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CS 2750  Machine Learning

Lecture 11

Milos Hauskrecht

milos@cs.pitt.edu

5329 Sennott Square

Support vector machines

• What models define linear decision boundaries?
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Linear decision boundaries
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Linear decision boundaries
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Linearly separable classes

Linearly separable classes: 

There is a hyperplane

that separates training instances with no error
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Learning linearly separable sets

Finding weights for linearly 

separable classes: 

• Linear program (LP) solution

• It finds weights that satisfy 

the following constraints:

Property: if there is a hyperplane separating the examples, the 

linear program finds the solution
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Optimal separating hyperplane

Problem:

• There are multiple hyperplanes that separate the data points

• Which one to choose?  
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Problem:

• There are multiple hyperplanes that separate the data points

• Which one to choose?  

• One solution: hyperplane that maximizes the width of the 

margin

Optimal separating hyperplane

margin

Optimal separating hyperplane

• Problem: multiple hyperplanes that separate the data exists

• Maximum margin choice: maximum distance of               

– where       is the shortest distance of a positive example 

from the hyperplane (similarly       for negative examples)

Note: a margin classifier is a classifier for which we can calculate the distance of each 

example from the decision boundary
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Maximum margin hyperplane

• For the maximum margin hyperplane only examples on the 

margin matter (only these affect the distances)

• These are called support vectors

Finding maximum margin hyperplanes

• Assume that examples in the training set are                 such 

that  

• Assume that all data satisfy:

• The inequalities can be combined as:

• Equalities define two hyperplanes:
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Finding the maximum margin hyperplane

• Geometric margin:

– measures the distance of a point x from the hyperplane
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Width of the margin:

Maximum margin hyperplane

• We want to maximize

• We do it by minimizing

– But we also need to enforce the constraints on data 

instances: 
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Maximum margin hyperplane

• Solution: Incorporate constraints into the optimization

• Optimization problem (Lagrangian)

• Minimize with respect to               (primal variables)

• Maximize with respect to         (dual variables) 
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Data instances

Max margin hyperplane solution

• Set derivatives to 0 (Kuhn-Tucker conditions)

• Now we need to solve for Lagrange parameters (Wolfe dual)

• Quadratic optimization problem: solution        for all i 
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Maximum margin solution

• The resulting parameter vector        can be expressed as:

• The parameter         is obtained from 

Solution properties

• for all points that are 

not on the margin

• The decision boundary:
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The decision boundary defined by support vectors only

Support vector machines: solution property

• Decision boundary defined by a set of support vectors SV 

and their alpha values  

– Support vectors = a subset of datapoints in the training 

data that define the margin 

• Classification decision for new x:

• Note that we do not have to explicitly compute         

– This will be important for the nonlinear (kernel) case
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Support vector machines

• The decision boundary:

• Classification decision:
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Support vector machines: solution property

• Decision boundary defined by a set of support vectors SV 

and their alpha values  

– Support vectors = a subset of datapoints in the training 

data that define the margin 

• Classification decision:

• Note that we do not have to explicitly compute         

– This will be important for the nonlinear (kernel) case
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Support vector machines: inner product

• Decision on a new x depends on the inner product between 

two examples

• The decision boundary:

• Classification decision:

• Similarly, the optimization depends on 

00 )(ˆˆ wyw
T

ii

SVi

i

T  


xxxw 









 



0)(ˆsignˆ wyy
T

ii

SVi

i xx

)( j

T

i xx

)(
2

1
)(

1,1





n

ji

j

T

ijiji

n

i

i yyJ xx

Inner product of two vectors

• The decision boundary for the SVM and its optimization 

depend on the inner product of two datapoints (vectors):
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Inner product of two vectors

• The decision boundary for the SVM and its optimization 

depend on the inner product of two data points (vectors):
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Inner product of two vectors

• The decision boundary for the SVM and its optimization 

depend on the inner product of two data points (vectors):

• The inner product is equal

If the angle in between them is 0 then:

If the angle between them is 90 then: 

The inner product measures how similar the two vectors are
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Extension to a linearly non-separable case

• Idea: Allow some flexibility on crossing the separating 

hyperplane

Linearly non-separable case

• Relax constraints with variables

• Error occurs  if             ,             is the upper bound on the 

number of errors 

• Introduce a penalty for the errors (soft margin)
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Linearly non-separable case

• Rewrite                                                             in
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Linearly non-separable case

• Lagrange multiplier form (primal problem)

• Dual form after              are expressed (     s cancel out)  
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Support vector machines: solution

• The solution of the linearly non-separable case has the same 

properties as the linearly separable case.  

– The decision boundary is defined only by a set of support 

vectors (points that are on the margin or that cross the margin)

– The decision boundary and the optimization can be expressed 

in terms of the inner product in between pairs of examples
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Nonlinear decision boundary

So far we have seen how to learn a linear decision boundary

• But what if the linear decision boundary is not good. 

• How can we learn a non-linear decision boundaries with 
the SVM? 
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Nonlinear decision boundary

• The non-linear case can be handled by using a set of features. 
Essentially we map input vectors to (larger) feature vectors

– Note that feature expansions are typically high dimensional

• Examples: polynomial expansions 

• Given the nonlinear feature mappings, we can use the linear 
SVM on the expanded feature vectors

• Kernel function
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Support vector machines: solution for 

nonlinear decision boundaries

• The decision boundary:

• Classification:

• Decision on a new x requires to compute  the kernel function 

defining the similarity between the examples

• Similarly, the optimization depends on the kernel
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Kernel trick

The non-linear case maps input vectors to (larger) feature space

• Note that feature expansions are typically high dimensional

– Examples: polynomial expansions 

• Kernel function defines the inner product in the expanded 
high dimensional feature vectors and let us use the SVM

• Problem: after expansion we need to perform inner products 
in a very high dimensional space

• Kernel trick:

– If we choose the kernel function wisely we can compute 
linear separation in the high dimensional feature space 
implicitly by working in the original input space !!!!
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Kernel function example

• Assume                         and a feature mapping that maps the input 
into a quadratic feature set

• Kernel function for the feature space:
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Kernel function example

• Assume                         and a feature mapping that maps the input 
into a quadratic feature set

• Kernel function for the feature space:

• The computation of the linear separation in the higher dimensional 
space is performed implicitly in the original input space
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Linear separator

in the expanded 

feature space

Non-linear separator

in the input space
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Kernel trick

• Replace the inner product with a kernel

• A well chosen kernel leads to an efficient computation

Nonlinear extension

Kernel functions

• Linear kernel

• Polynomial kernel

• Radial basis kernel

')'( xxxx,
TK 

  kTK '1)'( xxxx, 











2
'

2

1
exp)'( xxxx,K



19

Kernels

• ML researchers have proposed kernels for comparison of 

variety of objects. 

– Strings

– Trees

– Graphs

• Cool thing:

– SVM algorithm can be now applied to classify a variety of 

objects 


