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Density estimation

Data: 

Objective: estimate the model of the underlying probability 
distribution over variables       ,           ,  using examples in  D

},..,,{ 21 nDDDD 

iiD x a vector of attribute values

X

)(Xp },..,,{ 21 nDDDD 

n samplestrue distribution estimate

)(ˆ Xp

)(Xp

Density estimation

Standard (iid) assumptions: Samples

• are independent of each other

• come from the same (identical) distribution (fixed          )

)(Xp },..,,{ 21 nDDDD 

n samplestrue distribution estimate

)(ˆ Xp

)(Xp

Independently drawn instances

from the same fixed distribution
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Learning via parameter estimation

In this lecture we consider parametric density estimation

Basic settings:

• A set of random variables 

• A model of the distribution over variables in X

with parameters       : 

• Data

Objective: Find the parameters        that explain the observed 

data the best

},,,{ 21 dXXX X



},..,,{ 21 nDDDD 



)|(ˆ Xp

Parameter estimation 

• Maximum likelihood (ML)

– yields: one set of parameters

– the target distribution is approximated as:

• Bayesian  parameter estimation

– uses the posterior distribution over possible parameters

– Yields: all possible  settings of          (and their “weights”) 

– The target distribution is approximated as: 

),|( Dpmaximize

)|(

)|(),|(
),|(






Dp

pDp
Dp




ML



)()(ˆ
MLpp Θ|XX 


Θ

ΘΘΘ|XX dDpXpDpp ),|()|()()(ˆ 
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Parameter estimation

Other possible criteria:

• Maximum a posteriori probability (MAP)

– Yields: one set of parameters

– Approximation:

• Expected value of the parameter

– Expectation taken with regard to posterior

– Yields: one set of parameters

– Approximation:

maximize ),|( Dp Θ (mode of the posterior)

MAPΘ

)(ˆ ΘΘ E

)()(ˆ
MAPpp Θ|XX 

),|( Dp Θ

)ˆ()(ˆ Θ|XX pp 

(mean of the posterior)

Distribution models

• So far we have covered density estimation for “simple” 
distribution models:

– Bernoulli

– Binomial

– Multinomial

– Gaussian

– Poisson

But what if:

• The dimension of                                      is large

– Example: patient data

• Compact parametric distributions do not seem to fit the data

– E.g.: multivariate Gaussian may not fit

• We have only a relatively “small” number of examples to learn 
many parameter estimates 

},,,{ 21 dXXX X
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Modeling complex distributions

Question: How to model and learn complex multivariate 

distributions            with a large number of variables?

Solution:

• Decompose the distribution using conditional and marginal 

independence relations 

• Decompose the parameter estimation problem to a set of 

smaller parameter estimation tasks

Decomposition of distributions using  conditional and marginal 

independence assumption is the main idea  behind Bayesian 

belief networks

)(ˆ Xp

Example

Problem description:

• Disease: pneumonia

• Patient symptoms (findings, lab tests):

– Fever, Cough, Paleness, WBC (white blood cells) count, 

Chest pain, etc.

Representation of a patient case: 

• Symptoms and disease are represented as random variables

Our objectives: 

• Describe a multivariate distribution representing the relations 

between symptoms and disease

• Design inference and learning procedures for the multivariate 

model
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Representation complexity

Example: modeling of disease – symptoms relations

• Disease: pneumonia (T?F) 

• Patient symptoms (findings, lab tests):

– Fever (T/F) Cough (T/F), Paleness (T/F), WBC (white blood 

cells) count (High/Normal/Low), Chest pain (T/G), etc.

• Model of the full joint distribution: 

P(Pneumonia, Fever, Cough, Paleness, WBC, Chest pain)

One probability per assignment of values to variables: 

P(Pneumonia =T, Fever =T, Cought=T, WBC=High, Chest pain=T)

P(Pneumonia =T, Fever =T, Cought=T, WBC=High, Chest pain=F)

P(Pneumonia =T, Fever =T, Cought=T, WBC=Norm, Chest pain=T)

• How many probabilities are there?

)(ˆ Xp

Representation complexity

Example: modeling of disease – symptoms relations

• Disease: pneumonia (T?F) 

• Patient symptoms (findings, lab tests):

– Fever (T/F) Cough (T/F), Paleness (T/F), WBC (white blood 

cells) count (High/Normal/Low), Chest pain (T/G), etc.

• Model of the full joint distribution: 

P(Pneumonia, Fever, Cough, Paleness, WBC, Chest pain)

One probability per assignment of values to variables: 

P(Pneumonia =T, Fever =T, Cought=T, WBC=High, Chest pain=T)

P(Pneumonia =T, Fever =T, Cought=T, WBC=High, Chest pain=F)

P(Pneumonia =T, Fever =T, Cought=T, WBC=Norm, Chest pain=T)

• How many probabilities are there? 25*3 =32*3=96

O(a k)  where k is the number of variables

)(ˆ Xp
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Marginalization

Joint probability distribution (for a set variables)

• Defines probabilities for all possible assignments to values of 

variables in the set

)(WBCcountP

005.0 993.0 002.0

),( WBCcountpneumoniaP

high normal low

Pneumonia
True

False

WBCcount

0008.0

0042.0

0001.0

9929.0

0001.0

0019.0

)(PneumoniaP

001.0
999.0

Marginalization (summing of rows, or columns)

- summing out variables

table32

Joint distribution over a subset variables

• Full joint distribution is defined over all variables we use in 

the model 

E.g.  P(Pneumonia, Fever, Cough, Paleness, WBC, Chest pain)

• Important: Any joint probability over a subset of variables 

can be obtained via marginalization from the full joint

E.g. 

• Question: Is it possible to recover the full joint from the joint 

probabilities over a subset of variables?








},{,

),,,,(

 ),,(

FTpc

pPalenesscCoughFeverWBCcountPneumoniaP

FeverWBCcountPneumoniaP
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Joint probabilities

• Is it possible to recover the full joint from the joint 

probabilities over a subset of variables?

)(WBCcountP

005.0 993.0 002.0

),( WBCcountpneumoniaP

high normal low

Pneumonia
True

False

WBCcount
)(PneumoniaP

001.0
999.0

matrix32

?

?

? ?

??

Joint probabilities and independence

• Is it possible to recover the full joint from the joint 

probabilities over a subset of variables?

• Only if the variables are independent !!!

)(WBCcountP

005.0 993.0 002.0

),( WBCcountpneumoniaP

high normal low

Pneumonia
True

False

WBCcount
)(PneumoniaP

001.0
999.0

matrix32

?

?

? ?

??
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Variable independence

• The two events A, B  are said to be independent if: 

P(A, B) = P(A)P(B)

• The variables X, Y are said to be independent if their joint 

probabilities can be expressed as a product of marginal 

probabilities:

P(X, Y) = P(X)P(Y)

Bayesian belief networks (BBNs)

Proposed in late 80s, beginning of 90s

Key features: 

• Represent the full joint distribution over the variables more 

compactly with a smaller number of parameters. 

• Take advantage of conditional and marginal independences

among random variables

• X and Y are independent

• X and Y are conditionally independent given Z

)()(),( YPXPYXP 

)|()|()|,( ZYPZXPZYXP 

)|(),|( ZXPZYXP 
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Conditional probability: definitions

Conditional probability :

• Probability of A given B

• Conditional probability is defined in terms of the joint 

probabilities

• Joint probabilities can be expressed in terms of conditional 

probabilities

)(

),(
)|(

BP

BAP
BAP 

)()|(),( BPBAPBAP 

),,( 21 nXXXP    

n

i ii XXXP
1 1,1 )|( 

Product rule

Chain rule

Conditional probabilities

Conditional probability distribution 

• Defines probabilities for all possible assignments of values to 

target variables, given a fixed assignment of other variable values

)|(

)|(

highWBCcountfalsePneumoniaP

highWBCcounttruePneumoniaP





0.1

0.1

0.1

)|( WBCcountPneumoniaP

high

normal

low

Pneumonia

True False

WBCcount 08.0 92.0

0001.0 9999.0

0001.0 9999.0

3 element vector of 2 elements

)|( highWBCcounttruePneumoniaP 

Variable we 

condition on
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Bayesian belief networks (BBNs)

Proposed in late 80s, beginning of 90s

Key features: 

• Represent the full joint distribution over the variables more 

compactly with a smaller number of parameters. 

• Take advantage of conditional and marginal independences

among random variables

• X and Y are independent

• X and Y are conditionally independent given Z

)()(),( YPXPYXP 

)|()|()|,( ZYPZXPZYXP 

)|(),|( ZXPZYXP 

Alarm system example

Story: Assume your house has an alarm system against burglary. You live in 

the seismically active area and the alarm system can get occasionally set off by 

an earthquake. You have two neighbors, Mary and John, who do not know 

each other. If they hear the alarm they call you, but this is not guaranteed. 

We want to represent the relations among the events:

– Burglary, Earthquake, Alarm, Mary calls and John calls

From the story we can extract (typically causal) relations among the events

Burglary

JohnCalls

Alarm

Earthquake

MaryCalls

Causal relations
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Bayesian belief network

Burglary Earthquake

JohnCalls MaryCalls

Alarm

P(B) P(E)

P(A|B,E)

P(J|A) P(M|A)

1. Directed acyclic graph

• Nodes = random variables

Burglary, Earthquake, Alarm, Mary calls and John calls

• Links = direct (causal) dependencies between variables.

The chance of Alarm being is influenced by Earthquake, 

The chance of John calling is affected by the Alarm

Bayesian belief network

2. Local conditional distributions 

• relating variables and their parents

Burglary Earthquake

JohnCalls MaryCalls

Alarm

P(B) P(E)

P(A|B,E)

P(J|A) P(M|A)
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Bayesian belief network

Burglary Earthquake

JohnCalls MaryCalls

Alarm

B   E T       F

T   T 0.95   0.05
T   F     0.94   0.06
F   T     0.29   0.71
F   F     0.001 0.999

P(B)

0.001 0.999

P(E)

0.002  0.998

A   T      F

T    0.90  0.1
F    0.05  0.95

A      T      F

T    0.7    0.3
F    0.01   0.99

P(A|B,E)

P(J|A) P(M|A)

T        F T         F

Full joint distribution in BBNs

Full joint distribution is defined in terms of local conditional 

distributions (obtained via the chain rule):

))(|(),..,,(
,..1

21 



ni

iin XpaXXXX PP

M

A

B

J

E

 ),,,,( FMTJTATETBP

Example:

)|()|(),|()()( TAFMPTATJPTETBTAPTEPTBP 

Then its probability is:

Assume the following assignment

of values to random variables

FMTJTATETB  ,,,,
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Bayesian belief networks (BBNs)

Bayesian belief networks 

• Represent the full joint distribution over the variables more 

compactly using the product of local conditionals. 

• But how did we get to local parameterizations?

Answer:

• Graphical structure encodes conditional and marginal 

independences among random variables

• A and B are independent

• A and B are conditionally independent given C

• The graph structure implies the decomposition !!!

)()(),( BPAPBAP 

)|()|()|,( CBPCAPCBAP 

)|(),|( CAPBCAP 

Independences in BBNs

3 basic independence structures:

Burglary

JohnCalls

Alarm

Burglary

Alarm

Earthquake

JohnCalls

Alarm

MaryCalls

1. 2. 3.
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Independences in BBNs

1. JohnCalls is independent of Burglary given Alarm

Burglary

JohnCalls

Alarm

Burglary

Alarm

Earthquake

JohnCalls

Alarm

MaryCalls

1. 2. 3.

)|(),|( AJPBAJP 

)|()|()|,( ABPAJPABJP 

Independences in BBNs

2.   Burglary is independent of Earthquake (not knowing Alarm) 

Burglary and Earthquake become dependent given Alarm !!

Burglary

JohnCalls

Alarm

JohnCalls

Alarm

MaryCalls

1. 3.

)()(),( EPBPEBP 

Burglary

Alarm

Earthquake

2.
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Independences in BBNs

3.   MaryCalls is independent of JohnCalls given Alarm

Burglary

JohnCalls

Alarm

Burglary

Alarm

Earthquake

1. 2.

JohnCalls

Alarm

3.

MaryCalls

)|(),|( AJPMAJP 

)|()|()|,( AMPAJPAMJP 

Independence in BBN

• BBN distribution models many conditional independence 
relations relating distant variables and sets

• These are defined in terms of the graphical criterion called d-
separation

• D-separation in the graph

– Let X,Y and Z be three sets of nodes

– If X and Y are d-separated by Z then X and Y are 
conditionally independent given Z

• D-separation :

– A is d-separated from B given C if every undirected path 
between them is blocked with C

• Path blocking

– 3 cases that expand on three basic independence structures
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Undirected path blocking

A is d-separated from B given C if every undirected path 

between them is blocked

A BC

Undirected path blocking

A is d-separated from B given C if every undirected path 

between them is blocked

A BC

A B
C
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Undirected path blocking

A is d-separated from B given C if every undirected path 

between them is blocked

• 1.  Path blocking with a linear substructure

Z in C

X Y

X in A Y in B

Z

A BC

Undirected path blocking

A is d-separated from B given C if every undirected path 

between them is blocked

• 2.  Path blocking with the wedge substructure

Z in C
X Y

X in A Y in B

Z
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Undirected path blocking

A is d-separated from B given C if every undirected path 

between them is blocked

• 3.  Path blocking with the vee substructure

Z or any of its descendants not in C

X
Y

X in A Y in B

Z

Independences in BBNs

• Earthquake and Burglary are independent given MaryCalls         ?

Burglary

JohnCalls

Alarm

Earthquake

MaryCalls

RadioReport



20

Independences in BBNs

• Earthquake and Burglary are independent given MaryCalls         F

• Burglary and MaryCalls are independent (not knowing Alarm)   ?

Burglary

JohnCalls

Alarm

Earthquake

MaryCalls

RadioReport

Independences in BBNs

• Earthquake and Burglary are independent given MaryCalls         F

• Burglary and MaryCalls are independent (not knowing Alarm)   F

• Burglary and RadioReport are independent given Earthquake      ?

Burglary

JohnCalls

Alarm

Earthquake

MaryCalls

RadioReport
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Independences in BBNs

• Earthquake and Burglary are independent given MaryCalls         F

• Burglary and MaryCalls are independent (not knowing Alarm)   F

• Burglary and RadioReport are independent given Earthquake      T

• Burglary and RadioReport are independent given MaryCalls        ?

Burglary

JohnCalls

Alarm

Earthquake

MaryCalls

RadioReport

Independences in BBNs

• Earthquake and Burglary are independent given MaryCalls         F

• Burglary and MaryCalls are independent (not knowing Alarm)   F

• Burglary and RadioReport are independent given Earthquake      T

• Burglary and RadioReport are independent given MaryCalls        F

Burglary

JohnCalls

Alarm

Earthquake

MaryCalls

RadioReport
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Full joint distribution in BBNs

M

A

B

J

E

 ),,,,( FMTJTATETBP

Rewrite the full joint probability using the 

product rule:

Full joint distribution in BBNs

M

A

B

J

E

 ),,,,( FMTJTATETBP

),,,(),,,|( FMTATETBPFMTATETBTJP 

Rewrite the full joint probability using the 

product rule:

Product rule
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Full joint distribution in BBNs

M

A

B

J

E

 ),,,,( FMTJTATETBP

),,,(),,,|( FMTATETBPFMTATETBTJP 

),,,()|( FMTATETBPTATJP 

Rewrite the full joint probability using the 

product rule:

Product rule

Full joint distribution in BBNs

M

A

B

J

E

 ),,,,( FMTJTATETBP

),,,(),,,|( FMTATETBPFMTATETBTJP 

),,,()|( FMTATETBPTATJP 

),,(),,|( TATETBPTATETBFMP 

Rewrite the full joint probability using the 

product rule:

Product rule
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Full joint distribution in BBNs

M

A

B

J

E

 ),,,,( FMTJTATETBP

),,,(),,,|( FMTATETBPFMTATETBTJP 

),,,()|( FMTATETBPTATJP 

),,(),,|( TATETBPTATETBFMP 

),,()|( TATETBPTAFMP 

Rewrite the full joint probability using the 

product rule:

Full joint distribution in BBNs

M

A

B

J

E

 ),,,,( FMTJTATETBP

),,,(),,,|( FMTATETBPFMTATETBTJP 

),,,()|( FMTATETBPTATJP 

),,(),,|( TATETBPTATETBFMP 

),,()|( TATETBPTAFMP 

),(),|( TETBPTETBTAP 

Rewrite the full joint probability using the 

product rule:
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Full joint distribution in BBNs

M

A

B

J

E

 ),,,,( FMTJTATETBP

),,,(),,,|( FMTATETBPFMTATETBTJP 

),,,()|( FMTATETBPTATJP 

),,(),,|( TATETBPTATETBFMP 

),,()|( TATETBPTAFMP 

),(),|( TETBPTETBTAP 

)()( TEPTBP 

Rewrite the full joint probability using the 

product rule:

Full joint distribution in BBNs

M

A

B

J

E

 ),,,,( FMTJTATETBP

)()(),|()|()|( TEPTBPTETBTAPTAFMPTATJP 

),,,(),,,|( FMTATETBPFMTATETBTJP 

),,,()|( FMTATETBPTATJP 

),,(),,|( TATETBPTATETBFMP 

),,()|( TATETBPTAFMP 

),(),|( TETBPTETBTAP 

)()( TEPTBP 

Rewrite the full joint probability using the 

product rule:
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# of parameters of the full joint: 

Parameter complexity problem

• In the BBN the full joint distribution is defined as:

• What did we save?

Alarm example: binary (True, False) variables

Burglary

JohnCalls

Alarm

Earthquake

MaryCalls

))(|(),..,,(
,..1

21 



ni

iin XpaXXXX PP

?

# of parameters of the full joint: 

Parameter complexity problem

• In the BBN the full joint distribution is defined as:

• What did we save?

Alarm example: binary (True, False) variables

Burglary

JohnCalls

Alarm

Earthquake

MaryCalls

))(|(),..,,(
,..1

21 



ni

iin XpaXXXX PP

3225 
One parameter is for free:

31125 

# of parameters of the BBN:

?
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Bayesian belief network: parameters count

Burglary Earthquake

JohnCalls MaryCalls

Alarm

B   E T       F

T   T 0.95   0.05
T   F     0.94   0.06
F   T     0.29   0.71
F   F     0.001 0.999

P(B)

0.001 0.999

P(E)

0.002  0.998

A   T      F

T    0.90  0.1
F    0.05  0.95

A      T      F

T    0.7    0.3
F    0.01   0.99

P(A|B,E)

P(J|A) P(M|A)

T        F T         F

2 2

8

4 4

Total: 20

# of parameters of the full joint: 

Parameter complexity problem

• In the BBN the full joint distribution is defined as:

• What did we save?

Alarm example: 5 binary (True, False) variables

Burglary

JohnCalls

Alarm

Earthquake

MaryCalls

))(|(),..,,(
,..1

21 



ni

iin XpaXXXX PP

3225 

31125 

One parameter is for free:

# of parameters of the BBN:

20)2(2)2(22 23 

One parameter in every conditional is for free: 

?
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Bayesian belief network: free parameters

Burglary Earthquake

JohnCalls MaryCalls

Alarm

B   E T       F

T   T 0.95   0.05
T   F     0.94   0.06
F   T     0.29   0.71
F   F     0.001 0.999

P(B)

0.001 0.999

P(E)

0.002  0.998

A   T      F

T    0.90  0.1
F    0.05  0.95

A      T      F

T    0.7    0.3
F    0.01   0.99

P(A|B,E)

P(J|A) P(M|A)

T        F T         F

1 1

4

2 2

Total free 

params: 10

= 1- 0.95

= 1- 0.002

# of parameters of the full joint: 

Parameter complexity problem

• In the BBN the full joint distribution is defined as:

• What did we save?

Alarm example: 5 binary (True, False) variables

Burglary

JohnCalls

Alarm

Earthquake

MaryCalls

))(|(),..,,(
,..1

21 



ni

iin XpaXXXX PP

3225 

31125 

One parameter is for free:

# of parameters of the BBN:

20)2(2)2(22 23 

10)1(2)2(222 

One parameter in every conditional is for free: 


