 


2. Burglary is independent of Earthquake (not knowing Alarm) Burglary and Earthquake become dependent given Alarm !!

$$
P(B, E)=P(B) P(E)
$$

## Independences in BBNs

1. 


3. MaryCalls is independent of JohnCalls given Alarm

$$
\begin{gathered}
P(J \mid A, M)=P(J \mid A) \\
P(J, M \mid A)=P(J \mid A) P(M \mid A)
\end{gathered}
$$

## Independence in BBN

- BBN distribution models many conditional independence relations relating distant variables and sets
- These are defined in terms of the graphical criterion called dseparation
- D-separation in the graph
- Let $\mathrm{X}, \mathrm{Y}$ and Z be three sets of nodes
- If $X$ and $Y$ are d-separated by $Z$ then $X$ and $Y$ are conditionally independent given Z
- D-separation :
- A is d-separated from B given C if every undirected path between them is blocked with C
- Path blocking
- 3 cases that expand on three basic independence structures


## Undirected path blocking

A is d-separated from $B$ given $C$ if every undirected path between them is blocked


## Undirected path blocking

$A$ is d-separated from $B$ given $C$ if every undirected path between them is blocked



## Undirected path blocking

$A$ is d-separated from $B$ given $C$ if every undirected path between them is blocked


- 1. Path blocking with a linear substructure


X in A
Z in C
Y in B

## Undirected path blocking

A is d-separated from B given $C$ if every undirected path between them is blocked

- 2. Path blocking with the wedge substructure


X in A
$Y$ in $B$

## Undirected path blocking

A is d-separated from B given C if every undirected path between them is blocked

- 3. Path blocking with the vee substructure



## Independences in BBNs



- Earthquake and Burglary are independent given MaryCalls


## Independences in BBNs



- Earthquake and Burglary are independent given MaryCalls F
- Burglary and MaryCalls are independent (not knowing Alarm) ?


## Independences in BBNs



- Earthquake and Burglary are independent given MaryCalls F
- Burglary and MaryCalls are independent (not knowing Alarm) F
- Burglary and RadioReport are independent given Earthquake ?


## Independences in BBNs



- Earthquake and Burglary are independent given MaryCalls F
- Burglary and MaryCalls are independent (not knowing Alarm) F
- Burglary and RadioReport are independent given Earthquake T
- Burglary and RadioReport are independent given MaryCalls ?


## Independences in BBNs



- Earthquake and Burglary are independent given MaryCalls F
- Burglary and MaryCalls are independent (not knowing Alarm) F
- Burglary and RadioReport are independent given Earthquake T
- Burglary and RadioReport are independent given MaryCalls F


## Full joint distribution in BBNs

Rewrite the full joint probability using the product rule:

$$
P(B=T, E=T, A=T, J=T, M=F)=
$$



## Full joint distribution in BBNs

Rewrite the full joint probability using the product rule:

$$
\begin{aligned}
& P(B=T, E=T, A=T, J=T, M=F)= \\
& \quad \text { Product rule } \\
& =P(J=T \mid B=T, E=T, A=T, M=F) P(B=T, E=T, A=T, M=F)
\end{aligned}
$$

## Full joint distribution in BBNs

Rewrite the full joint probability using the product rule:

$$
\begin{aligned}
& P(B=T, E=T, A=T, J=T, M=F)={ }_{\text {Product rule }} \\
& =P(J=T \mid B=T, E=T, A=T, M=F) P(B=T, E=T, A=T, M=F) \\
& =P(J=T \mid A=T) P(B=T, E=T, A=T, M=F)
\end{aligned}
$$



## Full joint distribution in BBNs

Rewrite the full joint probability using the product rule:

$$
\begin{aligned}
& P(B=T, E=T, A=T, J=T, M=F)= \\
& =P(J=T \mid B=T, E=T, A=T, M=F) P(B=T, E=T, A=T, M=F) \\
& =\underline{P(J=T \mid A=T)} P(B=T, E=T, A=T, M=F) \text { Product rule } \\
& P(M=F \mid B=T, E=T, A=T) P(B=T, E=T, A=T)
\end{aligned}
$$



## Full joint distribution in BBNs

Rewrite the full joint probability using the product rule:

$$
P(B=T, E=T, A=T, J=T, M=F)=
$$



$$
\begin{array}{r}
=P(J=T \mid B=T, E=T, A=T, M=F) P(B=T, E=T, A=T, M=F) \\
=P(J=T \mid A=T) P(B=T, E=T, A=T, M=F) \\
\\
P(M=F \mid B=T, E=T, A=T) P(B=T, E=T, A=T) \\
\\
P(M=F \mid A=T) P(B=T, E=T, A=T)
\end{array}
$$

## Full joint distribution in BBNs

Rewrite the full joint probability using the product rule:

$$
\begin{aligned}
& P(B=T, E=T, A=T, J=T, M=F)= \\
& =P(J=T \mid B=T, E=T, A=T, M=F) P(B=T, E=T, A=T, M=F) \\
& =\underline{P(J=T \mid A=T)} P(B=T, E=T, A=T, M=F) \\
& \qquad \begin{array}{r}
P(M=F \mid B=T, E=T, A=T) P(B=T, E=T, A=T) \\
\underline{P(M=F \mid A=T)} P(B=T, E=T, A=T)
\end{array} \\
& \underline{P(A=T \mid B=T, E=T)} P(B=T, E=T)
\end{aligned}
$$



## Full joint distribution in BBNs

Rewrite the full joint probability using the product rule:

$$
P(B=T, E=T, A=T, J=T, M=F)=
$$



$$
\begin{aligned}
& =P(J=T \mid B=T, E=T, A=T, M=F) P(B=T, E=T, A=T, M=F) \\
& =\underline{P(J=T \mid A=T)} P(B=T, E=T, A=T, M=F) \\
& \\
& \begin{array}{r}
P(M=F \mid B=T, E=T, A=T) P(B=T, E=T, A=T) \\
P(M=F \mid A=T) \\
P(B=T, E=T, A=T)
\end{array} \\
& P(B=T) P(E=T)
\end{aligned}
$$

## Full joint distribution in BBNs

Rewrite the full joint probability using the product rule:

$$
\begin{aligned}
& P(B=T, E=T, A=T, J=T, M=F)= \\
& =P(J=T \mid B=T, E=T, A=T, M=F) P(B=T, E=T, A=T, M=F) \\
& =\underline{P(J=T \mid A=T)} P(B=T, E=T, A=T, M=F) \\
& P(M=F \mid B=T, E=T, A=T) P(B=T, E=T, A=T) \\
& P(M=F \mid A=T) P(B=T, E=T, A=T) \\
& \underline{P(A=T \mid B=T, E=T)} P(B=T, E=T) \\
& P(B=T) P(E=T) \\
& =P(J=T \mid A=T) P(M=F \mid A=T) P(A=T \mid B=T, E=T) P(B=T) P(E=T)
\end{aligned}
$$



## Parameter complexity problem

- In the BBN the full joint distribution is defined as:
$\left.\begin{array}{l}\mathbf{P}\left(X_{1}, X_{2}, \ldots, X_{n}\right)\end{array}\right)=\prod_{i=1, \ldots n} \mathbf{P}\left(X_{i} \mid p a\left(X_{i}\right)\right)$
- What did we save?

Alarm example: binary (True, False) variables \# of parameters of the full joint: ?


## Parameter complexity problem

- In the BBN the full joint distribution is defined as:
- What did we save?

Alarm example: binary (True, False) variables \# of parameters of the full joint:

$$
2^{5}=32
$$

One parameter is for free:

$$
2^{5}-1=31
$$

\# of parameters of the BBN :

$$
?
$$



## Bayesian belief network: parameters count



## Parameter complexity problem

- In the BBN the full joint distribution is defined as:

$$
\begin{aligned}
& \quad \mathbf{P}\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\prod_{i=1, \ldots n} \mathbf{P}\left(X_{i} \mid p a\left(X_{i}\right)\right) \\
& \text { - What did we save? }
\end{aligned}
$$

Alarm example: 5 binary (True, False) variables \# of parameters of the full joint:

$$
2^{5}=32
$$

One parameter is for free:

$$
2^{5}-1=31
$$

\# of parameters of the BBN:

$$
2^{3}+2\left(2^{2}\right)+2(2)=20
$$



One parameter in every conditional is for free:

## Bayesian belief network: free parameters



## Parameter complexity problem

- In the BBN the full joint distribution is defined as:

$$
\begin{aligned}
& \quad \mathbf{P}\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\prod_{i=1, \ldots n} \mathbf{P}\left(X_{i} \mid p a\left(X_{i}\right)\right) \\
& \text { - What did we save? }
\end{aligned}
$$

Alarm example: 5 binary (True, False) variables \# of parameters of the full joint:

$$
2^{5}=32
$$

One parameter is for free:

$$
2^{5}-1=31
$$

\# of parameters of the BBN :

$$
2^{3}+2\left(2^{2}\right)+2(2)=20
$$



One parameter in every conditional is for free:

$$
2^{2}+2(2)+2(1)=10
$$

