CS 2750 Machine Learning Lecture 15

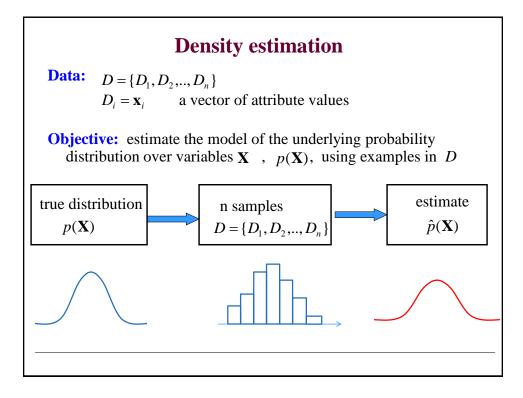
Bayesian belief networks

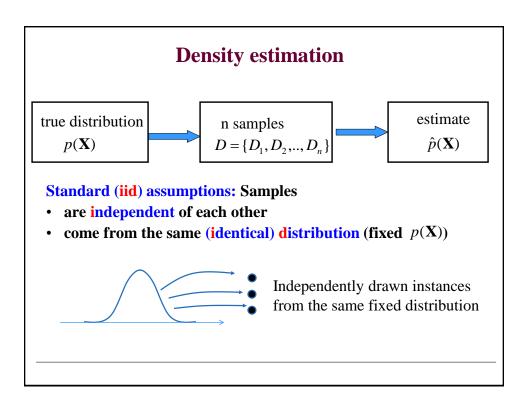
Milos Hauskrecht <u>milos@cs.pitt.edu</u> 5329 Sennott Square

Midterm exam

Midterm exam

- Thursday, March 5, 2020
- In-class
- Closed book



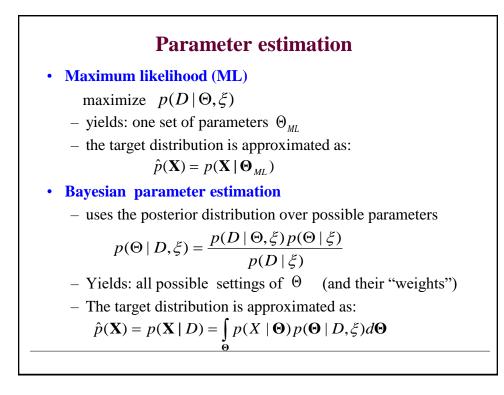


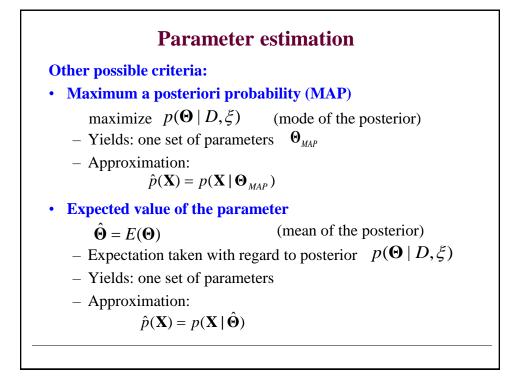
Learning via parameter estimation

In this lecture we consider **parametric density estimation Basic settings:**

- A set of random variables $\mathbf{X} = \{X_1, X_2, \dots, X_d\}$
- A model of the distribution over variables in X with parameters Θ : $\hat{p}(\mathbf{X} \mid \Theta)$
- **Data** $D = \{D_1, D_2, ..., D_n\}$

Objective: Find the parameters Θ that explain the observed data the best





Distribution models						
•	So far we have covered density estimation for "simple" distribution models:					
	– Bernoulli					
	– Binomial					
	– Multinomial					
	– Gaussian					
	– Poisson					
Bı	ıt what if:					
•	The dimension of $\mathbf{X} = \{X_1, X_2, \dots, X_d\}$ is large					
	– Example: patient data					
•	Compact parametric distributions do not seem to fit the data					
	 E.g.: multivariate Gaussian may not fit 					
•	We have only a relatively "small" number of examples to learn many parameter estimates					

Modeling complex distributions

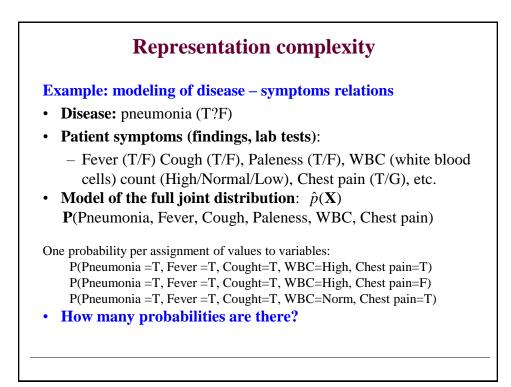
Question: How to model and learn complex multivariate distributions $\hat{p}(\mathbf{X})$ with a large number of variables?

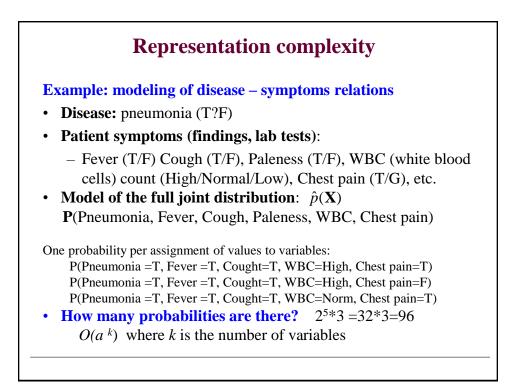
Solution:

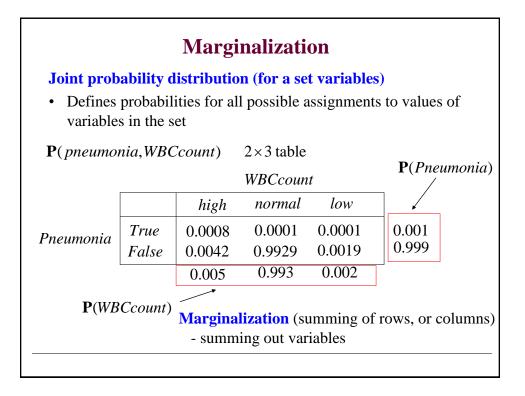
- Decompose the distribution using conditional and marginal independence relations
- Decompose the parameter estimation problem to a set of smaller parameter estimation tasks

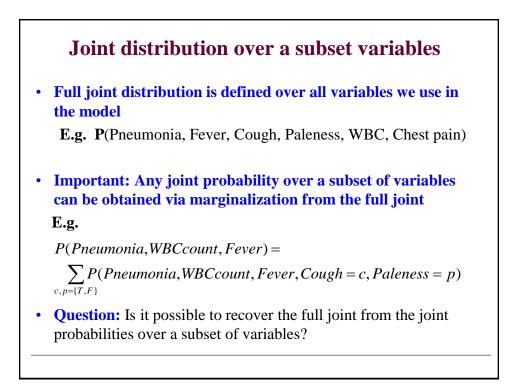
Decomposition of distributions using conditional and marginal independence assumption is the main idea behind **Bayesian belief networks**

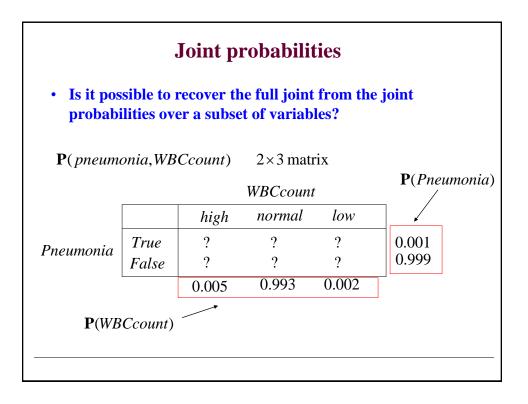
Example							
Pı	roblem description:						
•	Disease: pneumonia						
•	Patient symptoms (findings, lab tests):						
	 Fever, Cough, Paleness, WBC (white blood cells) count, Chest pain, etc. 						
R	epresentation of a patient case:						
•	Symptoms and disease are represented as random variables						
0	ur objectives:						
•	Describe a multivariate distribution representing the relations between symptoms and disease						
•	Design inference and learning procedures for the multivariate model						

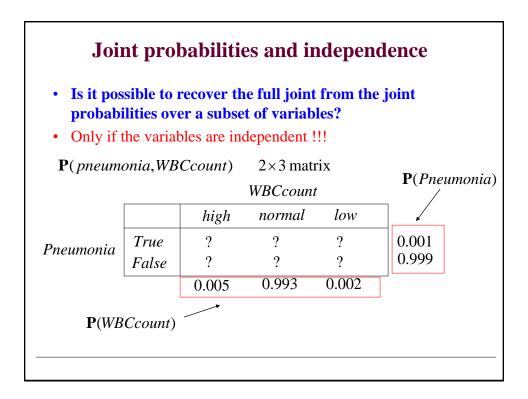








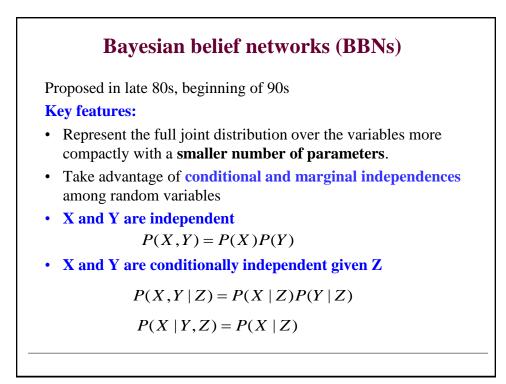


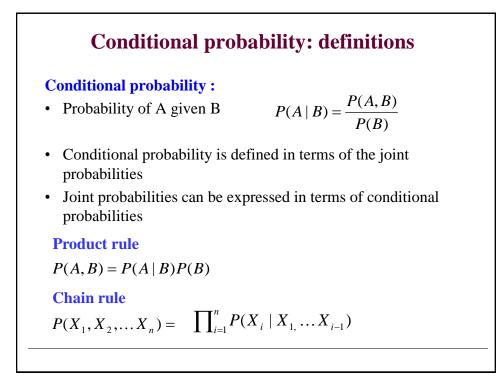


Variable independence

- The two events A, B are said to be independent if: P(A, B) = P(A)P(B)
- The variables X, Y are said to be independent if their joint probabilities can be expressed as a product of marginal probabilities:

 $\mathbf{P}(\mathbf{X}, \mathbf{Y}) = \mathbf{P}(\mathbf{X})\mathbf{P}(\mathbf{Y})$





Conditional probabilities								
Conditional probability distribution								
• Defines probabilities for all possible assignments of values to target variables, given a fixed assignment of other variable values								
P(Pneumonia = true WBCcount = high)								
P (<i>Pneumonia</i> <i>WBCcount</i>) 3 element vector of 2 elements								
Pneumonia								
		True	False					
WBCcount	high	0.08	0.92	1.0				
1	normal	0.0001	0.9999	1.0				
	low	0.0001	0.9999	1.0				
Variable we	P(Pneumonia = true WBCcount = high)							
condition on		+P(Pne)	Pneumonia = false WBCcount = high)					

